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Convolution Equation
in 8”"—Propagation of Singularities

Stevan Pilipovi¢

Abstract. The singular spectrum of # in a convolution equation p*u = f, where yzand f are tempered
ultradistributions of Beurling or Roumieau type is estimated by

SSu C (R" x Char u) U SSf.

The same is done for SS, u.

0 Introduction

In this paper we consider a class of convolution equations in spaces of tempered ul-
tradistributions and study the propagation of Gevrey and analytic singularities.

Various spaces of generalized functions and hyperfunctions are introduced and
used in the microlocal analysis of various classes of equations ([4], [6], [11], [13]).
Hoérmander gives in [4], Chapter 9 an elementary approach to the theory of hyper-
functions (cf. [13]) by using Poisson’s kernel as well as Komatsu who develops in [6]
the theory of sheaves C* and C, of microfunctions which correspond to spaces of ul-
tradistributions and ultradifferentiable functions, respectively. In [10] we follow [4],
Chapter 8, and analyze the microsupport of an ultradistribution in 8* by the mean
of a kernel introduced in [4], Section 8.4. Note that ultradistribution spaces 8'* are
are invariant under Fourier transformation.

In this paper we investigate the singular spectrum of a solution u of  * u = f,
where p, f € 8" and prove

SSu C (R" x Char p) U SSf.

The same is proved for SS,u. For the corresponding assertion in distribution spaces
we refer to [4], Section 8.6.

Generally, for the references related to the propagation of singularities we refer to
a wast literature given in the references of [4], [6], [11] and [13].

Since ultradifferential operators with constant coefficients of x-class, P(9), are
convolution operators, Theorem 1 imply the appropriate assertion for P(9) (see [6]
for a detail analysis of such operators). It is known that SS,P(9)u C SS.u, u € D’
and SSP(Q)u C SSu, u € D'™* ([6]). Thus, if an ultradifferential operator P(9) of *-
class has a property Char P(0) = @, then our theorem directly implies the analytic-
hypoellipticity of this operator in 8”*(R"). An example is the analytic-hypoellipticity
of Au = fin 8™ (R") ([1], second part of Theorem 4.1).
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1 Notation and Notions

As usual, by M, p € Ny is denoted a sequence of positive numbers with My = 1. We
refer to [5], [8] and [12] for the meaning of conditions (M.1), (M.2), (M.2), (M.3)’
and (M.3). Also we use the following one ([8]):

(M.1)* My_ My, > M2, p € N, where My = 1, M; = M, /p!, p € N.

Let M), satisfy (M.1) and (M.3)’. The associated function M(p) and the growth
function M(p) related to M, are defined by

Pl - P’
M(p) = sup In —, M(p) = sup In—, p>0.
PEN, MP PENy Mp

Note, for given L > 0 there is L; > 0 such that

(1) (LIED — [l [€] < M(Li/In]), & mn€eR

([12], Section 1).
We denote by €2 an open set in R”; K CC €2 denotes that K is a compact subset of
Q. Recall, for ¢ € C*(Q),

H‘PHKhM = sup ‘(p(a)(x)|
T x€K,aEN] hlalM\a|

We use a symbol * for both (M,) and {M,}. For the definitions of D"*(Q),
D), DgF(Q) and the ultradifferential operators of *-class we refer to [5], [8],
[11] and [12]. We always assume that M|, satisfies (M.1), (M.2)" and (M.3)".

Komatsu [6] (see also [2]) has defined SS.—and SS*—singular spectrum of a
hyperfunction f. We recall the definition of SS.. f, f € D'*. (x,w) € $*Q = Qx§"~!
(§"~! is the unit sphere in R") is not in SS, f iff there exist a neighbourhood U C Q
of x and a conic neighbourhood I' of w of the form I' = {{ # 05 | £/[¢| — w‘ <n}
such that for every ¢ € D*(U) in (M,) case, for every € > 0 there is C. > 0 such that

6F(E)] < Coe™™CD ¢ e,

in {M,} case, there exist k > 0 and C > 0 such that

6F(€)] < Ce™MMED ¢ e,

Note, SS{MP}f = WEF_f (see Section 8.4 in [4] and [6]).

The definition of the singular spectrum SSf, where f € B({2), is given by Sato
(cf. [13]). Foran f € D™(Q), (x,w) € S*Q is not in SSf if this point is not in
SS{f}, where { f} denotes the corresponding hyperfunction. Note, SSf = WF, f—
the analytic wave front set of f ([4], Definition 9.3.2 and Theorem 9.6.3).

The definitions of corresponding singular supports are given by

singsupp, f = p1(SS.f), singsupp, f = p1(SSf),
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where p; is the first projection.
The following result ([10]) will be used in this paper.
Ifu € D™ andv € €%, then

SSu(uxv) C{(x+y,&)(x,&) € SS,u,(y,§) € SS.v},
(2) SS(u*v) C{(x+y,8); (x,&) € SSu, (y,£) € SSv}.

We recall ([7], [9]) the definitions of tempered ultradistribution spaces.
Let m > 0. A space of smooth functions ¢ on R" which satisfy

1/2
Z / dx) < 00,

a,BEN}

—————— (1 + |x|) 12 (x)

7malie) = ( Mla\MIﬂI

equipped with the topology induced by the norm o, ,, is denoted by 824" .
Strong duals of

SM) = proj lim 8" and $™M} =ind lim S
m—» o0

are called spaces of tempered ultradistributions of Beurling and Roumieau type and
denoted by 8’'™») and 8'1Mr}, respectively.

For every fixed p € [1, 00], the family of norms {o,,> ; m > 0} is equivalent to
the family of norms {c,,, ; m > 0} where instead of L* norm we use L” norm. In
fact, in the sequel we use the family of norms

latB]

(3)  su(o) = sup{ Mh x?0%¢(x)| ; o, B € Njj,x € R”}, h >0,

la|Mjal

which is equivalent to {07, ; B > 0}. 8™ and §Mr} are (FS)—and (LS)—
spaces respectively. If (M.2) holds, they are (FN)—and (LN)—spaces, respectively
(for these types of spaces we refer to [3]) and

D* — 8" — &*, 8" =8,

where “A < B” means that A is dense in B and the inclusion mapping is continuous.
The Fourier transformation is an isomorphism of 8* onto itself.

Let us recall that an f € D’ is in 8" if and only if there exists a family F, g,
a, 3 € Ni, in L*(R") such that

f= 3 (+xP)PFp) ) ins”,

a,BENG
and in (M,) case, there exists k > 0, in {M,} case, for every k > 0,

(= [

a,BEN}

2\ 12
TN af’(x)’) < oo
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If (M.2) and (M.3) are assumed, then f € 8" iff f = P(9)F, where F is a contin-
uous function which satisfies |F(x)| < CreM*lxD) x € R" and in (M,) case, P is an
ultradifferential operator of (M,)-class and the estimate for F holds for some k > 0
and some Cy > 0, in {M,} case, P is an ultradifferential operator of {M, }-class and
the estimate holds for every k > 0 and the corresponding Cy > 0.

Let DR" = {z € C" ; |Imz| < 1} and S*R"” = ODR". Recall ([6]), O.|pr» is a
sheaf over C" of holomorphic functions in DR" which satisfy the following growth
condition near S*R".

Let U be an open set in C". Then a function F(z) is in O,|pr«(U) if F is holomor-
phic in DR” N U such that for every compact set K CC U, in (M,) case, for every
ultradifferential operator P(9) of class (M), in {M,} case, for every ultradifferential
operator P(0) of class {M,}

P(0)F(z) isboundedin K N DR".
As in [4], put

V(26

Tg)dé? z € DR".

1) = / O d, £ R, K(z) = (2m) " /
Jw|=1

The properties of K are analyzed in [4], Chapter 4, and [10]. Note that K(-++/—1y) €
8* for every fixed y, |y| < 1.
Letu € 8" and

Ul(z) = (u* K)(2) = (u(t),K(x —t ++v/—1y)), z€ DR".

Then U is analytic in DR" and it is proved in [10] that g ¢ SS,u if and only if U is
O, in a neighbourhood of xy — v/—1lwy and q & SSu if and only if U is analytic at
%o — v/ —1lwp (i.e. in a neighbourhood of this point).

2 On the Convolution Equation

First we give the definition of Char u, u € 8'*; for distributions this definition is
given in [4], p. 315.

Let p € 8 and ' be aset of all £ € R" \ {0} such that there is a complex conic
neighbourhood V of £ and an analytic function ¢ in V, = {¢ € V ; |[¢] > c}, for
some ¢ > 0, such that

(4) éfr=1inVNR"and |¢(¢)| < CMHD ¢ v,
for some k > 0 and C > 0. Then, Char p = (R" \ {0}) \ T

Theorem 1 Let u, yu € 8"*(R"). Then:

i) SSu C (R” x Char p) U SS(u * ),
1) SS,u C (R" x Char p) U SSy(u * w).
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Proof The idea of the proof is the same as for distributions ([4]) but uniform es-
timates of all derivatives of some functions which are needed make the proof more
difficult.

We prove the first assertion. The proof of the second one is similar. Only a final
conclusion has to be changed and this is done in the proof of ii).

i) Put f = u * pi. We will use the notation from above. Let

(x0,wo) € SSf ;5 |wo| =1, wy ¢ Char p.

We have to prove that K * u is analytic at x, — /—1lwp. Let W/ and W'’ be closed
conic neighbourhoods of wy in R" \ {0} such that

w” cintW’, W' cV.

Further, let & € EM?) such that 0 < k < 1, k = 1 in a neighbourhood of W}/ =
{& € W5 |€] > 3c},suppk C W, and let k be homogeneous of degree 0 when
|€] > 3c. Decompose the Fourier transformation of u * K(- + y), |y| < 1 as follows:

A(€e” 08 (@) (1 - k(&) e f(O)P(&)r(E)e” 1) .
G 1(6) + 1€) , EERY,

where ¢ is given in (4) and put

1— V—=T1(z¢)
Ki(2) = (2m) " / n ( "“22; e,
V=1(z,€)
Ko(2) = (2m)~" / %d@ L€ DR".

Thus, Kxu = Ky xu+K, * f. Note that Kj and K, are holomorphicin DR”. Moreover,
one can easily prove that there is an € > 0 such that Kj is analytic if | Im z + wy| < €.
We are going to prove:

(a) Forevery fixed y, [y| < 1, Ki(- +v/—1y) € 8§*.
This implies that K} * u(- + v/—1y), |y| < 1is a C*-function. Note that K, * u
is analytic in a neighbourhood of xy — v/—1wy.

(b) K has an analytic extension in

Ds={z;|Imz| <1—8+6(1+]|Rez*)? |Imz+wo| < &},

for some & > 0.

() K(-+iy) € 8*(|x|] > d),d > 0, y € Ds, where 8*(|x| > d) is defined in the
same way as 8* but with the supremum in (3) taken over{x ; |x| > d}.
This and the partition of unity imply that K, * f € 8",

(d) SinceK*u=K;*xu+K,* f,|Imz| < 1,and Kj * u is analytic at xy — vV —1wo,
we will finish the proof by proving that K, * f is analytic at this point.
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(a) We will prove that for some € > 0,
(5) Ki(-++v—=1y) € 8 if|y +wo| <e.
Since supp (1 — K(§)) C R"\ W/, there exists € > 0 such that
(wo,§) < (1 =20)[¢], £ eR"\ WY
and thus,
(6) —(1 &) — ] < —€l€l, EE W, |y +w| <e.

Assume that |y + wy| < €. Letx = Rez € R, , 3 € Njj. Then

1 | (1= K©) (VETEeVTIRO-00)
B = M 'x / 1€) dé‘

< 1

T Mgy My My Mo Mg

VoT(x6) B B—p B B=p—n( 1 ”
¢ 52(1) 2 ( ' )“ (&) (I(@)

R p<8 r<f—p
a! —Ss —Ss ,—
S (P £ (—y)P e 09 dg) .
s ) (a—s)!
<p
Note,
'< 1 )(r) 277! al 1 o P
7PN < <27, T <00;
1(6) 1) (a—s)! My M,
for every a; there is C,, > 0 such that
(B=p=r)
1—
[0 =we) "

|6—=p—1
4 Mig—p—r

for everya, > 0

L < M@l€D (£ R

a\za—s|M|a_5‘
This implies that for every & > 0 and a > 0 there is C > 0 such that for every x € R"
and a, 8 € Nj

sup (IR, 5(x) s o, B € R'} < c/ \ ¢~ D€V MGED-I€] g
R" W;L.,

Now, (6) implies (5).
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(b) Let us prove that K, has an analytic extension in
Ds={z;|Imz| < (1 —3+6(1+|Rez|*)? | Imz+wo| < &}

for some § > 0 which will be chosen later.
Letx++/—1y € Ds and , B € Ny. We have

K(EPE) /=1(ze) d
+/W> 1© ¢ ¢

=Ky (x+ \/__1)/) + Ky (x + \/—_1)/)

K(x++vV-1y) = (/

WA\W;/

We will use [4], Lemma 8.4.9, which asserts that for every ¢ € (0,7/2)

I(€ + /717’) _ (27.‘.)(71*1)/26@*\/?177,&\/?177)1/2'

7 fen/m e \/—_1n>‘("‘”/4<1 ' O( (€+v-1n €1+ \/—_1n>1/2> )

if (€ ++/—1n, & ++/—1n)"/? = co and
Jarg (¢ +V=Tn, €+ V=T 2| < T -

By (7) for n = 0, and (6) we obtain that K;; has an analytic extension in a neigh-
bourhood of x — iwy, x € R". Let us prove assertion (b) for

V=1 {xt/—1y&)
(8) Knn(x +V/=1y) = / ¢ ()
w! 1)

Let k) € EM) supp k1 C WS/, k; = 1in W,!’ where W'" is a conic neighbour-
hood of wy and let x; be homogeneous of degree 0 for |£] > 4c.

We choose 6 such that 0 < § < 1,

€+ V-10k(E)Elx(1+ 272 € Ve, € € supp
and W' is so narrow that for some ry > 0,
§ € WZ/C = L(§7r()) C Vc-
Let |y| < 1, @, B € Nj. We will move the integration in (8) to the cycle
W3l 3 € = &+ V=10m(O)|€]x(1 + |x) 712,

By Stokes’ formula we have

V=1{xtV/=1y,&+v/—1n) —
Kop(x + \/_—1}/) :/ € P& +/—1n) dé

w/ I(€+/=1n)
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where ) = 651 (€)]€]x(1 + |x[>)~'/2. Since

Re(vV—=1(x+ vV =1y, +V—1In) — (£ + V=1, &+ V=1n)'/?)
< —E(1 =6+ + xP?) — (1,€),

there is an analytic continuation of the integral to the domain Ds.
(c) We will prove that x + K, (x + 1/—1y) is in §™)(|x| > d) when

ly| <1 =6+ +|dP)Y2 |y +w| <.

Let h > 0, |x| > dand a, 8 € Ny. Then we have

|xﬁK(Q)(x+\/j1y)|
p p_] s
2y 23 () )OC )
P<Br<f—p j<ps<p—j
o VT =) 0= ”(f)‘( )m [l
(a— ! 1(¢)
|’<v Pi=I(€)| dé

£EEE (000

p<Br<B—p j<ps<p—j

ol / oV —Txg) = y7£)|¢ﬂ P— r)(g)‘ ‘( )m
@ 7 Do ®©

|[KP=T7(€)]| d¢
X220

(r)
[p—il VI8 = () | p(B—p—
(a ])'|y " LA ‘ (Hé))

= Tr1(x) + T (x).

|\a—j|

‘Iafj\ d¢

By using (6), one can show (as for K;) that for suitable € > 0,

hletBlT
sup B T x) <oo if|y+w <e
apeN, MiagMig)

|x[=d
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For Ty,(x), |x| > d, we have

hlmﬁl Th(x)
sup ————

apeN: Mo Mg,
[x|>d

2 22000
p<Br<B—p j<p P r J
(1+5(1+d)2 =) 27!
(= j)! Mg p—r Mjp| My Mjo—j M|

/ |eﬁ<x+ﬁy,£+\mn)||¢(ﬁ—p—r)(£+ /—177)\
W/

2c

1 la— ]
‘I(§+\/—_177)} €+t T de

< c/ exp(—Jel (1 -8 +8(1 +d)') — M(alé]) — (1, €)) de,
W/

2

which is clearly a finite integral.

(d) Recall, K * u(z) = Kj * u(z) + Kz * f(2), |Imz| < 1 and K * u is analytic at
xo — v/—lwy. We have to prove the same for K, * f.

The family of norms o, , is equivalent to the family

i B mle+0l 5 @
Gma(9) = afgi%g{ mu (x"¢(x)) Hp}, m > 0 ([9]).

This, Parseval’s identity and (1) imply that in (M,)-case, for every m; > 0 there is
Ci > 0 (resp. in {M,}-case, there is m; > 0 and C; > 0) such that

[(f(£), Ka(z = 1))| < C16m, 2(Ka(z — 1))

|a+0] V=8 o= (1) \ P
1 of P)R(&)e e
= Croup Mo Mg ’ ¢ ( 1(6) )

< CeM(m‘xl)eM(‘%M), x++—1y € DR,

12

where m > 0 and C > 0 are suitable constants.
One can simply prove that for every m > 0 there is C > 0 such that

|K2(z —1)] < CeM(mlx_t‘)eM(ljﬂ), t € R",z € DR".

This implies that the boundary value (K, * f)(- — v/—1wy) is equal to the convo-
lution of f and the boundary values K, (- — v/ —1wy) which are analytic except at 0.
Let f = fi + f> where fi € £ and f, = 0 when |x — x| < r, 7 > 0. Then,

SSKz( — \/jlW()) - {(O,tW()) s> 0}
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and xy & singsupp,(fi * K3)(- — v/—1wy), which follows from (2).

Thus, K * u is analytic at xp — v/— lw.

ii) For the estimation of SS,u we have to repeat all the arguments of the part i)
and to note that

xo & singsupp, (fi * K3)(- — V=1wy),

which also follows from (2). This implies that K * u is O,at xog — v/ —lwp.
This completes the proof.
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