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Convolution Equation
in S ′∗—Propagation of Singularities
Stevan Pilipović

Abstract. The singular spectrum of u in a convolution equation µ∗u = f , where µ and f are tempered
ultradistributions of Beurling or Roumieau type is estimated by

SSu ⊂ (Rn × Char µ) ∪ SS f .

The same is done for SS∗u.

0 Introduction

In this paper we consider a class of convolution equations in spaces of tempered ul-
tradistributions and study the propagation of Gevrey and analytic singularities.

Various spaces of generalized functions and hyperfunctions are introduced and
used in the microlocal analysis of various classes of equations ([4], [6], [11], [13]).
Hörmander gives in [4], Chapter 9 an elementary approach to the theory of hyper-
functions (cf. [13]) by using Poisson’s kernel as well as Komatsu who develops in [6]
the theory of sheaves C∗ and C∗ of microfunctions which correspond to spaces of ul-
tradistributions and ultradifferentiable functions, respectively. In [10] we follow [4],
Chapter 8, and analyze the microsupport of an ultradistribution in S ′∗ by the mean
of a kernel introduced in [4], Section 8.4. Note that ultradistribution spaces S ′∗ are
are invariant under Fourier transformation.

In this paper we investigate the singular spectrum of a solution u of µ ∗ u = f ,
where µ, f ∈ S ′∗ and prove

SSu ⊂ (Rn × Char µ) ∪ SS f .

The same is proved for SS∗u. For the corresponding assertion in distribution spaces
we refer to [4], Section 8.6.

Generally, for the references related to the propagation of singularities we refer to
a wast literature given in the references of [4], [6], [11] and [13].

Since ultradifferential operators with constant coefficients of ∗-class, P(∂), are
convolution operators, Theorem 1 imply the appropriate assertion for P(∂) (see [6]
for a detail analysis of such operators). It is known that SS∗P(∂)u ⊂ SS∗u, u ∈ D ′

and SSP(∂)u ⊂ SSu, u ∈ D ′∗ ([6]). Thus, if an ultradifferential operator P(∂) of ∗-
class has a property Char P(∂) = ∅, then our theorem directly implies the analytic-
hypoellipticity of this operator in S ′∗(Rn). An example is the analytic-hypoellipticity
of∆u = f in S ′∗(Rn) ([1], second part of Theorem 4.1).
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106 Stevan Pilipović

1 Notation and Notions

As usual, by Mp, p ∈ N0 is denoted a sequence of positive numbers with M0 = 1. We
refer to [5], [8] and [12] for the meaning of conditions (M.1), (M.2)′, (M.2), (M.3)′

and (M.3). Also we use the following one ([8]):
(M.1)∗ M∗p−1M∗p+1 ≥ M∗2

p , p ∈ N, where M∗0 = 1, M∗p = Mp/p!, p ∈ N.
Let Mp satisfy (M.1) and (M.3)′. The associated function M(ρ) and the growth

function M̃(ρ) related to Mp are defined by

M(ρ) = sup
p∈N0

ln
ρp

Mp
, M̃(ρ) = sup

p∈N0

ln
ρp

M∗p
, ρ > 0.

Note, for given L > 0 there is L1 > 0 such that

(L|ξ|)− |η| |ξ| ≤ M̃(L1/|η|), ξ, η ∈ Rn(1)

([12], Section 1).
We denote by Ω an open set in Rn; K ⊂⊂ Ω denotes that K is a compact subset of

Ω. Recall, for ϕ ∈ C∞(Ω),

‖ϕ‖K,h,Mp = sup
x∈K,α∈Nn

0

|ϕ(α)(x)|

h|α|M|α|
.

We use a symbol ∗ for both (Mp) and {Mp}. For the definitions of D ′∗(Ω),
D∗K(Ω), D ′∗K (Ω) and the ultradifferential operators of ∗-class we refer to [5], [8],
[11] and [12]. We always assume that Mp satisfies (M.1), (M.2) ′ and (M.3)′.

Komatsu [6] (see also [2]) has defined SS∗—and SS∗—singular spectrum of a
hyperfunction f . We recall the definition of SS∗ f , f ∈ D ′∗. (x, ω) ∈ S∗Ω = Ω×Sn−1

(Sn−1 is the unit sphere in Rn) is not in SS∗ f iff there exist a neighbourhood U ⊂ Ω
of x and a conic neighbourhood Γ of ω of the form Γ =

{
ξ �= 0 ;

∣∣ξ/|ξ| − ω∣∣ < η}
such that for every φ ∈ D∗(U ) in (Mp) case, for every ε > 0 there is Cε > 0 such that

|φ̂ f (ξ)| ≤ Cεe
−M(ε|ξ|), ξ ∈ Γ,

in {Mp} case, there exist k > 0 and C > 0 such that

|φ̂ f (ξ)| ≤ Ce−M(k|ξ|), ξ ∈ Γ.

Note, SS{Mp} f =W FL f (see Section 8.4 in [4] and [6]).
The definition of the singular spectrum SS f , where f ∈ B(Ω), is given by Sato

(cf. [13]). For an f ∈ D ′∗(Ω), (x, ω) ∈ S∗Ω is not in SS f if this point is not in
SS{ f }, where { f } denotes the corresponding hyperfunction. Note, SS f =W FA f —
the analytic wave front set of f ([4], Definition 9.3.2 and Theorem 9.6.3).

The definitions of corresponding singular supports are given by

singsupp∗ f = p1(SS∗ f ), singsuppA f = p1(SS f ),
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Convolution Equation in S ′∗ 107

where p1 is the first projection.
The following result ([10]) will be used in this paper.
If u ∈ D ′∗ and v ∈ E ′∗, then

SS∗(u ∗ v) ⊂ {(x + y, ξ)(x, ξ) ∈ SS∗u, (y, ξ) ∈ SS∗v},

SS(u ∗ v) ⊂ {(x + y, ξ) ; (x, ξ) ∈ SSu, (y, ξ) ∈ SSv}.(2)

We recall ([7], [9]) the definitions of tempered ultradistribution spaces.
Let m > 0. A space of smooth functions ϕ on Rn which satisfy

σm,2(ϕ) =

( ∑
α,β∈Nn

0

∫
Rn

∣∣∣∣ m|α+β|

M|α|M|β|
(1 + |x|2)|β|/2ϕ(α)(x)

∣∣∣∣ 2

dx

) 1/2

<∞,

equipped with the topology induced by the norm σm,2, is denoted by S
Mp ,m
2 .

Strong duals of

S(Mp) = proj lim
m→∞

S
Mp ,m
2 and S{Mp} = ind lim

m→0
S

Mp ,m
2

are called spaces of tempered ultradistributions of Beurling and Roumieau type and
denoted by S ′(Mp) and S ′{Mp}, respectively.

For every fixed p ∈ [1,∞], the family of norms {σm,2 ; m > 0} is equivalent to
the family of norms {σm,p ; m > 0} where instead of L2 norm we use Lp norm. In
fact, in the sequel we use the family of norms

sh(φ) = sup

{
h|α+β|

M|α|M|α|
|xβ∂αφ(x)| ; α, β ∈ Nn

0, x ∈ Rn

}
, h > 0,(3)

which is equivalent to {σh,2 ; h > 0}. S(Mp) and S{Mp} are (FS)—and (LS)—
spaces respectively. If (M.2) holds, they are (FN)—and (LN)—spaces, respectively
(for these types of spaces we refer to [3]) and

D∗ ↪→ S∗ ↪→ E∗, S∗ ↪→ S,

where “A ↪→ B” means that A is dense in B and the inclusion mapping is continuous.
The Fourier transformation is an isomorphism of S∗ onto itself.

Let us recall that an f ∈ D ′∗ is in S ′∗ if and only if there exists a family Fα,β ,
α, β ∈ Nn

0, in L2(Rn) such that

f =
∑
α,β∈Nn

0

(
(1 + |x|2)β/2Fα,β

) (α)
in S ′∗,

and in (Mp) case, there exists k > 0, in {Mp} case, for every k > 0,( ∑
α,β∈Nn

0

∫
Rn

∣∣∣∣M|α|M|β|
k|α+β|

Fα,β(x)

∣∣∣∣ 2) 1/2

<∞.
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108 Stevan Pilipović

If (M.2) and (M.3) are assumed, then f ∈ S ′∗ iff f = P(∂)F, where F is a contin-
uous function which satisfies |F(x)| ≤ CkeM(k|x|), x ∈ Rn, and in (Mp) case, P is an
ultradifferential operator of (Mp)-class and the estimate for F holds for some k > 0
and some Ck > 0, in {Mp} case, P is an ultradifferential operator of {Mp}-class and
the estimate holds for every k > 0 and the corresponding Ck > 0.

Let DRn = {z ∈ Cn ; | Im z| < 1} and S∗Rn = ∂DRn. Recall ([6]), O∗|DRn is a
sheaf over Cn of holomorphic functions in DRn which satisfy the following growth
condition near S∗Rn.

Let U be an open set in Cn. Then a function F(z) is in O∗|DRn (U ) if F is holomor-
phic in DRn ∩U such that for every compact set K ⊂⊂ U , in (Mp) case, for every
ultradifferential operator P(∂) of class (Mp), in {Mp} case, for every ultradifferential
operator P(∂) of class {Mp}

P(∂)F(z) is bounded in K ∩ DRn.

As in [4], put

I(ξ) =

∫
|ω|=1

e−〈ω,ξ〉 dω, ξ ∈ Rn, K(z) = (2π)−n

∫
e
√
−1〈z,ξ〉

I(ξ)
dξ, z ∈ DRn.

The properties of K are analyzed in [4], Chapter 4, and [10]. Note that K(·+
√
−1y) ∈

S∗ for every fixed y, |y| < 1.
Let u ∈ S ′∗ and

U (z) = (u ∗ K)(z) = 〈u(t),K(x − t +
√
−1y)〉, z ∈ DRn.

Then U is analytic in DRn and it is proved in [10] that q �∈ SS∗u if and only if U is
O∗ in a neighbourhood of x0 −

√
−1ω0 and q �∈ SSu if and only if U is analytic at

x0 −
√
−1ω0 (i.e. in a neighbourhood of this point).

2 On the Convolution Equation

First we give the definition of Char µ, µ ∈ S ′∗; for distributions this definition is
given in [4], p. 315.

Let µ ∈ S ′∗ and Γ be a set of all ξ ∈ Rn \ {0} such that there is a complex conic
neighbourhood V of ξ and an analytic function φ in Vc = {ζ ∈ V ; |ζ| > c}, for
some c > 0, such that

φµ̂ = 1 in V ∩ Rn and |φ(ζ)| ≤ CeM(k|ζ|), ζ ∈ Vc,(4)

for some k > 0 and C > 0. Then, Char µ = (Rn \ {0}) \ Γ.

Theorem 1 Let u, µ ∈ S ′∗(Rn). Then:

i) SSu ⊂ (Rn × Char µ) ∪ SS(u ∗ µ),
ii) SS∗u ⊂ (Rn × Char µ) ∪ SS∗(u ∗ µ).
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Proof The idea of the proof is the same as for distributions ([4]) but uniform es-
timates of all derivatives of some functions which are needed make the proof more
difficult.

We prove the first assertion. The proof of the second one is similar. Only a final
conclusion has to be changed and this is done in the proof of ii).

i) Put f = u ∗ µ. We will use the notation from above. Let

(x0, ω0) �∈ SS f ; |ω0| = 1, ω0 �∈ Char µ.

We have to prove that K ∗ u is analytic at x0 −
√
−1ω0. Let W ′ and W ′′ be closed

conic neighbourhoods of ω0 in Rn \ {0} such that

W ′′ ⊂ int W ′, W ′ ⊂ V.

Further, let κ ∈ E(Mp) such that 0 ≤ κ ≤ 1, κ ≡ 1 in a neighbourhood of W ′′
3c =

{ξ ∈ W ′ ′ ; |ξ| ≥ 3c}, supp κ ⊂ W ′
2c and let κ be homogeneous of degree 0 when

|ξ| ≥ 3c. Decompose the Fourier transformation of u ∗ K(· + y), |y| < 1 as follows:

û(ξ)e−〈y,ξ〉

I(ξ)
=

û(ξ)
(

1− κ(ξ)
)

e−〈y,ξ〉

I(ξ)
+

f̂ (ξ)φ(ξ)κ(ξ)e−〈y,ξ〉

I(ξ)
, ξ ∈ Rn,

where φ is given in (4) and put

K1(z) = (2π)−n

∫
Rn

(
1− κ(ξ)

)
e
√
−1〈z,ξ〉

I(ξ)
dξ,

K2(z) = (2π)−n

∫
Rn

κ(ξ)φ(ξ)e
√
−1〈z,ξ〉

I(ξ)
dξ, z ∈ DRn.

Thus, K∗u = K1∗u+K2∗ f . Note that K1 and K2 are holomorphic in DRn. Moreover,
one can easily prove that there is an ε > 0 such that K1 is analytic if | Im z + ω0| < ε.
We are going to prove:

(a) For every fixed y, |y| < 1, K1(· +
√
−1y) ∈ S∗.

This implies that K1 ∗ u(· +
√
−1y), |y| < 1 is a C∞-function. Note that K1 ∗ u

is analytic in a neighbourhood of x0 −
√
−1ω0.

(b) K2 has an analytic extension in

Dδ = {z ; | Im z| < 1− δ + δ(1 + |Re z|2)1/2, | Im z + ω0| < δ},

for some δ > 0.
(c) K2(· + i y) ∈ S∗(|x| ≥ d), d > 0, y ∈ Dδ , where S∗(|x| ≥ d) is defined in the

same way as S∗ but with the supremum in (3) taken over{x ; |x| ≥ d}.
This and the partition of unity imply that K2 ∗ f ∈ S ′∗.

(d) Since K ∗ u = K1 ∗ u + K2 ∗ f , | Im z| < 1, and K1 ∗ u is analytic at x0−
√
−1ω0,

we will finish the proof by proving that K2 ∗ f is analytic at this point.
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110 Stevan Pilipović

(a) We will prove that for some ε > 0,

K1(· +
√
−1y) ∈ S∗ if |y + ω0| < ε.(5)

Since supp
(

1− κ(ξ)
)
⊂ Rn \W ′′

3c , there exists ε > 0 such that

〈ω0, ξ〉 ≤ (1− 2ε)|ξ|, ξ ∈ Rn \W ′′
3c

and thus,

−〈y, ξ〉 − |ξ| < −ε|ξ|, ξ �∈W ′′
3c , |y + ω0| < ε.(6)

Assume that |y + ω0| < ε. Let x = Re z ∈ R, α, β ∈ Nn
0. Then

Rα,β(x) =
1

M|α|M|β|

∣∣∣∣xβ ∫
Rn

(
1− κ(ξ)

)
(
√
−1ξ)αe

√
−1〈x,ξ〉−〈y,ξ〉

I(ξ)
dξ

∣∣∣∣
≤

1

M|β−p−r|M|r|M|p|M|α−s|M|s|∣∣∣∣∫
Rn

e
√
−1〈x,ξ〉

∑
p≤β

(
β

p

) ∑
r≤β−p

(
β − p

r

)(
1− κ(ξ)

) (β−p−r)
(

1

I(ξ)

) (r)

∑
s≤p

(
p

s

)
α!

(α− s)!
ξα−s(−y)p−se−〈y,ξ〉 dξ

∣∣∣∣ .
Note, ∣∣∣∣( 1

I(ξ)

) (r)∣∣∣∣ ≤ 2rr!

I(ξ)
,

α!

(α− s)!

1

M|s|
≤ 2|α|,

|y|p−s

M|p|
<∞ ;

for every a1 there is Ca1 > 0 such that∣∣ (1− κ(ξ)
) (β−p−r)∣∣

a|β−p−r|
1 M|β−p−r|

< Ca1 ;

for every a2 > 0
|ξ|α−s

a|α−s|
2 M|α−s|

≤ eM(a2|ξ|) (ξ ∈ Rn).

This implies that for every h > 0 and a > 0 there is C > 0 such that for every x ∈ Rn

and α, β ∈ Nn
0

sup{h|α+β|Rα,β(x) ; α, β ∈ Rn} ≤ C

∫
Rn\W ′ ′

3c

e−〈y,ξ〉+M(a|ξ|)−|ξ| dξ.

Now, (6) implies (5).
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(b) Let us prove that K2 has an analytic extension in

Dδ = {z ; | Im z| < (1− δ + δ(1 + |Re z|2)1/2, | Im z + ω0| < δ}

for some δ > 0 which will be chosen later.
Let x +

√
−1y ∈ Dδ and α, β ∈ N0. We have

K2(x +
√
−1y) =

(∫
W ′

2c\W
′ ′

3c

+

∫
W ′ ′

3c

) κ(ξ)φ(ξ)

I(ξ)
e
√
−1〈z,ξ〉 dξ

= K21(x +
√
−1y) + K22(x +

√
−1y).

We will use [4], Lemma 8.4.9, which asserts that for every ε ∈ (0, π/2)

I(ξ +
√
−1η) = (2π)(n−1)/2e〈ξ+

√
−1η,ξ+

√
−1η〉1/2

.

〈ξ +
√
−1η, ξ +

√
−1η〉−(n−1)/4

(
1 + O

(
1

〈ξ +
√
−1η, ξ +

√
−1η〉1/2

))
(7)

if 〈ξ +
√
−1η, ξ +

√
−1η〉1/2 →∞ and∣∣arg 〈ξ +

√
−1η, ξ +

√
−1η〉1/2

∣∣ < π
2
− ε.

By (7) for η = 0, and (6) we obtain that K21 has an analytic extension in a neigh-
bourhood of x − iω0, x ∈ Rn. Let us prove assertion (b) for

K22(x +
√
−1y) =

∫
W ′ ′

3c

e
√
−1〈x+

√
−1y,ξ〉φ(ξ)

I(ξ)
dξ.(8)

Let κ1 ∈ E(Mp), supp κ1 ⊂W ′′
3c , κ1 ≡ 1 in W ′′ ′

4c where W ′′ ′ is a conic neighbour-
hood of ω0 and let κ1 be homogeneous of degree 0 for |ξ| ≥ 4c.

We choose δ such that 0 < δ ≤ 1,

ξ +
√
−1δκ1(ξ)|ξ|x(1 + x2)1/2 ∈ Vc, ξ ∈ supp κ1

and W ′ is so narrow that for some r0 > 0,

ξ ∈W ′
2c ⇒ L(ξ, r0) ⊂ Vc.

Let |y| < 1, α, β ∈ Nn
0. We will move the integration in (8) to the cycle

W ′′
3c � ξ → ξ +

√
−1δκ1(ξ)|ξ|x(1 + |x|2)−1/2.

By Stokes’ formula we have

K22(x +
√
−1y) =

∫
W ′ ′

3c

e
√
−1〈x+

√
−1y,ξ+

√
−1η〉φ(ξ +

√
−1η)

I(ξ +
√
−1η)

dξ
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where η = δκ1(ξ)|ξ|x(1 + |x|2)−1/2. Since

Re(
√
−1〈x +

√
−1y, ξ +

√
−1η〉 − 〈ξ +

√
−1η, ξ +

√
−1η〉1/2)

≤ −|ξ|
(

1− δ + δ(1 + |x|2)1/2
)
− 〈y, ξ〉,

there is an analytic continuation of the integral to the domain Dδ .

(c) We will prove that x �→ K2(x +
√
−1y) is in S(Mp)(|x| ≥ d) when

|y| < 1− δ + δ(1 + |d|2)1/2, |y + ω0| < δ.

Let h > 0, |x| ≥ d and α, β ∈ N0. Then we have

∣∣xβK(α)
2 (x +

√
−1y)

∣∣
≤
∑
p≤β

∑
r≤β−p

∑
j≤p

∑
s≤p− j

(
β

p

)(
β − p

r

)(
p

j

)(
p − j

s

)
|y||s|

α!

(α− j)!

∫
W ′

2c

e
√
−1〈x,ξ〉−〈y,ξ〉|φ(β−p−r)(ξ)|

∣∣∣∣( 1

I(ξ)

) (r)∣∣∣∣ |ξ||α− j|

|κ(p− j−s)(ξ)| dξ

≤
∑
p≤β

∑
r≤β−p

∑
j≤p

∑
s≤p− j

(
β

p

)(
β − p

r

)(
p

j

)(
p − j

s

)
|y||s|

α!

(α− j)!

∫
W ′

2c\W
′ ′

3c

e
√
−1〈x,ξ〉−〈y,ξ〉|φ(β−p−r)(ξ)|

∣∣∣∣( 1

I(ξ)

) (r)∣∣∣∣ |ξ||α− j|

|κ(p− j−s)(ξ)| dξ

+
∑
p≤β

∑
r≤β−p

∑
j≤p

(
β

p

)(
β − p

r

)(
p

j

)
α!

(α− j)!
|y||p− j|

∫
W ′ ′ ′

3c

e
√
−1〈x,ξ〉−〈y,ξ〉|φ(β−p−r)(ξ)|

∣∣∣∣( 1

I(ξ)

) (r)∣∣∣∣ |ξ||α− j| dξ

= T21(x) + T22(x).

By using (6), one can show (as for K1) that for suitable ε > 0,

sup
α,β∈N0
|x|≥d

h|α+β|T21(x)

M|α|M|β|
<∞ if |y + ω0| < ε.
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For T22(x), |x| ≥ d, we have

sup
α,β∈Nn

0
|x|≥d

h|α+β|T22(x)

M|α|M|β|

≤ h|α+β|
∑
p≤β

∑
r≤β−p

∑
j≤p

(
β

p

)(
β − p

r

)(
p

j

)
(

1 + δ(1 + d2)1/2 − δ
) p− j
α!

(α− j)!

2rr!

M|β−p−r|M|p|M|r|M|α− j|M| j|∫
W ′

2c

|e
√
−1〈x+

√
−1y,ξ+

√
−1η〉| |φ(β−p−r)(ξ +

√
−1η)|∣∣∣∣ 1

I(ξ +
√
−1η)

∣∣∣∣ ∣∣ξ +
√
−1η

∣∣ |α− j|
dξ

≤ C

∫
W ′

2c

exp
(
−|ξ|

(
1− δ + δ(1 + d2)1/2

)
−M(a|ξ|)− 〈y, ξ〉

)
dξ,

which is clearly a finite integral.
(d) Recall, K ∗ u(z) = K1 ∗ u(z) + K2 ∗ f (z), | Im z| < 1 and K1 ∗ u is analytic at

x0 −
√
−1ω0. We have to prove the same for K2 ∗ f .

The family of norms σm,2 is equivalent to the family

σ̃m,2(φ) = sup
α,β∈Nn

0

{
m|α+β|

M|α|M|β|

∥∥(xβφ(x)
) (α)∥∥

L2

}
, m > 0 ([9]).

This, Parseval’s identity and (1) imply that in (Mp)-case, for every m1 > 0 there is
C1 > 0 (resp. in {Mp}-case, there is m1 > 0 and C1 > 0) such that

|〈 f (t),K2(z − t)〉| ≤ C1σ̃m1,2

(
K2(z − t)

)
≤ C1 sup

m|α+β|
1

M|α|M|β|

∥∥∥∥ξα( φ(ξ)κ(ξ)e
√
−1〈x,ξ〉e−〈y,ξ〉

I(ξ)

) (β)∥∥∥∥
L2

≤ CeM(m|x|)eM̃( m
1−|y| ), x +

√
−1y ∈ DRn,

where m > 0 and C > 0 are suitable constants.
One can simply prove that for every m > 0 there is C > 0 such that

|K2(z − t)| ≤ CeM(m|x−t|)eM̃( m
1−|y| )
, t ∈ Rn, z ∈ DRn.

This implies that the boundary value (K2 ∗ f )(· −
√
−1ω0) is equal to the convo-

lution of f and the boundary values K2(· −
√
−1ω0) which are analytic except at 0.

Let f = f1 + f2 where f1 ∈ E ′∗ and f2 = 0 when |x − x0| < r, r > 0. Then,

SSK2(· −
√
−1w0) ⊂ {(0, tw0) ; t > 0}
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and x0 �∈ singsuppA( f1 ∗ K2)(· −
√
−1ω0), which follows from (2).

Thus, K ∗ u is analytic at x0 −
√
−1ω0.

ii) For the estimation of SS∗u we have to repeat all the arguments of the part i)
and to note that

x0 �∈ singsupp∗( f1 ∗ K2)(· −
√
−1ω0),

which also follows from (2). This implies that K ∗ u is O∗at x0 −
√
−1ω0.

This completes the proof.
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