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PRICING AND HEDGING OF QUANTILE OPTIONS
IN A FLEXIBLE JUMP DIFFUSION MODEL

NING CAI,∗ The Hong Kong University of Science and Technology

Abstract

This paper proposes a Laplace-transform-based approach to price the fixed-strike quantile
options as well as to calculate the associated hedging parameters (delta and gamma) under
a hyperexponential jump diffusion model, which can be viewed as a generalization of the
well-known Black–Scholes model and Kou’s double exponential jump diffusion model.
By establishing a relationship between floating- and fixed-strike quantile option prices,
we can also apply this pricing and hedging method to floating-strike quantile options.
Numerical experiments demonstrate that our pricing and hedging method is fast, stable,
and accurate.
Keywords: Jump diffusion; option pricing; hyperexponential; quantile option; Euler
inversion
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1. Introduction

A quantile option is a fairly new path-dependent security derivative that was first introduced
by Miura [28]. It has a payoff dependent on the α-quantile, for some α ∈ [0, 1], of the
underlying asset price process during a prespecified time period [0, T ], which is defined as
the smallest barrier such that the fraction of time spent by the underlying price at or below it
during [0, T ] exceeds α (see Definition 2.1). Since their advent, quantile options have received
much attention from both investors and researchers primarily because they may be regarded
as an alternative of many popular exotic options such as barrier, lookback, and Asian options.
First, as discussed by Broadie and Detemple [6], a fixed-strike quantile option may serve as a
replacement for the standard Barrier option by overcoming its deficiency of leaving the buyer
without his or her position at the first cross of the barrier. Second, a floating-strike α-quantile
put option extends the traditional lookback put option by replacing the running maximum of
the underlying asset price process in the payoff with its α-quantile. Apparently, the former
is reduced to the latter as α = 1. Third, a special α-quantile option when α = 0.5 behaves
similarly to the Asian option due to the close relationship between the median and the mean.

Under the Black–Scholes model (BSM), distributions of the associated quantiles have been
studied by Dassios [13] (also see [4], [17], and [34]) and led to analytical solutions to pricing
of the fixed-strike quantile options; see [2] and [13]. Leung and Kwok [26] established a
relationship between fixed- and floating-strike quantile option prices under the BSM. However,
as regards numerical implementation, few papers offer numerical results even under the BSM
due to computational intractability of available pricing formulae, which involve multiple in-
tegrals. One example is the forward shooting grid method developed by Kwok and Lau [25].
For pricing other options dependent on quantiles or occupation times under the BSM, we refer
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the reader to, e.g. [15], [18], [19], [21], [27], and [29]. In terms of the literature of quantile
option pricing beyond the BSM, see, e.g. the occupation time-based approach in [26] under the
constant elasticity of variance (CEV) model and in [9] under Kou’s double exponential jump
diffusion model (abbreviated to DEM).

In this paper we will investigate pricing and hedging of both fixed- and floating-strike quantile
options under a hyperexponential jump diffusion model (abbreviated to HEM) (see, e.g. [8]
and [22]), where the jump sizes assume a hyperexponential distribution. As a generalization
of the BSM and DEM, the HEM has at least three advantages. First, it can better capture
the leptokurtic feature by accounting for the uncertainty about heaviness of asset return tails.
Second, it can be used to approximate exponential Lévy models with completely monotone
Lévy densities such as the CGMY, NIG, and VG models. Third, it can lead to analytical
solutions of many path-dependent options such as lookback, single-barrier, and double-barrier
options. In this paper it will be shown that we can also price quantile options and calculate the
hedging parameters thanks to the analytical tractability of the HEM.

The contribution of our paper is three-fold.

1. Based on Dassios’remarkable identity in law on quantiles of Lévy processes (see [14]), we
develop a Laplace-transform-based method to price the fixed-strike quantile option and
to calculate the hedging parameters (delta and gamma) numerically under the HEM. See
Section 3.1.

2. By establishing a simple relationship between floating- and fixed-strike quantile option
prices under the HEM, we can also price floating-strike quantile options and calculate
the hedging parameters in a similar way. See Section 3.2.

3. We implement the pricing and hedging methods by using the Euler inversion algorithm
twice. The primary difficulty lies in the fact that in general the Euler inversion algorithm
applies only for real original functions, but during the implementation we need to evaluate
a complex function by inverting its Laplace transform. We circumvent this difficulty by
evaluating the real part and the imaginary part of the complex function by inverting their
respective Laplace transforms. See Section 4.2. This numerical pricing method turns out
to be fast, stable, and accurate. See Section 5. In particular, under the BSM, this method
can be simplified to a single Euler inversion in that in this special case, a closed-form
Laplace transform of the quantile option price is available. See Section 3.1.

The rest of the paper is organized as follows. Section 2 introduces the HEM and some
preliminaries. In Section 3 we present our main results, including pricing and hedging of the
fixed-strike quantile options, and establishing a relationship between floating- and fixed-strike
quantile option prices. In Section 4, a pricing and hedging algorithm based on Euler inversion
is discussed in detail. Numerical results are provided in Section 5. Most proofs are deferred to
Appendices A and B.

2. Background and preliminaries

2.1. The HEM

Under the HEM, for the asset price S(t), the return process X(t) := log(S(t)/S(0)) under
a risk-neutral probability measure P is given by

X(t) = µt + σW(t) +
N(t)∑
i=1

Yi, X(0) = 0. (2.1)
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Here µ = r − σ 2/2 − λζ , ζ = E[eY1 ] − 1, r is the risk-free interest rate, σ is the volatility,
{N(t) : t ≥ 0} is a Poisson process with rate λ, {W(t) : t ≥ 0} is a standard Brownian
motion, and {Yi : i = 1, 2, . . .} is a sequence of independent, identically distributed (i.i.d.)
hyperexponential random variables with probability density function (PDF)

fY (x) =
m∑

i=1

piηie
−ηix 1{x≥0} +

n∑
j=1

qj θj eθj x 1{x<0}, (2.2)

where pi > 0 and ηi > 1 for all i = 1, . . . , m, qj > 0 and θj > 1 for all j = 1, . . . , n, and∑m
i=1 pi + ∑n

j=1 qj = 1. Here ηi > 1 for all i and θj > 1 for all j guarantee finiteness of both

E[eY1 ] and E[e−Y1 ]. Moreover, it is assumed that {N(t)}, {W(t)}, and {Yi}∞i=1 are independent.
We point out that the risk-neutral probability measure P is not unique within the jump

diffusion framework due to the incompleteness of the model. However, Kou [23] showed that
a particular risk-neutral probability measure P can be chosen within a rational expectations
equilibrium setting. It is called risk neutral because the equilibrium price is given by the
expectation under P of the discounted option payoff.

Note that {X(t)} is a Lévy process and its Lévy exponent is given by

G(x) := log(E[exX(t)])
t

= σ 2

2
x2 + µx + λ

( m∑
i=1

piηi

ηi − x
+

n∑
j=1

qj θj

θj + x
− 1

)
.

It can be easily shown (see, e.g. [7]) that the equation G(x) = s for all s > 0 has exactly
m + n + 2 real roots β1,s , β2,s , . . . , βm+1,s , γ1,s , γ2,s , . . . , γn+1,s that satisfy

−∞ < γn+1,s < −θn < γn,s < −θn−1 < · · · < γ2,s < −θ1 < γ1,s < 0,

0 < β1,s < η1 < β2,s < · · · < ηm−1 < βm,s < ηm < βm+1,s < +∞. (2.3)

These roots will be used in the subsequent parts.

2.2. Running maxima and running minima

Consider the running maximum and running minimum of the process X := {X(t)}:
MX(t) := sup

{0≤s≤t}
X(s) and mX(t) := inf{0≤s≤t} X(s).

Denote by LM(s) and Lm(s) the Laplace transforms of E[evMX(t)] and E[evmX(t)] with respect
to (w.r.t.) t , respectively. More precisely,

LM(s) :=
∫ ∞

0
e−st E[evMX(t)] dt and Lm(s) :=

∫ ∞

0
e−st E[evmX(t)] dt.

Under the HEM, Cai and Kou [8] derived a closed-form expression of LM(s) by connecting
it with the first passage time distribution. For convenience, we present this result in Proposi-
tion 2.1.

Proposition 2.1. For any v ∈ (−∞, β1), we have

LM(s) = 1

s
+ v

s

m+1∑
l=1

dl

βl − v
, s > 0,
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where β1, β2, . . . , βm+1, namely β1,s , β2,s , . . . , βm+1,s given in (2.1), are the m + 1 positive
roots of the equation G(x) = s and d := (d1, d2, . . . , dm+1)

� is uniquely determined by the
linear system Ad = I , where I = (1, 1, . . . , 1)� is an (m + 1)-dimensional unit vector and A

is the (m + 1) × (m + 1) nonsingular matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

η1

η1 − β1

η1

η1 − β2
· · · η1

η1 − βm+1

η2

η2 − β1

η2

η2 − β2
· · · η2

η2 − βm+1

...
...

. . .
...

ηm

ηm − β1

ηm

ηm − β2
· · · ηm

ηm − βm+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Noting that mX(t) = inf{0≤s≤t} X(s) = −sup{0≤s≤t}(−X(s)) and applying Proposition 2.1,
we can also derive a closed-form expression for Lm(s).

Remark 2.1. We point out that using the Wiener–Hopf factorization (see, e.g. [3]), we can
express LM(s) (or Lm(s)) in another way as products of some terms:

LM(s) = 1

s

∏m+1
i=1 (−βi)

∏m
i=1(ηi − v)∏m

i=1 ηi

∏m+1
i=1 (v − βi)

.

2.3. Quantile options

The α-quantile of the process X during the period [0, t] can be defined through the occupation
time.

Definition 2.1. Let 	(x, t, X) := ∫ t

0 1{X(s)≤x} ds represent the occupation time of the process
X := {X(s) : s ≥ 0} staying below a fixed barrier x during the period [0, t]. Then, for any
α ∈ [0, 1], the α-quantile of the process X during the period [0, t] is defined as

Q(α, t, X) := inf

{
x : 	(x, t, X)

t
> α

}
.

Then, under the risk neutral measure P, the prices of fixed- and floating-strike α-quantile
options at time 0 with maturity t are given by

Cα(S0, K, t) = e−rt E[(S0eQ(α,t,X) − K)+]
and

Pα(S0, t) = e−rt E[(S0eQ(α,t,X) − St )
+],

respectively. For asset pricing theories, we refer the reader to [24] and [33].
Apparently, the distribution of the α-quantile plays a pivotal role for pricing of α-quantile

options. Dassios [14] provided a remarkable result about the quantile distribution for any
process with stationary and independent increments.
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Proposition 2.2. ([14].) Suppose that {X(t) : t ≥ 0} is a process with stationary and
independent increments which starts from 0. Then, for any α ∈ (0, 1),

Q(α, t)
d= sup

{0≤s≤αt}
X(1)(s) + inf{0≤s≤(1−α)t} X

(2)(s), (2.4)

where {X(1)(s) : s ≥ 0} and {X(2)(s) : s ≥ 0} are independent copies of the process {X(s) : s ≥
0}.

This celebrated result is useful as it applies to any Lévy process and, hence, also applies to
the return process under the HEM. Dassios’ result (2.4) will serve as a basis for our approach
to pricing and hedging fixed-strike quantile options in the subsequent sections.

3. Pricing and hedging of quantile options

3.1. Pricing and hedging of fixed-strike quantile options

To price and hedge a fixed-strike quantile option, applying the idea of Carr and Madan [10],
we consider taking the Laplace transform of the option price w.r.t. k̄ := −log K . Since k̄ can
be negative, the associated Laplace transform is a two-sided Laplace transform, meaning that
the original function is defined on the whole real line. In order to apply the two-sided Euler
inversion algorithm proposed by Petrella [30], we introduce a scaling factor X > S0 and rewrite
the fixed-strike quantile option price as

Cα(S0, K, t) = e−rtC∗
α(S0, k, t) with C∗

α(S0, k, t) := X E

[(
S0

X
eQ(α,t,X) − e−k

)+]
,

where k := log(X/K). Here the introduction of the scaling factor X ensures that the Euler
Laplace inversion algorithm converges quickly in the two-sided case (see [30]).

Denote by L(v) the Laplace transform of C∗
α(S0, k, t) w.r.t. k. More precisely,

L(v) =
∫ +∞

−∞
e−vkC∗

α(S0, k, t) dk =
∫ +∞

−∞
e−vkX E

[(
S0

X
eQ(α,t,X) − e−k

)+]
dk.

According to Proposition 2.2, we can obtain the following theorem.

Theorem 3.1. (Pricing and hedging of fixed-strike quantile options.) For any v > 0, we have

L(v) = Sv+1
0

v(v + 1)Xv
E[e(v+1)MX(αt)]E[e(v+1)mX((1−α)t)]. (3.1)

In particular, under the BSM, L(v) has the closed-form expression

L(v) = Sv+1
0

v(v + 1)Xv
h(v + 1; µ, αt)h(−v − 1; −µ, (1 − α)t), (3.2)

where

h(v; µ, t) := vσ 2 + µ

vσ 2 + 2µ
exp

(
vσ 2t

2vσ 2 + 4µ

)
Erfc

(
− (vσ 2 + µ)

√
t

σ
√

2

)

+ µ

vσ 2 + 2µ
Erfc

(
µ

√
t

σ
√

2

)
,

and Erfc(z) := (2/
√

π)
∫ +∞
z

e−x2
dx represents the complementary error function.
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The two common Greeks �(Cα(S0, K, t)) and 	(Cα(S0, K, t)) can be calculated as

�(Cα(S0, K, t)) = ∂

∂S0
Cα(S0, K, t) = e−rtL−1

(
(v + 1)L(v)

S0

)∣∣∣∣
k=ln(X/K)

,

	(Cα(S0, K, t)) = ∂2

∂S2
0

Cα(S0, K, t) = e−rtL−1
(

v(v + 1)L(v)

S2
0

)∣∣∣∣
k=ln(X/K)

,

where L−1 denotes the inverse Laplace transform.

Proof. See Appendix A.

Consequently, under the BSM the closed-form Laplace transform L(v) is available, so
applying the Euler inversion algorithm can generate numerical prices and the two Greeks
easily. In contrast, under the general HEM, Theorem 3.1 does not provide us with a closed-
form Laplace transform L(v) because neither E[e(v+1)MX(αt)] nor E[e(v+1)mX((1−α)t)] have
analytical expressions. However, Proposition 2.1 implies that both of them have closed-form
Laplace transforms w.r.t. t , namely LM(s) and Lm(s). Accordingly, in principle we can price
fixed-strike quantile options and calculate the two Greeks by applying the Laplace inversion
algorithm twice. A rough pricing and hedging algorithm is given as follows.

Step 1. Evaluate E[e(v+1)MX(αt)] and E[e(v+1)mX((1−α)t)] by inverting their Laplace transforms
numerically. Then we can obtain L(v), (v + 1)L(v)/S0, and v(v + 1)L(v)/S2

0 .

Step 2. Inverting L(v), (v + 1)L(v)/S0, and v(v + 1)L(v)/S2
0 , and then multiplying the

results by e−rt yields Cα(S0, K, t), �(Cα(S0, K, t)), and 	(Cα(S0, K, t)), respectively.

It is worth mentioning here that by ‘applying the Laplace inversion algorithm twice’we mean
that a single Laplace inversion algorithm is applied in both step 1 and step 2. This greatly differs
from the so-called ‘double Laplace inversion’. Specifically, if the closed-form expression of∫ +∞
−∞

∫ +∞
0 e−vke−wtC∗

α(S0, k, t) dt dk is available, it is called the double Laplace transform
of C∗

α(S0, k, t) w.r.t. k and t . Then the double Laplace inversion algorithm applies (see [11]).
However, in our case, a closed-form expression of the double Laplace transform of C∗

α(S0, k, t)

is not available. So we attempt to evaluate C∗
α(S0, k, t) by inverting its single Laplace transform

L(v). But

L(v) = Sv+1
0

v(v + 1)Xv
E[e(v+1)MX(αt)]E[e(v+1)mX((1−α)t)]

has no closed-form expression, either. To evaluate L(v), we need to invert the closed-form
Laplace transforms of E[e(v+1)MX(αt)] and E[e(v+1)mX((1−α)t)]. To summarize, the ‘whole
inversion’ should be divided into two steps, each of which uses the single Laplace inversion.
This is the crucial difference from ‘the double Laplace inversion’, and we call it ‘Laplace
inversion twice’.

Nonetheless, when implementing the above algorithm using the Euler inversion algorithm,
we encounter some difficulty, primarily because the Euler inversion algorithm applies for only
the real original functions and meanwhile the inversion formula involves Laplace transforms in
the complex domain. As a result, to invert L(v) in step 2, we need values of L(v) for complex v.
This means that in step 1, we need to evaluate E[e(v+1)MX(αt)] and E[e(v+1)mX((1−α)t)] for
complex v by inverting their Laplace transforms w.r.t. t . If we apply the Euler inversion
algorithm in step 1 directly, it will fail in that this is equivalent to applying the Euler inversion
algorithm in the case of complex original functions. To circumvent this difficulty, we evaluate
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the real parts and the imaginary parts of E[e(v+1)MX(αt)] and E[e(v+1)mX((1−α)t)] separately.
For details, see Section 4.

3.2. Pricing and hedging of floating-strike quantile options

Compared with pricing and hedging of the fixed-strike quantile option, the floating-strike
quantile option seems more intractable because its price not only depends on the quantile but also
on the terminal asset value. Nevertheless, we can bridge these two issues by transforming the
floating-strike option price to the price of a fixed-strike option by virtue of Girsanov’s theorem
for jump diffusion processes. This idea stems from Leung and Kwok [26], who established a
relationship between fixed- and floating-strike quantile option prices under the BSM.

In this part we just provide some new notation and main results. For the details of the proof,
seeAppendix B. To facilitate the derivation, we consider a quantile option, where the underlying
asset has a dividend with rate q. Note that this slight modification does not affect essentially the
correctness of Proposition 2.1 and Theorem 3.1. Rewrite the fixed- and floating-strike quantile
option prices with maturity T as

Cα(S0, K, T , S) = e−rT E[(Q(α, T , S) − K)+]
and

Pα(S0, T , S) = e−rT E[(Q(α, T , S) − S(T ))+],
respectively, where Q(α, t, S) is the α-quantile of the underlying asset price process S starting
from the point S0.

Now we introduce two independent processes S and S̄. The former is defined as

S :=
{
S(t) := S0 exp

(
µt + σW(t) +

N(t)∑
i=1

Yi

)
: t ≥ 0

}
,

where all the parameters are the same as those in (2.1) except that µ := r − q − σ 2/2 − λζ

and ηi > 2 for any i = 1, 2, . . . , m. The latter is given by

S̄ :=
{
S̄(t) := S0 exp

(
µ̄t + σW(t) +

Ñ(t)∑
i=1

Y i

)
: t ≥ 0

}
,

where µ̄ = r̄ − q̄ − σ 2/2 − λ̃ζ̄ , r̄ = q, q̄ = r − λζ − λ̃ζ̄ , ζ̄ = E eY 1 − 1, {Ñ(t) : t ≥ 0} is a
Poisson process with rate λ̃ := λ(ζ + 1), {W(t) : t ≥ 0} is a standard Brownian motion, and
{Y i : i = 1, 2, . . .} is a sequence of i.i.d. hyperexponential random variables with PDF

fY (x) =
n∑

i=1

p̄i η̄ie
−η̄i x 1{x≥0} +

m∑
j=1

q̄j θ̄j eθ̄j x 1{x<0},

with

p̄i = qiθi

(ζ + 1)(θi + 1)
> 0 and η̄i = θi + 1 > 1 for all i = 1, . . . , n,

q̄j = pjηj

(ζ + 1)(ηj − 1)
> 0 and θ̄j = ηj − 1 > 1 for all j = 1, . . . , m.

Here θ̄j > 1 holds for any j = 1, . . . , m due to the assumption that ηj > 2 for any j =
1, . . . , m. This guarantees that E(e−Y 1) is finite. Then we have the following theorem.
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Theorem 3.2. (Pricing and hedging of floating-strike quantile options.) With the above nota-
tion, the floating-strike quantile option price is

Pα(S0, T , S) = Cα(S0, S0, T , S̄) (3.3)

and the two common Greeks �(Pα(S0, T , S)) and 	(Pα(S0, T , S)) are given by

�(Pα(S0, T , S)) := ∂

∂S0
Pα(S0, T , S) = Cα(1, 1, T , S̄)

and

	(Pα(S0, T , S)) := ∂2

∂S2
0

Pα(S0, T , S) = 0.

Proof. See Appendix B.

Theorem 3.2 implies that we can price the floating-strike quantile option by pricing a closely
related fixed-strike quantile option. In particular, we can price the European lookback put
option at time 0, where the payoff is given by S0eMX(T ) − S(T ), and which is actually a special
case of the floating-strike α-quantile option with α = 1.

Remark 3.1. In a recent paper [9] Cai et al. investigated pricing and hedging of occupation-
time-related options under the DEM, including the fixed-strike quantile options. In comparison,
there exist several key differences between our paper and [9]. First, our model is more general
and the DEM is only a special case of the HEM. Second, we solve the pricing and hedging
problems for both fixed- and floating-strike quantile options, whereas [9] discussed only the
fixed-strike case. Third, their pricing method depends on the distribution of the occupation
time, which they spent considerable effort deriving. Our approach, however, does not require
this technical result.

4. The pricing and hedging algorithm via Euler inversion

In financial applications, numerical inversion of Laplace transforms has become increasingly
important for it is always much easier to derive a closed-form expression for the Laplace
transform of a derivative price than for the price itself. In this paper we will employ the Euler
inversion algorithm to invert Laplace transforms numerically, which was proposed in the one-
sided case by Abate and Whitt [1] and was extended to the two-sided case by Petrella [30]. For
a survey on comparison of different transform inversion methods applied in asset pricing, we
refer the reader to [12].

4.1. The Euler inversion algorithm

When implementing our pricing method proposed in Section 3, we are confronted with two
types of Laplace transform. One is one-sided, meaning that the original function is defined on
the positive real line, e.g. LM(s) and Lm(s); while the other is two-sided, meaning that the
original function is defined on the whole real line, e.g. L(v).

Suppose that f̂ (s) is a two-sided Laplace transform of a nonnegative function f (t) defined
on the whole real line R, i.e. f̂ (s) := ∫ +∞

−∞ e−stf (t) dt . Then we have the following inversion
formula (see [30]):

f (t) = eA/2

2t
Re

(
f̂

(
A

2t

))
+ eA/2

t

∞∑
j=1

(−1)j Re

(
f̂

(
A − 2jπ i

2t

))
− ed . (4.1)
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Here Re(z) represents the real part of z, ed = e+
d + e−

d , and

e+
d =

+∞∑
j=1

e−jAf ((2j + 1)t) and e−
d =

−1∑
j=−∞

e−jAf ((2j + 1)t), (4.2)

where A is an arbitrary positive constant used to control the discretization error ed .
If f̂ (s) is a one-sided Laplace transform of a nonnegative functionf (t)defined on the positive

real line R
+, i.e. f̂ (s) := ∫ +∞

0 e−stf (t) dt , (4.1) and (4.2) still hold except that e−
d disappears.

Note that there exist three kinds of parameter involved in the implementation of the Euler
inversion algorithm. (i) (n1, n2). During the computation, we have to calculate some alternating
series of the form

∑∞
i=0(−1)iai in expression (4.1). To accelerate the convergence, we adopt

the idea of the Euler transformation, which gives a much faster convergence of the infinite sum
(see [1]). More precisely,

∑∞
i=0(−1)iai can be approximated by the finite sum

E(m, n) =
m∑

k=0

m!
k! (m − k)!2−mSn+k,

where Sj := ∑j
i=0(−1)iai . Since there are two transform inversions in two steps when pricing

fixed-strike quantile options, the Euler transformation is used twice. We use (n1, m1) and
(n2, m2) to express parameters involved in the Euler transformation for Euler inversion w.r.t.
the scaled strike k and maturity t , respectively. According to Abate and Whitt’s suggestion
(see [1]), we set m1 = n1 + 15 and m2 = n2 + 15. In practice, we set n1 = n2 = 90. (ii) A1
and A2. These parameters are used to control the discretization error. The empirical setting is
A1 = A2 = 18. (iii) The scaling factor X. In our case, we will select X as 10 000.

The selection of the parameters A1, A2, and X does not affect the accuracy, but does affect the
convergence, as shown by the author. This issue will be discussed in detail in Sections 5.2–5.4.

4.2. Calculate L(v) for complex v via the Euler inversion algorithm

To invert L(v) numerically via the Euler inversion algorithm, we require values of L(v) for
complex numbers v. Therefore, we need to evaluate E[e(v+1)MX(αt)] and E[e(v+1)mX((1−α)t)]
for complex v. More generally, we first illustrate how to calculate E[evMX(t)] and E[evmX(t)]
for complex v by inverting their Laplace transforms LM(s) and Lm(s) numerically. Note that
the Euler inversion algorithm applies for only real original functions. To solve this problem,
we express g(v, t) := E[evMX(t)] as

g(v, t) = gR(a, b, t) + gI(a, b, t)i for v = a + bi,

where gR(a, b, t) and gI(a, b, t) represent the real part and imaginary parts of g(v), respectively,
and

gR(a, b, t) = E[eaMX(t) cos(bMX(t))] and gI(a, b, t) = E[eaMX(t) sin(bMX(t))].
Then in order to calculate g(v, t) ≡ E[evMX(t)] for complex v, it suffices to evaluate

gR(a, b, t) and gI(a, b, t) via Euler inversion, both of which are real functions so that the
Euler inversion algorithm applies. Denote the Laplace transforms of gR(a, b, t) and gI(a, b, t)

for a complex number v = a+bi w.r.t. t by LMR(a, b, s) and LMI(a, b, s), respectively. More
precisely, for any s > 0,

LMR(a, b, s) :=
∫ ∞

0
e−st gR(a, b, t) dt and LMI(a, b, s) :=

∫ ∞

0
e−st gI(a, b, t) dt.

Their closed-form expressions are derived in the following theorem.
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Theorem 4.1. For any s > 0, v = a + bi, and a ∈ (−∞, β1), we have

LMR(a, b, s) = 1

s

{
1 +

m+1∑
l=1

[
a(βl − a) − b2

(a − βl)2 + b2 dl

]}
(4.3)

and

LMI(a, b, s) = 1

s

m+1∑
l=1

bβldl

(a − βl)2 + b2 , (4.4)

where β1, β2, . . . , βm+1 and d = (d1, d2, . . . , dm+1)
� are the same as in Proposition 2.1.

Proof. The proof is similar to that of Proposition 2.1 of [8] and, thus, is omitted.

Consequently, for complexv = a+bi, by invertingLMR(a+1, b, αs) andLMI(a+1, b, αs),
we can obtain both gR(a + 1, b, αt) and gI(a + 1, b, αt), hence getting E[e(v+1)MX(αt)]. As
for E[e(v+1)mX((1−α)t)], a similar idea applies. In this way, we can evaluate L(v) for complex
v numerically.

4.3. The pricing and hedging algorithm

To summarize, a detailed pricing and hedging algorithm for quantile options under the HEM
is given as follows.

Step 1. Evaluate gR(a + 1, b, αt) and gI(a + 1, b, αt) by inverting their Laplace transforms
LMR(a + 1, b, αs) and LMI(a + 1, b, αs) in (4.3) and (4.4), respectively. Thus, we
obtain E[e(v+1)MX(αt)] for complex v = a + bi.

Step 2. Obtain E[e(v+1)mX((1−α)t)] for complex v in a similar way as in step 1. As a result, we
have actually obtained L(v), (v + 1)L(v)/S0, and v(v + 1)L(v)/S2

0 for complex v.

Step 3. Price quantile options and calculate the two Greeks, delta and gamma, by inverting
L(v), (v + 1)L(v)/S0, and v(v + 1)L(v)/S2

0 , respectively, and by using their values
with complex v obtained via step 1 and step 2.

In particular, under the BSM, the pricing and hedging algorithm can be simplified to only
one step, i.e. step 3, because L(v) has the closed-form expression in (3.2).

5. Numerical results

5.1. Calculating prices and Greeks under the HEM

Based on the pricing and hedging algorithm in Section 4.3, Theorem 3.1, Theorem 3.2,
and Theorem 4.1, we can price both fixed- and floating-strike quantile options and calculate
the associated two Greeks (delta and gamma) under the HEM. Without loss of generality, we
focus on a simple case, m = n = 2, for the hyperexponential distribution given by (2.2),
i.e. both the upward and downward jump size distributions are a mixture of two exponential
distributions. The corresponding numerical prices, deltas and gammas (denoted by LL price,
LL delta, and LL gamma) of fixed- and floating-strike quantile options are given in Table 1 and
Table 2. All the computations are completed on a desktop with an Intel� 2.66 GHz processor.
It turns out that all the numerical results stay within the 95% confidence intervals of Monte
Carlo simulation estimates (denoted by MC price, MC delta, and MC gamma). Moreover,
for the pricing, the averages of absolute values of absolute and relative errors are 0.661 cents
and 0.116%, respectively. Therefore, we draw the conclusion that our pricing algorithm is
accurate. In addition, the CPU time to produce one LL price (LL delta or LL gamma) is around
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Table 1: Pricing fixed- and floating-strike quantile options. The default parameters are α = 0.5, r = 0.05,
η1 = θ1 = 30, η2 = θ2 = 40, p1 = p2 = 0.3, q1 = q2 = 0.2, S0 = 100, t = 1, A1 = A2 = 18,
n1 = n2 = 90, and X = 10 000. The LL price is obtained by using Laplace inversion twice. The MC
price is the Monte Carlo simulation estimate obtained by simulating 100 000 paths and using 100 000
time steps. SE is the associated standard error. AE and RE are the absolute and relative errors between

LL price and MC price, respectively.

Pricing fixed-strike quantile options under the HEM

λ σ K LL price MC price SE AE RE (%)

1 0.2 90 12.511 58 12.513 55 0.007 22 −0.001 97 −0.016
100 5.737 06 5.737 99 0.011 54 −0.000 93 −0.016
110 2.128 64 2.121 84 0.011 22 0.006 80 0.320

1 0.3 90 13.695 27 13.697 02 0.013 23 −0.001 75 −0.013
100 7.731 21 7.734 64 0.017 20 −0.003 43 −0.044
110 4.038 86 4.030 32 0.017 58 0.008 54 0.212

3 0.2 90 12.595 88 12.598 49 0.007 76 −0.002 61 −0.021
100 5.904 13 5.907 02 0.012 08 −0.002 89 −0.049
110 2.292 06 2.284 97 0.011 86 0.007 09 0.310

3 0.3 90 13.771 24 13.777 66 0.013 57 −0.006 42 −0.047
100 7.843 86 7.851 46 0.017 54 −0.007 60 −0.097
110 4.154 15 4.147 03 0.017 96 0.007 12 0.172

Pricing floating-strike quantile options under the HEM

λ σ K LL price MC price SE AE RE (%)

1 0.2 — 3.455 66 3.446 20 0.016 69 0.009 46 0.275
0.3 — 5.523 82 5.508 49 0.024 68 0.015 33 0.278

3 0.2 — 3.629 04 3.615 63 0.017 39 0.013 41 0.371
0.3 — 5.641 06 5.624 56 0.025 10 0.016 50 0.293

21 seconds, which is practically acceptable and is much less than that of the Monte Carlo
simulation (around 25 minutes). So our pricing algorithm is also efficient. In particular, we
can price both fixed- and floating-strike quantile options under two important models, the BSM
and the DEM, in the same way (note that quantile options under the BSM can be priced more
easily via a single Laplace inversion). Furthermore, our algorithm runs very fast under the
BSM and DEM (the CPU times to generate one numerical result under the BSM and DEM are
around 0.1 seconds and 1.7 seconds, respectively). To save space, we omit the corresponding
numerical tables, but they are available on request.

It is worth mentioning that the Monte Carlo simulation estimates listed here, which serve only
as a benchmark, are obtained via an (almost) plain Monte Carlo simulation scheme along with
the variance reduction technique of control variates. For more variance reduction techniques
of the Monte Carlo simulation in financial engineering, we refer the reader to the monograph
by Glasserman [20].

In addition, Kwok and Lau (see, [25, p. 10]) provided one numerical result (around 9.18,
with an associated parameter setting of α = 0.8, r = 0.05, σ = 0.2, S0 = 100, K = 95, and
t = 0.25) using a forward shooting grid method, whereas applying our Euler inversion method
yields 9.1873. The coincidence also implies the correctness of our method.
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Table 2: Hedging parameters of fixed- and floating-strike quantile options. The default parameters are
λ = 3, r = 0.05, η1 = θ1 = 30, η2 = θ2 = 40, p1 = p2 = 0.3, q1 = q2 = 0.2, S0 = 100, t = 1,
A1 = A2 = 18, n1 = n2 = 90, and X = 10 000. LL deltas and LL gammas are obtained by using
Laplace inversion twice. MC deltas and MC gammas are the Monte Carlo simulation estimates obtained

by simulating 100 000 paths and using 100 000 time steps. SE is the associated standard error.

Deltas of fixed-strike quantile options under the HEM

α = 0.3 α = 0.6
σ K

LL delta MC delta SE LL delta MC delta SE

0.2 90 0.721 19 0.720 03 0.000 77 0.899 53 0.898 99 0.000 70
100 0.420 80 0.422 19 0.000 97 0.649 66 0.650 52 0.000 97
110 0.146 37 0.147 24 0.000 91 0.348 85 0.349 56 0.000 97

0.3 90 0.616 53 0.616 51 0.000 80 0.841 06 0.840 73 0.000 80
100 0.395 35 0.396 68 0.000 96 0.638 39 0.637 67 0.000 96

Deltas of floating-strike quantile options under the HEM

α = 0.3 α = 0.6
σ K

LL delta MC delta SE LL delta MC delta SE

0.2 — 0.019 30 0.019 18 0.000 12 0.046 76 0.046 66 0.000 20
0.3 — 0.029 78 0.029 64 0.000 17 0.072 84 0.072 74 0.000 29

Gammas of fixed-strike quantile options under the HEM

α = 0.3 α = 0.6
σ K

LL gamma MC gamma SE LL gamma MC gamma SE

0.2 90 0.019 92 0.020 79 0.001 57 0.013 63 0.012 43 0.001 21
100 0.036 47 0.039 24 0.002 25 0.034 32 0.035 31 0.002 15
110 0.019 56 0.020 28 0.001 68 0.026 81 0.028 21 0.002 01

0.3 90 0.017 15 0.017 70 0.001 43 0.014 03 0.012 75 0.001 19
100 0.024 29 0.027 83 0.001 88 0.024 24 0.025 59 0.001 79
110 0.016 49 0.015 48 0.001 44 0.020 69 0.022 07 0.001 77

5.2. Sensitivity of our numerical algorithm to A1, A2, and X

Observe that the Euler inversion algorithm depends on the selection of parameters A1, A2,
and X, all of which are primarily for discretization error control. As a matter of fact, the
algorithm is quite insensitive to changes in A1, A2, and X. This property is well illustrated by
Figure 1, where the upper three graphs show how the absolute errors between the LL prices and
MC prices change as A1, A2, and X vary; while the lower three graphs show the corresponding
relative errors. Actually, the LL prices keep accurate and stable when these parameters vary in
broad regions, i.e. A1 ∈ [15, 45], A2 ∈ [15, 45], and X ∈ [1000, 30 000]. The absolute values
of associated relative errors between LL prices and MC prices are stable and stay smaller than
0.06%. Consequently, we draw the conclusion that our pricing algorithm is stable and, thus,
reliable.

5.3. Convergence and computational cost of our numerical algorithm

Recall that our numerical algorithm involves four algorithm parameters, n1 (and n2, typically
we select n2 = n1 in practice), A1, A2, and X. As discussed in Section 4.1, n1 (and n2) is
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Figure 1: How the numerical results (LL prices) change as A1, A2, and X vary. The parameter setting
is α = 0.5, r = 0.05, σ = 0.2, λ = 3, η1 = θ1 = 30, η2 = θ2 = 40, p1 = p2 = 0.3, q1 = q2 = 0.2,
S0 = 100, t = 1, and n1 = n2 = 90. Upper-left graph: absolute error versus A1, where A2 = 18
and X = 10 000. Upper-middle graph: absolute error versus A2, where A1 = 18 and X = 10 000.
Upper-right graph: absolute error versus X, where A1 = 18 and A2 = 18. The lower three graphs show

how the corresponding relative errors change.

related to the approximation to the infinite series in the inversion formula (4.1) by some finite
sum called the Euler transformation (see [1]). More precisely, applying the Euler transformation
to accelerate the rate of the convergence of a series, we approximate the infinite series of the
form

∑∞
i=0(−1)iai in the inversion formula (4.1) by the finite sum

E(m1, n1) =
m1∑
k=0

m1!
k!(m1 − k)!2−m1Sn1+k,

where m1 = n1 + 15 (suggested by Abate and Whitt [1]) and Sj := ∑j
i=0(−1)iai for j =

0, 1, . . . . It is easily seen that the finite sum E(m1, n1) involves only the first m1+n1 = 2n1+15
terms of the series. Therefore, the larger n1, the more accurate the approximation. As n1 goes
to ∞, the approximation converges to the sum of the infinite series.

In this section we intend to study how our numerical algorithm converges as n1 increases,
given A1, A2, and X. For ease of exposition, we denote by p(n1) the numerical quantile option
price obtained via our numerical algorithm with parameter n1. Let n1 increase from 15 with
an increment of 5, i.e. n1 = 15, 20, 25, 30, . . . . It is worth noting that we do not know the
true option price, i.e. the limit of the numerical approximation as n1 goes to ∞. Alternatively,
we may use |p(n1 + 5) − p(n1)| to measure the convergence, and say that the numerical
approximation is sufficiently close to its limit when

|p(n1 + 5) − p(n1)| < 10−4. (5.1)
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Table 3: How the numerical prices p(n1) converge and how the CPU times (in seconds) change as n1
increases. The default parameters are α = 0.5, r = 0.05, η1 = θ1 = 30, η2 = θ2 = 40, p1 = p2 = 0.3,

q1 = q2 = 0.2, S0 = 100, t = 1, A1 = A2 = 18, and X = 10 000.

CPU CPU
n1 p(n1) |p(n1 + 5) − p(n1)| time n1 p(n1) |p(n1 + 5) − p(n1)| time

20 5.921 42 0.007 252 1.73 115 5.903 96 0.000 020 31.97
25 5.914 17 0.003 769 2.36 120 5.903 94 0.000 017 34.56
30 5.910 40 0.002 146 3.11 125 5.903 92 0.000 014 37.16
35 5.908 26 0.001 310 3.97 130 5.903 91 0.000 012 40.02
40 5.906 95 0.000 844 4.98 135 5.903 90 0.000 011 43.08
45 5.906 10 0.000 568 6.05 140 5.903 89 0.000 009 46.11
50 5.905 54 0.000 397 7.19 145 5.903 88 0.000 008 49.36
55 5.905 14 0.000 285 8.48 150 5.903 87 0.000 007 52.55
60 5.904 85 0.000 210 9.86 155 5.903 86 0.000 006 56.11
65 5.904 64 0.000 158 11.34 160 5.903 86 0.000 006 59.73
70 5.904 48 0.000 121 12.98 165 5.903 85 0.000 005 63.16
75 5.904 36 0.000 095 14.67 170 5.903 84 0.000 004 67.00
80 5.904 27 0.000 075 16.48 175 5.903 84 0.000 004 71.02
85 5.904 20 0.000 060 18.41 180 5.903 84 0.000 004 75.02
90 5.904 13 0.000 049 20.39 185 5.903 83 0.000 003 78.97
95 5.904 08 0.000 040 22.50 190 5.903 83 0.000 003 82.81

100 5.904 04 0.000 033 24.97 195 5.903 83 0.000 003 87.39
105 5.904 01 0.000 028 27.02 200 5.903 82 — 91.80
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Figure 2: The left panel and the right panel illustrate how the numerical prices converge and how the
computational times change as n1(= n2) increases, respectively. We can see that the numerical prices
converge quite fast as n1 increases. The parameter setting is α = 0.5, r = 0.05, σ = 0.2, λ = 3,
η1 = θ1 = 30, η2 = θ2 = 40, p1 = p2 = 0.3, q1 = q2 = 0.2, S0 = 100, t = 1, A1 = A2 = 18, and

X = 10 000.

It turns out that the n1s that satisfy (5.1) can guarantee three-digit accuracy of our numerical
prices.

The results of Table 3 demonstrate how the numerical prices p(n1) converge as n1 increases
(see also the left panel of Figure 2). It can be seen that when n1 ≥ 75, we have |p(n1 + 5) −
p(n1)| < 10−4. Furthermore, this can guarantee at least three-digit accuracy (5.904) for our
numerical prices if we round them off to three decimal places. This accuracy is acceptable
in practice because of the bid-ask spreads. In order to be safe, we select n1 = 90 when
implementing the algorithm in our numerical part (Section 5.1). In addition, the results of
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Table 3 also demonstrate how the CPU times change as n1 increases (see also the right panel of
Figure 2). When n1 = 90, the corresponding CPU time is around 21 seconds and practically
acceptable.

Note that the above numerical experiments are conducted when A1 = 18, A2 = 18, and
X = 10 000 are fixed. However, the convergence speed of our numerical algorithm may also
depend on selection of these three algorithm parameters. This issue will be investigated in
Section 5.4.

5.4. Effect of A1, A2, and X on the convergence speed of our numerical algorithm

To study the effect of the selection of the three parameters A1, A2, and X on the convergence
speed of our numerical algorithm, we define N∗(A1, A2, X) for given A1, A2, and X as

N∗(A1, A2, X) := min{n1 : |p(n1 + 5) − p(n1)| < 10−4 and n1 = 15, 20, 25, . . .}.
Note that the smaller N∗(A1, A2, X), the faster the convergence. Accordingly, N∗(A1, A2, X)

may be used to indicate the convergence speed corresponding to the parameter selection, A1,
A2, and X. As discussed in Section 5.3, the n1s that satisfy |p(n1 + 5) − p(n1)| < 10−4 can
typically achieve at least three-digit accuracy for our numerical prices if we round them off to
three decimal places. This accuracy is acceptable in practice because of the bid-ask spreads.

By plotting N∗(A1, A2, X) for various A1, A2, and X, Figure 3 illustrates how these three
parameters influence the convergence speed of our numerical algorithm. The upper three graphs
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Figure 3: The effect of the selection of the three parameters A1, A2, and X on the convergence speed of
our numerical algorithm. The parameter setting is α = 0.5, r = 0.05, σ = 0.2, λ = 3, η1 = θ1 = 30,
η2 = θ2 = 40, p1 = p2 = 0.3, q1 = q2 = 0.2, S0 = 100, and t = 1. Upper-left graph: N∗(A1, A2, X)

versus A1 when A2 = 18 and X = 10 000. Upper-middle graph: N∗(A1, A2, X) versus A2 when
A1 = 18 and X = 10 000. Upper-right graph: N∗(A1, A2, X) versus X when A1 = 18 and A2 = 18.

The lower three graphs show how the corresponding computational times change.
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show how N∗(A1, A2, X) changes when A1, A2, and X vary, respectively, whereas the lower
three exhibit the corresponding computational times. We can see that the convergence speed
of our numerical algorithm seems insensitive to the selection of A1 and A2 because broad
regions of A1 and A2 (A1 ∈ [15, 45], A2 ∈ [15, 45]) can guarantee the same N∗(A1, A2, X)

(= 75). In contrast, the selection of parameter X has a larger effect on the convergence speed.
The upper-right graph demonstrates that a larger X tends to result in a larger N∗(A1, A2, X),
i.e. a slower convergence. However, a broad region of X (X ∈ [1000, 30 000]) can guarantee
N∗(A1, A2, X) ≤ 90. Recall that to be safe, we select n1 = 90 when implementing the
numerical algorithm in our numerical part (Section 5.1). Figure 3 indicates that this selection
of n1 is quite good because it can guarantee |p(n1 + 5) − p(n1)| ≤ 10−4 for broad regions of
A1, A2, and X (A1 ∈ [15, 45], A2 ∈ [15, 45], and X ∈ [1000, 30 000]).

Appendix A. Proof of Theorem 3.1

Result (3.1) can be derived as follows:

L(v) =
∫ +∞

−∞
e−vkX E

[(
S0

X
eQ(α,t,X) − e−k

)+]
dk

= X E

[∫ +∞

−∞
e−vk

[(
S0

X
eQ(α,t,X) − e−k

)+]
dk

]

= X E

[∫ +∞

−log(S0/X)−Q(α,t,X)

e−vk

(
S0

X
eQ(α,t,X) − e−k

)
dk

]

= Sv+1
0

v(v + 1)Xv
E[e(v+1)Q(α,t,X)].

In the light of Proposition 2.2, we have

E[e(v+1)Q(α,t,X)] = E[e(v+1)MX(αt)]E[e(v+1)mX((1−α)t)].

Then (3.1) follows immediately. Note that, under the BSM, the moment generating function
of the running maximum of the drifted Brownian motion during a period can be expressed
explicitly with complementary error functions (or error functions). By slightly modifying the
formula on page 250 of [5], we can obtain (3.2) easily. Finally, the two Greeks can be obtained
by interchanging derivatives and integrals based on Theorem A.12 of [31, pp. 203–204].

Appendix B. Proof of Theorem 3.2

Note that the floating-strike α-quantile option price can be rewritten as

Pα(S0, T , S) = e−rT E[(Q(α, T , S) − S(T ))+]

= E

[
S(T )

S0
e−rT

(
S0

S(T )
Q(α, T , S) − S0

)+]
. (B.1)

Consider introducing a new measure P̃ defined as

dP̃

dP

∣∣∣∣
t=T

= S(T )

S0
e−(r−q)T .

https://doi.org/10.1239/jap/1316796904 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796904


Pricing and hedging of quantile options 653

Then according to Girsanov’s theorem for jump diffusion processes (see [32]), we conclude
that, under the new measure P̃, {W̃ (t) := W(t) − σ t : 0 ≤ t ≤ T }becomes a standard Brownian
motion, and the original return process

X(t) =
(

r − q − σ 2

2
− λζ

)
t + σW(t) +

N(t)∑
i=1

Yi

=
(

r − q + σ 2

2
− λζ

)
t + σW̃(t) +

Ñ(t)∑
i=1

Ỹi

is a new hyperexponential jump diffusion process, where {Ñ(t) : t ≥ 0} is a Poisson process
with rate λ̃ = λ E[eY ] = λ(ζ + 1), and {Ỹi : i = 1, 2, . . .} is also a sequence of i.i.d. hyperex-
ponential random variables with PDF

fỸ (x) = fY (x)
ex

E[eY ]
=

m∑
i=1

piηi

(ζ + 1)(ηi − 1)
(ηi − 1)e−(ηi−1)x 1{x≥0}

+
n∑

j=1

qj θj

(ζ + 1)(θj + 1)
(θj + 1)e(θj +1)x 1{x<0}

=:
n∑

i=1

p̃i η̃ie
−η̃i x 1{x≥0} +

m∑
j=1

q̃j θ̃j eθ̃j x 1{x<0}.

Here

p̃i := piηi

(ζ + 1)(ηi − 1)
> 0 and η̃i := ηi − 1 > 1 for all i = 1, . . . , m,

q̃j := qj θj

(ζ + 1)(θj + 1)
> 0 and θ̃j := θj + 1 > 1 for all j = 1, . . . , n.

By the change of measure, (B.1) is reduced to

Pα(S0, T , S) = e−qT Ẽ

[(
S0

S(T )
Q(α, T , S) − S0

)+]
. (B.2)

A close scrutiny of S0Q(α, T , S)/S(T ) (see [16] or [26]) results in

S0

S(T )
Q(α, T , S) = S0

S(T )
inf

{
x ∈ R :

∫ T

0
1{S(t)≤x} dt > αT

}

= inf

{
S0

S(T )
x ∈ R :

∫ T

0
1{S0S(t)/S(T )≤S0x/S(T )} dt > αT

}

= inf

{
z ∈ R :

∫ T

0
1{S0S(t)/S(T )≤z} dt > αT

}
. (B.3)
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Note that, for any t ∈ [0, T ],

S0

S(T )
S(t) = S0 exp

((
r − q + σ 2

2
− λζ

)
(t − T ) + σ(W̃ (t) − W̃ (T )) −

Ñ(T )∑
i=Ñ(t)+1

Ỹi

)

= S0 exp

((
q − r − σ 2

2
+ λζ

)
(T − t) + σ [(−W̃ (T )) − (−W̃ (t))]

+
Ñ(T )∑

i=Ñ(t)+1

(−Ỹi )

)
.

Introduce a new standard Brownian motion {W(t) := −W̃ (t) : 0 ≤ t ≤ T }, and define Y i :=
− Ỹi and S̄(t) := S0 exp(µ̄t + σW(t) + ∑Ñ(t)

i=1 Y i), where µ̄ := r̄ − q̄ − σ 2/2 − λ̃ζ̄ , r̄ := q,
q̄ := r − λζ − λ̃ζ̄ , and ζ̄ := E eY − 1. Then we claim that, under the new measure P̃, the
following two processes have the same distribution:{

S0

S(T )
S(t) : t ∈ [0, T ]

}
d= {S(T − t) : t ∈ [0, T ]}. (B.4)

Consequently, we know from (B.3) and (B.4) that, under the new measure P̃,

S0

S(t)
Q(α, T , S) = inf

{
z ∈ R :

∫ T

0
1{SS(t)/S(T )≤z} dt > αT

}
d= inf

{
z ∈ R :

∫ T

0
1{S(T −t)≤z} dt > αT

}

= inf

{
z ∈ R :

∫ T

0
1{S(t)≤z} dt > αT

}
= Q(α, T , S). (B.5)

From (B.2) and (B.5), (3.3) follows immediately. For the two Greeks, noting that

Pα(S0, T , S) = e−rT E[(Q(α, T , S) − S(T ))+] = e−rT E[(eQ(α,T ,X) − eX(T ))+]S0,

we easily obtain

	(Pα(S0, T , S)) = 0

and

�(Pα(S0, T , S)) = e−rT E[(eQ(α,T ,X) − eX(T ))+] = Pα(1, T , S) = Cα(1, 1, T , S̄).

The proof is completed.
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