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Abstract

In 1967, Klarner proposed a problem concerning the existence of reflecting n-queens configurations. The problem
considers the feasibility of placing n mutually nonattacking queens on the reflecting chessboard, an n X n chessboard
with a 1 X n “reflecting strip” of squares added along one side of the board. A queen placed on the reflecting
chessboard can attack the squares in the same row, column, and diagonal, with the additional feature that its
diagonal path can be reflected via the reflecting strip. Klarner noted the equivalence of this problem to a number
theory problem proposed by Slater, which asks: for which # is it possible to pair up the integers 1 through n with
the integers n + 1 through 2n such that no two of the sums or differences of the n pairs of integers are the same. We
prove the existence of reflecting n-queens configurations for all sufficiently large n, thereby resolving both Slater’s
and Klarner’s questions for all but a finite number of integers.
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1. Introduction

An n-queens configuration is a placement of n queens on an n X n chessboard such that no two queens
are in the same row, column, or diagonal. The classical n-queens problem asks how many n-queens
configurations exist for a given n X n chessboard. The problem can also be considered on a toroidal
chessboard, where the diagonals wrap around the board from left to right and from top to bottom. The
problem was first proposed in 1848 by German chess composer Max Bezzel and elicited the interest
of several prominent mathematicians, including Gauss and Pélya. Detailed accounts of the historical
development of the n-queens problem can be found in the survey by Bell and Stevens [1] and the work
by Bowtell and Keevash [2].

Let Q(n) denote the number of classical n-queens configurations, and let 7'(n) denote the number
of toroidal n-queens configurations. In 1874, Pauls [10, 11] proved that Q(n) > O for every n > 4.
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Figure 1. Illustrations of the reflecting chessboard.

In 1918, Pdlya [12] showed that T(n) > 0 if and only if n = 1 or 5 (mod 6). In 1994, Rivin, Vardi,
and Zimmerman [13] conjectured that log Q(n) = ©(nlog(n)) and that logT(n) = O(nlog(n)) for
n = 1,5 (mod 6). In 2017, Luria [8] showed that T(n) < ((1 + o(1))ne™3)" and that there exists
a constant @ > 1.587 such that Q(n) < ((1 + o(1))ne~%)" for all n. Bowtell and Keevash [2] and
independently Luria and Simkin [9] proved that Q(n) > ((1 + o(1))ne™3)" for all sufficiently large n.
Bowtell and Keevash [2] also proved that 7(n) > ((1 — o(1))ne™>)" for n = 1,5 (mod 6), thereby
giving an asymptotic solution to the toroidal n-queens problem. These results completely settled the
conjecture by Rivin, Vardi, and Zimmerman [13]. Furthermore, Simkin [16] improved the bounds for
the classical n-queens problem, showing that there exists a constant 1.94 < a < 1.9449 such that
Q(n) = ((1 £o(1))ne”*)".

Glock, Munh4 Correia, and Sudakov [3] investigated a natural extension of the n-queens problem,
known as the n-queens completion problem. This problem asks under what conditions a given placement
of mutually nonattacking queens can be extended to an n-queens configuration. They showed that any
partial configuration with at most n/60 queens can be completed. Additionally, they provided a partial
configuration of roughly n/4 queens that cannot be extended into a complete n-queens configuration.
A key tool in their work is their “rainbow matching lemma”, which is also crucial to the proof of our
main theorem.

We consider a slight variation of the n-queens problem. Consider an n X n chessboard with an
additional 1 X n strip of squares, called the reflecting strip, attached to one side of the chessboard.
Without loss of generality, we assume the reflecting strip is placed above the n X n chessboard. The
squares on the reflecting strip are labeled from left to right as 1,2, . . ., n. The kth reflecting diagonal is
the union of the two diagonals (one of which may be empty) whose extension intersects with the kth
square of the reflecting strip. A diagonal whose extension does not intersect the reflecting strip is called
a nonreflecting diagonal. An n X n chessboard with the reflecting strip, along with the rows, columns,
reflecting diagonals, and nonreflecting diagonals defined above, is called a reflecting chessboard. Two
queens attack each other on a reflecting chessboard if they are in the same row, column, reflecting
diagonal, or nonreflecting diagonal. A reflecting n-queens configuration is a placement of n mutually
nonattacking queens on the n X n reflecting chessboard. Figure | provides an illustration of the reflecting
chessboard. The figure on the left illustrates the 3rd reflecting diagonal (in cyan) and the 8th reflecting
diagonal (in pink) on the reflecting 8 x 8 chessboard. The figure on the right shows two queens that
do not attack each other on a classical 8 X 8 chessboard but attack each other on the reflecting 8 x 8
chessboard via the 4th reflecting diagonal. See also Definition 1.1.

In this paper, we prove that reflecting n-queens configurations exist for all sufficiently large n.
This question was first proposed by Klarner [7] in 1967 as an alternative interpretation of a number
theory problem of Slater [17], which we introduce in detail in the following section. The problem also
appears in the book of Guy [4] on unsolved problems in number theory and the survey of Bell and
Stevens [1].
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1.1. A related number theory problem

For n € N, we let [n] = {1,...,n}. In 1962, Shen and Shen [15] proposed the following research
question: for which n > 3 is it possible to divide the elements in the set [2n] into pairs (a;, b;), such
that for all i € [n], the 2n sums and differences b; + a; are distinct. This problem was solved by Huff
[5] using a number theoretic approach. In 1963, Slater [17] proposed a more restricted version of this
problem, which states: for which values of n is it possible to form pairs (1, ay), (2,a2),...,(n,ay),
where {ay,...,a,} ={n+1,n+2,...,2n}, such that for all i € [n], the 2n sums and differences a; + i
are all distinct. Slater noted that there is no solution to the problem when n = 2, 3, and 6, and conjectured
that solutions exist for all other n. Klarner [7] extended this line of inquiry by proposing the question on
the existence of reflecting n-queens configurations. Klarner showed that Slater’s problem has a solution
for a given n if and only if there exists a reflecting n-queens configuration. To see the equivalence,
consider an n X n reflecting chessboard with rows labeled from top to bottom starting at the row below
the reflecting strip as 1,2,...,n, and columns labeled from left to right as n + 1,n +2,...,2n. Two
queens placed on row i column j and on row i’ column j’ attack each other if they are:

o in the same row, i.e.,i =i’

in the same column, i.e., j = j',

on the same “plus-diagonal”, i.e., i+ j =i’ + j’,

on the same “minus-diagonal”, i.e.,i — j =i’ — j’, or

on the same reflecting diagonal and not on the same “plus-diagonal” or “minus-diagonal”, i.e.,
i+j=j —i'orj—i=i"+J.

O O O O

A solution to Slater’s version of the problem avoids all these constraints, thus yielding a reflecting
n-queens configuration, and vice versa. Therefore, there is a one-to-one correspondence between the
solutions to Slater’s problem for n and reflecting n-queens configurations.

In [7], Klarner showed that reflecting n-queens configurations exist for n = 4,5,7, and 8. Subse-
quently, in [14], Sebastian extended this result forn =9, ..., 27. Our goal is to establish the existence of
reflecting n-queens configurations for all sufficiently large n. Before presenting the proof, we formulate
the problem mathematically and introduce some necessary definitions.

1.2. Algebraic formulation

We formulate the n X n chessboard as [n] X [n]. We label the rows from top to bottom with 1,2, ...,n,
and the columns from left to right with 1,2,...,n. In the following definition, we define necessary
terminologies regarding the chessboard mathematically.

Definition 1.1. Consider a chessboard [n] X [n].

o Fori € [n], define rowitobe R; = {(i,j) : j € [n]}. Let R = {R; : i € [n]} denote the set of rows.

o For j € [n], define column jtobe C; = {(i, ) : i € [n]}. Let C = {C; : j € [n]} denote the set of
columns.

o For k € {-n,...,0,...,n}, define the kth plus-diagonal to be D = {(i,j) € [n] X [n] : i+
J = (n+1) = k}, and the kth minus-diagonal to be D, = {(i,j) € [n] X [n] : i —j = k}. Let
D={D}:ke{-(n-1),...,0,...,n=1}}U{D; : ke {~(n—1),...,0,...,n— 1}} denote the
set of nonempty diagonals.

o A reflecting diagonal is defined as RD, = DZC_(”H) U DZ, for £ € [n]. A nonreflecting diagonal is
a diagonal in D that is not part of a reflecting diagonal. The set of reflecting diagonals is denoted
by RD = {RD; : € [n]}, and the set of nonreflecting diagonals is denoted by N'D = {D} : k €
{0,...,n=1}}U{D, : k€{0,...,n—1}}.

o A line is defined to be an element in the set L =R UC U RD UND.

Although each of these definitions technically depends on n, there will be no ambiguity.
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Note that RD¢ is the union of the two diagonals (one of which may be empty) whose extensions
intersect the reflecting strip at the ¢th slot.

Recall that a reflecting n-queens configuration is a placement of n queens on an n X n reflecting
chessboard such that no two queens are contained in the same line. We prove the existence of reflecting
n-queens configurations for all large enough n, thereby resolving both Slater’s and Klarner’s questions
for all but finitely many #.

Theorem 1.2. A reflecting n-queens configuration exists for all sufficiently large n.

In Section 2, we discuss the connection between the reflecting n-queens problem and the rainbow
matching problem, highlighting how insights from the rainbow matching problem can help us with the
understanding of the reflecting n-queens problem. Section 3 provides the necessary tools for proving
the main theorem and presents the proof of the main theorem.

Note that our proof will only work when 7 is sufficiently large. It remains open to show that reflecting
n-queens configurations exist for all n. Moreover, we could ask the question about how many possible
reflecting n-queens configurations there are for any integer n. Further variations of the n-queens problem
can be found in the survey on the n-queens problems by Bell and Stevens [1].

2. The rainbow matching lemma

The proof of our main theorem is inspired by the work of Glock, Munhd Correia, and Sudakov [3] on
the n-queens completion problem, which asks under which condition a given partial configuration can
be extended to an n-queens configuration. To answer this question, Glock, Munhé Correia, and Sudakov
presented the “rainbow matching lemma” which allowed them to find perfect rainbow matchings in
certain graphs. A rainbow matching in an edge-colored graph is a matching in which all edges have
distinct colors, and a perfect matching in a graph is a matching that saturates every vertex. We apply a
generalized version of the “rainbow matching lemma” to prove our main theorem. Historical results and
recent developments on rainbow matching problems are discussed in [3].

We can translate the problem of the existence of a reflecting n-queens configuration into a rainbow
matching problem. Given an n X n reflecting chessboard, we construct a complete bipartite graph K, ,
with one part R = |J}_, {R;} representing the n rows of the chessboard and the other part C = (JI, {C;}
representing the n columns. Anedge {R;, C;} corresponds to square (i, j) on the chessboard. A matching
in the graph corresponds to a placement of queens in the reflecting chessboard such that no two queens
are in the same row or column. We view the diagonals as colors and assign to each edge {R;, C;} two
colors corresponding to the two diagonals containing square (i, j), as follows:

o If0<i+j—(n+1) < n,assign D}, to {R;, C;}. Otherwise, assign RD;; to {R;,C,}.

i+j—(n+l1

o If0<i—-j<n,assign Dl.:j to {R;, é'J(} O)therwise, assign RD_; to {R;, C;}.

A reflecting n-queens configuration corresponds to a perfect rainbow matching, a matching that saturates
all the vertices in the graph and in which the color sets of the edges in the matching are pairwise disjoint.
Similarly, the number theory problem proposed by Shen and Shen [15] discussed in Section 1.1 can
be formulated as determining whether a particular coloring of K>, has a perfect rainbow matching. To
understand the existence of a perfect rainbow matching in our situation, we need the generalized version
of the rainbow matching lemma in [3]. Before stating the generalized rainbow matching lemma, we
need the following definitions.

Definition 2.1. Let G be a graph. A t-fold edge-coloring of G is an assignment of sets of ¢ colors to
the edges of G. This coloring is called b-bounded if, for every vertex v, each color appears in at most
b edges incident to v, and any pair of colors appears on at most b edges together. In particular, a ¢-fold
coloring is proper if the edges at each vertex have pairwise disjoint color sets, and is linear if for every
pair of colors, there is at most one edge that contains both colors. A subgraph H of G is rainbow if for
any pair of edges of H, their color sets are disjoint. The degree of a color is the number of edges whose
color set contains that color.
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In the original version of the “rainbow matching lemma”, Glock, Munhd Correia, and Sudakov
[3, Lemma 2.2] considered proper and linear ¢-fold coloring of graphs. They remarked that the proper
and linear conditions can be weakened to the t-fold coloring being b-bounded. This leads us to the
following generalized version of the rainbow matching lemma.

Lemma 2.2 (Glock, Munhé Correia, and Sudakov [3]). For all « > 0 and b,t € N, there exists € > 0
such that the following holds for all sufficiently large n. Let G be a bipartite graph with parts A, B of
size n with a b-bounded t-fold edge-coloring. If there exists some d such that

1. every vertex has degree (1 £ £)d,
2. every color has degree at most (1 — a)d, and
3. there are at least an’* edges between any two sets A’ C A and B’ C B of size at least (1 — a)d,

then G has a perfect rainbow matching.

Recall that our goal is to find perfect rainbow matchings in complete bipartite graphs. The lemma tells
us that if we have a bipartite graph such that all the vertices have roughly the same degrees, the degree
of each color is a bit smaller than that of the vertices, and there are many edges between any sufficiently
large sets of vertices, then we can find a perfect rainbow matching. Note that the first and the third
conditions are trivially satisfied by the complete bipartite graph K,, ,. However, the reflecting queens
coloring does not satisfy the second condition as the main diagonals D§ and D have size n, and thus
the two corresponding colors have degree n. The reflecting diagonals also have size n — 1. Nevertheless,
on average, the colors have degree 3n/4. Thus, our goal is to find a subgraph G of K}, ,, such that the
degree of each color is significantly smaller than that of the vertices. Now, to prove the existence of an
n-queens configuration, it suffices to show that the subgraph G has a perfect rainbow matching. We will
find such a subgraph G in the following section and complete the proof of the main theorem.

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. As mentioned in the previous section, our goal is to find a subgraph
of K,,., with a 2-fold edge-coloring, where edges represent the squares on the reflecting chessboard and
the colors of the edges represent the diagonals in which the corresponding square is contained, to which
we can apply Lemma 2.2. In particular, we want to find a subgraph such that the degree of the colors
is significantly smaller than the degree of the vertices. Equivalently, we want to find a subset S of the
reflecting chessboard such that the diagonals contain significantly fewer squares than the rows and the
columns. We prove the existence of such a subset S in the following lemma.

Lemma 3.1. For all sufficiently large n, there exists a subset S C [n] X [n] such that

1. each row and column has (1 £ n="*)5n/6 squares in S,
2. each reflecting and nonreflecting diagonal has at most 119n/144 squares in S, and
3. for every A, B C [n] satisfying |A|,|B| > 119n/144, we have |S 0 (A X B)| > n*/120.

To prove Lemma 3.1, we first define a weight function w on [n] X [r] such that the sum of the weight
of each line lies within a particular range, as detailed in Lemma 3.2. Using this weight function, we
construct the desired subset S of [n] X [n] by including every square (i, j) € [n] X [n] independently
with probability w((i, j)). The expected degree of each line corresponds to its total weight under w, and
with high probability, the actual degree will be close to its expectation. We can then apply concentration
inequalities and the union bound to show the desired properties.

Lemma 3.2. For all n € N, there exists a weighting w : [n] X [n] — [17/24, 1] such that

1. the sum of the weights in each row and each column is 5n/6 £ 10/3,
2. the sum of the weights in each nonreflecting diagonal is less than 59n/72, and
3. the sum of the weights in each reflecting diagonal is less than 59n/72.
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Figure 2. Illustration of the weight function in Lemma 3.2.

Proof. Consider the function w : [n] X [n] — [17/24, 1] with

43/48 ifi/(n+1)€[0,1/3),j/(n+1) € [0,1/3) U (2/3,1]
17/24 ifi/(n+1) € [0,1/3),j/(n+1) € [1/3,2/3]

41/48 ifi/(n+1) € [1/3,2/3],j/(n+1) € [0,1/3) U (2/3,1]
19/24 ifi/(n+1) € [1/3,2/3],j/(n+1) € [1/3,2/3]

3/4 ifi/(n+1) e (2/3,1],j/(n+1) € [0,1/3) U (2/3,1]

1 otherwise.

w((i, ) =

For a line L € L, define its weight w(L) to be the sum of the weights of all squares in L. The weight
function divides the [n] X [n] grid into 9 boxes. We label them 1,...,9 from left to right and top to
bottom. In Figure 2, the diagram on the left shows the labeling of the boxes, and the diagram on the
right gives the weight of the squares in each box.

Let r be the remainder of n mod 3. Note that boxes 1, 3,7,9 each have (n — r)/3 rows and columns,
boxes 4 and 6 each have (n + 2r)/3 rows and (n — r)/3 columns, boxes 2 and 8 each have (n —r)/3
rows and (n + 2r) /3 columns, and box 5 has (n + 2r) /3 rows and columns.

First, to see (1), observe that 2(43/48) + 17/24 = 2(41/48) + 19/24 = 2(3/4) + 1 = 5/2. Since each
box has (n +4)/3 rows, each row has weight (5/2)(n+4)/3 = 5n/6 £ 10/3, as desired. Similarly, since
43/48+41/48+3/4 = 17/24+19/24+1 = 5/2, each column has weight (5/2)(n+4)/3 = 5n/6£10/3,

as desired.
Next, we prove (2) by considering the weight of the nonreflecting diagonals. Since the weight
function is symmetric, it suffices to consider the nonempty plus diagonals Dy for k € {0, 1,...,n—1}

as w(Dy) = w(Dy) for all k € {0,1,...,n — 1}. We claim that the weight of each plus-diagonal is
dominated by the weight of Dj. Indeed, for each k € [n], the diagonal D; has one fewer square than
D7 _,. Moreover, the number of squares of D} and of D} _, in each box differs by at most 1. Since the
weight of each square is between 17/24 and 1, we have w(D7}) < w(D7_,) +2-3(17/24) < w(D7_)).
Hence, D has the largest weight of the plus-diagonals, as claimed. Note that on D, there are (n—r)/3,
(n+2r)/3,and (n — r)/3 squares in boxes 1, 5, and 9, respectively, so

43(%) 19(L2r) 3(n—r)_13 1 59

D) =— = 2 _—r<2p,
w(Dyg) 13 +24 3 3 n r<-—n

T2 BT TR

Therefore, the weight of each nonreflecting diagonal is less than 59n/72, as desired.
Finally, we prove (3) by showing w(RD¢) < 59n/72 for every € € [n]. We consider three cases.
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Casel: { < (n—r)/30rf>(2n+r)/3+1.

By the symmetry of the weight function, it suffices to prove the case where £ < (n —r)/3. We claim
that the maximum weight is achieved when ¢ = (n — r)/3. Observe that when ¢ < (n — r)/3, there are
(n=r)/3-1,¢,(n+2r)/3—=1¢,¢, and (n — r)/3 — € squares of the reflecting diagonal RD, in boxes
1,2,5,6,and 9, respectively. Comparing the two reflecting diagonals RD; and RD¢. for € < (n—r)/3,
we see that RD 41 has one more square in each of boxes 2 and 6, and one fewer square in each of boxes
5 and 9. Thus,

w(RD¢+1) —w(RD¢) = T i iaTE

Hence, when ¢ < (n — r)/3, the weight of RD, increases as ¢ increases, and thus is bounded by

+or+—
4" 48

43 (n-r 17/n—-r 3 41 n—ry 59 5 43 59
w(RD ) = 35 (57 1)+ 55 (757) (57) =53 <
Therefore, the weight of the reflecting diagonal RDy is less than 59n/72 when £ < (n—r)/3, as desired.
Since the weight function is symmetric, we have w(RD;) = w(RD,—¢) for all £ € [n]. Hence, for
€ > (2n+r)/3 + 1, the weight of the reflecting diagonal RDy is also less than 5971 /72.

Case2:r =2andeither{ = (n—r)/3+1orf=2n+r)/3.

Forr =2 and ¢ = (n —2)/3 + 1, there is one square of the reflecting diagonal RD, in box 5, and
(n —2)/3 squares in boxes 1, 2, and 6, respectively. Hence, we have

w(RD o (B T M2y B9 ol 9
n=2/3+1) =148 " 24 7 48\ 73 2% - 7" TS n"

By the symmetry of the weight function, we also have w(RD (242)/3) = W(RD (n-2)/341) < 59n/72.
Case3:r=2and (n—-r)/3+1 <t <(2n+r)/3orre{0,1}and (n—r)/3+1 <€ < (2n+r)/3.
In this case, there are (2n —2r)/3 —-¢+ 1, (n+2r)/3-1,{ - (n+2r)/3,{—(n—-r)/3 -1, and

(2n+r) /3 —¢€ squares of the reflecting diagonal RD, in boxes 1, 2, 3,4, and 6, respectively. Hence, there

are (n — 4r)/3 + 1 squares with weight 43/48, and (n + 2r)/3 — 1 squares each with weight 17/24 and

with weight 41/48. Thus, the weight w(RD/) for the values of ¢ considered in this case is independent
of £. Thus, in this case, we have

43 (n—4r 17 41\(n+2r 59 11 2 59
——+ 1|+ -1l|l==n-—=r—-=-<—n.
( ) ( )( ) 72772372

RD,) = = ki
W(RDo) = 7513 24" a8\ 73

Therefore, the weight of each reflecting diagonal is less than 591/72, thereby proving (3).
We have thus found a weight function w that satisfies all the desired conditions. O

We will use the following standard Chernoff-type bound (see [6, Corollary 2.3]) in the proof of
Lemma 3.1.

Lemma 3.3 (Chernoff Bound). If X is the sum of mutually independent Bernoulli random variables
with u := E[X], then for all § € [0, 1], we have

P[|X — u| = 6u] < e~ 9Hl3,
We are now equipped with the necessary tools to prove Lemma 3.1.
Proof of Lemma 3. 1. First, consider choosing S C [n] X [r] randomly by including every square (i, j)
independently with probability w((i, j)), where w : [n] X [n] — [17,24,1] is the weighting from

Lemma 3.2. Note that every line L € L satisfies E[|L N S|] = w(L) and |L N S| is the sum of n mutually
independent Bernoulli random variables.
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Let L € RUC. By Lemma 3.2(1), we know that E[|L N S|] = 51n/6 + 10/3. Applying Lemma 3.3
with n~!/3 playing the role of & and |L N S| playing the role of X, we have

5
PlILNS|=(1+ n_1/4)€n

5nl/3 0.01
21—2€xp(— ! )21—

19 2n

Hence, by a union bound over the n rows and n columns of the chessboard, we see that in S, each row
and each column contains (1 = n~'/4)5n/6 squares with probability at least 0.99.

Now, let L € ND U RD. By Lemma 3.2(2) and (3), we know that E[|L N S|] < 59nr/72, and
moreover, by considering increasing the weights, |LNS] is stochastically dominated by a random variable
Xy which is the sum of n mutually independent Bernoulli random variables with E[X;] = 59n/72.
Applying Lemma 3.3 with 59n/72 playing the role of u, 1/118 playing the role of §, and X playing
the role of X, we have

n

]P) -
144

L——=—|>

i n )21_0.01

> 1 - 2exp(-——m— =
]— e"p( 50976 3n

iLns) <25 pllx, - 20
144

By a union bound over the 7 reflecting diagonals and the 2n nonreflecting diagonals of the chessboard,
we see that with probability at least 0.99, each reflecting diagonal and each nonreflecting diagonal in S
contains at most 119n/144 squares.

Now, let A, B C [n] be subsets of size at least 1191/144. Then |A x B| > (119n/144)2. Since each
square of [n] X [n] is included in S independently with probability at least 17/24, we have

1197\%( 17 N 2912
144 ) \24 60

E[ISN (A X B)|]] = (
Applying Lemma 3.3 with 57/58 playing the role of § and |S N (A X B)| playing the role of X, we have

I’l2
> —| > —
P|ISN (A X B)| > 120} > 1 2exp(

n? 0.01
-——|>1- .
7 4n

By a union bound over at most 4" choices of A, B C [n], we conclude that |S N (A x B)| > n?/120 with
probability at least 0.99. Therefore, with positive probability, there exists a subset S of [n] X [n] that
satisfies all three properties. O

Now we can finish the proof of our main theorem.

Proof of Theorem 1.2. Letn be sufficiently large, and consider an nxn reflecting chessboard represented
by [n] X [r]. By Lemma 3.1, there exists a subset S of [n] X [n] such that each row and each
column contains (1 + n~'/*)5n/6 squares, each nonreflecting diagonal and each reflecting diagonal
contains at most 119n/144 squares, and for every A, B C [n] satisfying |A|, |B| > 199n/144, we have
IS N (A x B)| > n?/120.

Consider the bipartite graph G with one part R = J!';{R;} corresponding to the n rows of the
reflecting chessboard and the other part C = [JI_,{C;} corresponding to the n columns. For each
square (i, j) € S, include {R;, C;} in the edge set of G. Assign to each edge {R;,C;} in G two colors
corresponding to the diagonals containing (i, j) as follows.

o If0<i+j—(n+1) < n,assign DY, to {R;, C;}. Otherwise, assign RD;; to {R;,C,}.

i+j—(n+1)

o If0<i—-j<n,assign Dl.:j to {R;, C;}. Otherwise, assign RD ;_; to {R;, C;}.

Observe that this coloring is 2-bounded, as any two lines of the reflecting chessboard intersect in at most
two squares.

We can now apply Lemma 2.2 to G with @ = 1/120,f = 2,b = 2, and d = 5n/6 to find a perfect
rainbow matching in G. Observe that
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1. every vertex has degree (1 +n~'/*)5n/6,

2. every color has degree at most (1 — 1/120)51/6, and

3. there are at least n%/120 edges between any two sets R’ € R and C’ C C of size at least (1 —
1/120)5n/6.

By Lemma 2.2, the graph G has a perfect rainbow matching. Therefore, the corresponding subset S of
[n] X [n] contains a reflecting n-queens configuration, as desired. o
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