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Doubled Khovanov Homology

William Rushworth

Abstract. We deûne a homology theory of virtual links built out of the direct sum of the standard
Khovanov complex with itself, motivating the name doubled Khovanov homology. We demonstrate
that it can be used to show that some virtual links are non-classical, and that it yields a condition
on a virtual knot being the connect sum of two unknots. Further, we show that doubled Khovanov
homology possesses a perturbation analogous to that deûned by Lee in the classical case, and we
deûne a doubled Rasmussen invariant. _is invariant is used to obtain various cobordism obstruc-
tions; in particular, it is an obstruction to sliceness. Finally, we show that the doubled Rasmussen
invariant contains the odd writhe of a virtual knot and use this to show that knots with non-zero
odd writhe are not slice.

1 Introduction

1.1 Statement of Results

_is paper deûnes and investigates the properties of a homology theory of virtual
links, the titular doubled Khovanov homology. For a virtual link L we denote by
DKh(L) its doubled Khovanov homology, a bigraded ûnitely generated Abelian
group. Below are two examples of the doubled Khovanov homologies of links, split
horizontally by the ûrst (homological) grading and vertically by second (quantum)
grading; for more detail, see Figures 6 and 7. _e position of = indicates 0 in the
quantum grading, and the right-hand column of the ûrst pair of grids is at homolog-
ical degree 0:

DKh ( ) =

Z
Z
Z
Z

Z

Z2

Z

Z

Z2

Z
Z

Z
= vKh ( )
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DKh ( ) =

Z

Z2

Z

Z

Z
Z

Z = vKh ( )

Also depicted is the homology of virtual links, denoted by vKh, ûrst deûned byMan-
turov [15] and reformulated by Dye, Kaestner, and Kauòman [5]. One observes that,
while the groups assigned to the links by each theory are not disjoint, they diòer sub-
stantially. Speciûcally, we see that vKh ( ) and vKh ( ) both contain a Z⊕2 term
for each component of the argument, and that vKh ( ) also contains the knight’s
move familiar from classical Khovanov homology [1]. In contrast, DKh ( ) contains
a knight’s move and a Z⊕4 term, whereas DKh ( ) contains only a single knight’s
move.
Doubled Khovanov homology can sometimes detect non-classicality of a virtual

link.

Corollary 2.6 Let L be a virtual link. If

DKh(L) /= G ⊕G{−1}

for G a non-trivial bigraded Abelian group, then L is non-classical.

_e graded Euler characteristic of the theory contains no new information.

Proposition 2.4 Let L be a virtual link. Denote by χq(DKh(L)) the graded Euler
characteristic of DKh(L) with respect to the quantum grading. _en χq(DKh(L)) =
(1 + q−1)VL(q), where VL(q) is the Jones polynomial of L.

_e connect sum operation on virtual knots exhibits more complicated behaviour
than that of the classical case: the result of a connect sum between two virtual knots
depends on both the diagrams used and the site at which the connect sum is con-
ducted. Indeed, there are multiple inequivalent virtual knots that can be obtained as
connect sums of a ûxed pair of virtual knots. A surprising consequence of this that
there are non-trivial virtual knots that can be obtained as a connect sum of a pair of
unknots. Doubled Khovanov homology yields a condition met by such knots.

_eorem 5.12 Let K be a virtual knot that is a connect sum of two trivial knots. _en
DKh(K) = DKh ( ).

Further, there is a perturbation of doubled Khovanov homology akin to Lee’s per-
turbation of Khovanov homology; we denote it by DKh′(L) and refer to it as doubled
Lee homology. Unlike the classical case, however, doubled Lee homology vanishes for
certain links. We show this in two steps. First, we prove that the rank of doubled Lee
homology behaves analogously to that of classical Lee homology.
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_eorem 3.5 Given a virtual link L

rank (DKh′(L)) = 2∣ {alternately coloured smoothings of L}∣ .

Second, in_eorem3.12, we determine the number of alternately coloured smooth-
ings of a virtual link. In abbreviated form,_eorem 3.12 states that a virtual link L has
either 2∣L∣ or 0 alternately coloured smoothings, and that one can determine which
case holds via a simple check on a (Gauss diagram of a) diagram of L. _is explains
why DKh ( ) is a single knight’s move: a knight’s move cancels when we pass to
doubled Lee homology and has no alternately coloured smoothings.

Kauòman related alternately coloured smoothings of virtual link diagrams to per-
fect matchings of 3-valent graphs [8], and, using that correspondence, we can show
that doubled Lee homology yields an equivalent to the Four Colour _eorem. Specif-
ically, Kauòman showed ûrst that the following statement is equivalent to the Four
Colour _eorem.

Let G be a planar, bridgeless, 3-valent graph. _en G has an even perfect
matching.

Let E be a perfect matching ofG. Associated with the pair (G ,E) is a family of virtual
link diagrams. Denote a member of this family by D(G ,E). Kauòman next showed
that the following is also equivalent to the Four Colour _eorem.

Let G be a planar, bridgeless, 3-valent graph. _en every D(G ,E) has an alter-
nately coloured smoothing.

Combining this with _eorem 3.5, we obtain the following equivalent to the Four
Colour _eorem.

_eorem Let G be a planar, bridgeless, 3-valent graph and let E be a perfect matching
of G. _en there exists a perfect matching E such that DKh′(D(G ,E)) /= 0 for all
D(G ,E).

Doubled Lee homology cannot vanish for virtual knots, however; we show that
a virtual knot has exactly 2 alternately coloured smoothings, so that its homology
is of rank 4. In Section 4 we show that the information contained in DKh′(K) is
equivalent to a pair of integers, denoted s(K) = (s1(K), s2(K)), and referred to as
the doubled Rasmussen invariant; s1(K) contains information regarding the quantum
grading, s2(K) the homological grading. Using s(K)we are able to give the following
obstructions to the existence of various kinds of cobordisms.

_eorem 5.3 Let K1 and K2 be a pair of virtual knots with s2(K1) = s2(K2), and let
S be a certain type of cobordism from between them such that every link appearing in S
has a generator in homological degree s2(K). _en

∣s1(K1) − s1(K2)∣
2

≤ g(S).

_eorem 5.6 Let L be a virtual link having ∣L∣ components. Further, let S be a con-
nected genus 0 cobordism between L and a virtual knot K such that DKh′s2(K)(L) /= 0.
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Let M(L) be the maximum non-trivial quantum degree of elements x ∈ DKh′(L) such
that ϕS(x) /= 0. _en M(L) ≤ s1(K) + ∣L∣.

Both components of the doubled Rasmussen invariant are concordance invariants
and obstructions to sliceness; in Subsections 3.2 and 5.1 we use the functorial nature of
doubled Lee homology to show this. In addition, the homological degree information
contained in the invariant is equivalent to the odd writhe, so that we are able to show
that this well known invariant is also an obstruction to sliceness.

Proposition 4.11 Let K be a virtual knot. _en s2(K) = J(K), where J(K) is the odd
writhe of K.

_eorem 5.8 Let K be a virtual knot and J(K) its odd writhe. If J(K) /= 0, then K is
not slice.

_eorem 5.4 Let K and K′ be virtual knots such that s2(K) = s2(K′). If s1(K) /=
s1(K′), then K and K′ are not concordant.

Finally, using the above results, we show that there exist virtual knots that are not
concordant to any classical knots.

Corollary 5.10 Let K be a virtual knot. If J(K) /= 0, then K is not concordant to a
classical knot.

_ere is a virtual Rasmussen invariant (distinct from the doubled Rasmussen in-
variant) due to Dye, Kaestner, and Kauòman (as mentioned in Subsection 1.2). _e
virtual Rasmussen invariant is unable to obstruct the existence of a concordance be-
tween a virtual knot and classical knot. Further, there exist virtual knots that are
undetected by the virtual Rasmussen invariant and the odd writhe, but are detected
by the doubled Rasmussen invariant, including 6.8909, 6.9825, 6.28566, 6.37329, and
6.58375. (_e labelling of virtual knots is that of Green’s table [6], and the computa-
tions of the doubled and virtual Rasmussen invariants are given in [20].)

1.2 Extending Khovanov Homology

_e ûrst successful extension of Khovanov homology to virtual links was produced
by Manturov [15], as mentioned above. His work was reformulated by Dye, Kaestner,
and Kauòman in order to deûne a virtual Rasmussen invariant [5]. Tubbenhauer has
also developed a virtual Khovanov homology using non-orientable cobordisms [23].
Doubled Khovanov homology is as an alternative extension of Khovanov homology
to virtual links.
Any extension of Khovanov homology to virtual links must deal with the funda-

mental problem presented by the single cycle smoothing, also known as the one-to-one
bifurcation. _is is depicted in Figure 1; altering the resolution of a crossing no longer
either splits one cycle or merges two cycles, but can in fact take one cycle to one cy-
cle. _e realisation of this as a cobordism between smoothings is a once-punctured
Möbius band. How does one associate an algebraic map, η, with this? Looking at the
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η

Figure 1: _e single-cycle smoothing.

quantum grading (where the module associated with one cycle is A = ⟨v+ , v−⟩) we
notice that

0
v+
0
v−

v+
0
v−
0

η

from which we observe that the map η∶A → A must be the zero map if it is to be
grading-preserving (we have arranged the generators vertically by quantum grading).
_is is the approach taken by Manturov and subsequently Dye et al.
Another way to solve this problem is to “double up” the complex associated with a

link diagram in order to plug the gaps in the quantum grading, so that the ηmap can
be non-zero. _e notion of “doubling up” will be made precise in Section 2, but for
now let us look at the example of the single cycle smoothing: if we take the direct sum
of the standard Khovanov chain complex with itself, but shi�ed in quantum grading
by −1, we obtain η∶A⊕A{−1} → A⊕A{−1}; that is,

0
vu
+

vl
+

vu
−

vl
−

vu
+

vl
+

vu
−

vl
−

0,

η

whereA = ⟨vu
+
, vu
−
⟩ andA{−1} = ⟨vl

+
, vl
−
⟩ (u for “upper” and l for “lower”) are graded

modules, and for W a graded moduleWl−k =W{k}l . _us, the map associated with
the single cycle smoothing can now be non-zero while still degree-preserving. We
take this approach in the sequel.

1.3 Plan of the Paper

In Section 2 we deûne the doubled Khovanov homology theory and describe some of
its properties. We ûnd the doubled Khovanov homology of classical links, and illus-
trate amethod to produce an inûnite number of non-trivial virtual knotswith doubled
Khovanov homology of the unknot. In Section 3 we deûne a perturbation analogous
to Lee homology of classical links and show that, as in the classical case, the rank of
this perturbed theory can be computed in terms of alternately coloured smoothings.
We then investigate the functorial nature of the perturbed theory. Section 4 contains
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m

m

η

−η

Figure 2: _e cube of smoothings associated with the virtual knot diagram depicted on the le�
of the ûgure.

the deûnition of the doubled Rasmussen invariant and a description of its properties.
Finally, in Section 5 the invariants are put to use, yielding topological applications.

We assume familiarity with classical Khovanov homology and the rudiments of
virtual knot theory.

2 Doubled Khovanov Homology

2.1 Definition

In the tradition of classical Khovanov homology and its descendants, doubled Kho-
vanov homology assigns to an oriented virtual link diagram a bigraded Abelian group
that is the homology of a chain complex; the result is an invariant of the link repre-
sented. In contrast to other virtual extensions of Khovanov homology, however, the
work of dealing with single cycle smoothing (see Figure 1) is done in the realm of
algebra, so that certain veriûcations require no new technology to complete (cf. the
order construction used in [5]).

Deûnition 2.1 (Doubled Khovanov complex) Let L be an oriented virtual link dia-
gramwith n+ positive classical crossings and n− negative classical crossings. Form the
cube of smoothings associated with L in the standard manner by resolving classical
crossings and leaving virtual crossings unchanged; see the example given in Figure 2.

Let A = R[X]/X2 = ⟨v− , v+⟩ (under the identiûcation X = v−, 1 = v+) where R
is either Q or Z. Form a chain complex by associating a module with a smoothing
consisting ofm cycles (that is,m copies of S1 immersed in the plane) in the following
way:

⊔
1≤i≤m

S1
i z→ (A⊗m) ⊕ (A⊗m){−1}.

We refer to the unshi�ed (resp. shi�ed) summand as the upper (resp. (lower)) sum-
mand and denote elements in the upper summand by a superscript u and those in the
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CDKh ( ) =
A⊗2

⊕
A⊗2{−1}

A

⊕
A{−1}
⊕
A

⊕
A{−1}

A

⊕
A{−1}

−2 −1 0

d−2 = ( m
m ) d−1 = (η,−η)

Figure 3: _e chain complex associated with the cube of smoothings depicted in Figure 2 (ho-
mological degree is denoted beneath the chain groups).

lower summand by a superscript l. We also suppress tensor products, concatenating
them into one subscript e.g.,

vu
−−+−

∶= (v− ⊗ v− ⊗ v+ ⊗ v−)u ∈ A⊗4 or vl
++

∶= (v+ ⊗ v+)l ∈ (A⊗2){−1}.

_e components of the diòerential are built in the standard way as matrices with
entries the maps ∆, m, and η, whose positions are read oò from the cube of smooth-
ings. _e ∆ and m maps are given by
(2.1)

m(vu/l
+
⊗ vu/l

+
) = vu/l

+
, ∆(vu/l

+
) = vu/l

+
⊗ vu/l

−
+ vu/l

−
⊗ vu/l

+
,

m(vu/l
+
⊗ vu/l

−
) = m(vu/l

−
⊗ vu/l

+
) = vu/l

−
, ∆(vu/l

−
) = vu/l

−
⊗ vu/l

−
,

m(vu/l
−
⊗ vu/l

−
) = 0,

(so that they do not map between the upper and lower summands). _e map associ-
ated with the single cycle smoothing as in Figure 1 is given by

(2.2)
η(vu

+
) = vl

+
η(vl

+
) = 2vu

−

η(vu
−
) = vl

−
η(vl

−
) = 0.

_e eòect of the ηmap on tensor products is to (possibly) alter the superscript of the
entire string and the subscript of the tensorand in question. For example, if the cycle
undergoing the single cycle smoothing corresponds to the second tensor factor, then

η(vu
−+−

) = vl
−+−

,

η(vl
++−

) = 2vu
+−−

.

Any assignment of signs to the maps within the cube of smoothings that yields anti-
commutative faces produces isomorphic chain complexes.

Let C i denote the direct sum of the modules assigned to the smoothings with ex-
actly (i) 1-resolutions. Deûne the chain spaces of the doubled Khovanov complex to
be

(2.3) CDKh i(L) = C i[−n−]{n+ − 2n−}
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(where [−n−] denotes a shi� in homological degree). An example of such a chain
complex is given in Figure 3.

Remark _emap given in (2.2) is not anR-modulemap, so that (A,m, ∆, η) is not
an extended Frobenius algebra in the sense of [24], and doubled Khovanov homol-
ogy seemingly cannot be interpreted as an unoriented topological ûeld theory. (Also,
doubled Lee homology, as deûned in Section 3, does not satisfy the multiplicativity
axiom of an unoriented topological ûeld theory.)

Proposition 2.2 Equipped with the diòerential given bymatrices of maps as described
in Deûnition 2.1, CDKh(L) is a chain complex.

Proof It is enough to verify the commutativity of the faces

η

∆

η

m

η

∆

∆

η

η

m

m

η ,

since the face

η

m

η

∆

cannot occur. We leave the algebra to the reader and note that, as in the classical case,
sprinkling signs appropriately yields a chain complex.

_eorem 2.3 Given an oriented virtual link diagram D, the chain homotopy equiv-
alence class of CDKh(D) is an invariant of the oriented link represented by D. _e
homology of CDKh(D), denoted DKh(D), is therefore also an invariant of the link
represented by D.

Proof We are required to construct chain homotopy equivalences for each of the
virtual Reidemeister moves. It is readily observed that if two diagrams D1 and D2 are
related by a ûnite sequence of the purely virtual moves and the mixed move (depicted
in Figure 4), then CDKh(D1) = CDKh(D2), as these moves do not alter the num-
ber of cycles in a smoothing or the incoming and outgoing maps. Concerning the
classical moves, we follow Bar-Natan [1], using [1, Lemma 3.7] and Gauss elimination
(speciûcally, [2, Lemma 3.2]). We leave the details to the reader.

_e homology of the complex given in Figure 3 is depicted in Figure 6.
Although themodule assigned to a smoothing in the construction of doubledKho-

vanov homology is not equal to that used in the theory due to Manturov, the Euler
characteristics of the two theories contain equivalent information.
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Figure 4: _e purely virtual Reidemeister moves and the mixed move (bottom right of the ûg-
ure).

Proposition 2.4 Let L be a virtual link. Denote by χq(DKh(L)) the graded Euler
characteristic of DKh(L) with respect to the quantum grading. _en χq(DKh(L)) =
(1 + q−1)VL(q), where VL(q) is the Jones polynomial of L.

Proof _e Jones polynomial of L is the graded Euler characteristic of vKh(L) [15].
_at is,

χq(vKh(L)) = VL(q).
As we are dealing with bounded, ûnitely generated chain complexes, the graded Euler
characteristics of DKh(L) and vKh(L) depend only on the chain complex used to
deûne them. _erefore, to prove the claim, we need only consider χq(CDKh(L)).
Noticing that CDKh(L) is simply a direct sum of two copies of the chain complex
whose homology is vKh(L), with one copy shi�ed in the quantum degree by −1, we
obtain

χq(CDKh(L)) = χq(vKh(L)) + q−1 χq(vKh(L)) = (1 + q−1)VL(q).

2.2 Detection of Non-classicality

We say that a virtual link is non-classical if all diagrams representing it have at least
one virtual crossing. Conversely, we say that a virtual link is classical if it has a diagram
with no virtual crossings. Doubled Khovanov homology can sometimes be used to
detect non-classicality.
Consider the complex associated with the classical diagram of the unknot given in

Figure 5; the reader notices immediately that not only do the chain spaces decompose
as direct sums, the entire complex does also (as there are no η maps). _at is,

(2.4) CDKh
⎛
⎝

⎞
⎠
= CKh

⎛
⎝

⎞
⎠
⊕ CKh

⎛
⎝

⎞
⎠
{−1},

where CKh(D) denotes the classical Khovanov complex of a diagram D. _is moti-
vates the following proposition.

Proposition 2.5 Let L be a virtual link. If L is classical then there exists a diagram of
L, denoted by D, which has no virtual crossings, then

DKh(L) = Kh(D) ⊕ Kh(D){−1},
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CDKh
⎛
⎝

⎞
⎠
=

A⊗2

⊕
A⊗2{−1}

A⊗3

⊕
A⊗3{−1}

⊕
A

⊕
A{−1}

A⊗2

⊕
A⊗2{−1}

−1 −0 1

d−2 = ( ∆
m ) d−1 = (m,−∆)

Figure 5: _e doubled Khovanov complex of a classical diagram.

DKh

⎛
⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟
⎠

=

−2 −1 0

−7

−6

−5
−4
−3

−2

−1

Z

Z

Z

Z

Z

Z2

Z

Figure 6: _e doubled Khovanov homology of the virtual knot 2.1.

where Kh(D) denotes the standard Khovanov homology of a classical link.

Proof _is is an obvious consequence of (2.4), which holds for all classical diagrams.

_e following corollary is the contrapositive statement to that of Proposition 2.5.

Corollary 2.6 Let L be a virtual link. If DKh(L) /= G ⊕ G{−1} for a non-trivial
bigraded Abelian group G, then L is non-classical.

As an example, consider the virtual knot 2.1 in Green’s table [6], depicted in Figure
6, along with its doubled Khovanov homology, split by homological grading (hori-
zontal axis) and quantum grading (vertical axis).
Another interesting example is given by the so-called virtual Hopf link, given in

Figure 7; we shall look into it further in Section 3.
_e statement in Corollary 2.6 cannot be upgraded to an equivalence, however. A

counterexample is given by the virtual knot 3.7 in Green’s table, depicted on the right
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DKh
⎛
⎜
⎝

⎞
⎟
⎠

=

i i + 1

j

j + 1

j + 2

j + 3

j + 4

Z

Z2

Z

Figure 7: _e doubled Khovanov homology of the virtual Hopf link (i and j depend on the
orientation of the components).

Figure 8: Obtaining virtual knot 3.7 from the unknot via �anking.

of Figure 8 (the non-classicality of 3.7 is demonstrated by its generalised Alexander
polynomial [10]). _e cube of smoothings associated with 3.7 does not contain any
η maps, and therefore DKh(3.7) = G ⊕ G{−1} for some non-trivial Abelian group
G. In fact, DKh(3.7) = Kh ( ) ⊕ Kh ( ) {−1} = DKh ( ). _is follows from the
fact that 3.7 can be obtained from a diagram of the unknot by applying the following
move on diagrams

Deûnition 2.7 Within an oriented virtual link diagramone canplace a virtual cross-
ing on either side of a classical crossing in the following manner

_is move is known as �anking.

Flanking is also known as virtualization, but as there is some confusion in the lit-
erature regarding that term, we avoid it.

Proposition 2.8 If a virtual link diagram D2 can be obtained from another, D1, by a
�anking move, then CDKh(D1) = CDKh(D2).
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T1

T2

0(T1) 1(T1)

0(T2) 1(T1)

Figure 9: Smoothings of the tangle diagrams related to the �anking move.

Proof Let D1 and D2 be as in the proposition. Consider the tangle diagrams pro-
duced by isolating a neighbourhood of the classical crossing undergoing the �anking
move in D1 and a neighbourhood of the result of the �anking move in D2. We con-
struct an identiûcation of the smoothings ofD1 with those ofD2 using the smoothings
of the tangle diagrams depicted in Figure 9: a smoothing of D1 must contain either
0(T1) or 1(T1), and we associate with it the smoothing of D2 formed by replacing
0(T1)with 0(T2), or 1(T1)with 1(T2). One readily sees that this identiûcation is a bi-
jection that does not change the number of cycles in a smoothing or how those cycles
are linked. _us, the chain spaces of CDKh(D1) and CDKh(D2) are equal, and so
are the components of the diòerential.

Corollary 2.9 _ere is an inûnite number of non-trivial virtual knots with doubled
Khovanov homology equal to that of the unknot.

Proof _ere is an inûnite number of non-trivial virtual knot diagrams with unit
Jones polynomial, produced via �anking [4,7,22]. Each of these knots must also have
the doubled Khovanov homology of the unknot.

3 Doubled Lee Homology

In Subsection 3.1 we deûne doubled Lee homology and prove some of its properties,
and in Subsection 3.2 we investigate aspects of the functorial nature of the theory.

3.1 Definition

_e reader may have noticed that there are generators of the homologies depicted in
Figures 6 and 7 that are 4 apart in quantum degree. Quantum degree separations of
length 4 are important in classical Khovanov homology; Lee’s perturbation of Kho-
vanov homology [14] is deûned by adding to the diòerential a component of degree
4. Such a perturbation of doubled Khovanov homology also exists.

Deûnition 3.1 (Doubled Lee homology) Let D be an oriented virtual link diagram
and let CDKh′(D) denote the chain complex with the chain spaces of CDKh(D) but
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with altered diòerential, andR = Q. _e components of this diòerential are as follows:

m′(vu/l
+
⊗ vu/l

+
) = vu/l

+
, ∆′(vu/l

+
) = vu/l

+
⊗ vu/l

−
+ vu/l

−
⊗ vu/l

+
,

m′(vu/l
+
⊗ vu/l

−
) = m′(vu/l

−
⊗ vu/l

+
) = vu/l

−
, ∆′(vu/l

−
) = vu/l

−
⊗ vu/l

−
+ vu/l

+
⊗ vu/l

+
,

m′(vu/l
−
⊗ vu/l

−
) = vu/l

+
,

and
η′(vu

+
) = vl

+
, η′(vl

+
) = 2vu

−
,

η′(vu
−
) = vl

−
, η′(vl

−
) = 2vu

+
.

_e above maps are no longer graded, but ûltered (as in the classical case). _at
CDKh′(D) is a chain complex is veriûed as in Proposition 2.2. Setting DKh′(D)
to be the homology of CDKh′(D), deûne the doubled Lee homology of L to be

DKh′(L) ∶= DKh′(D),

where L is the link represented by D.

_eorem 3.2 For a virtual link diagram D, DKh′(D) is an invariant of the link
represented by D.

As in the classical case, doubled Khovanov homology and doubled Lee homology
are related in the following manner.

_eorem 3.3 For any virtual link L there is a spectral sequence with E2 page DKh(L)
converging to DKh′(L).

_e rank of the classical Lee homology of a link depends only on the number of its
components. Precisely, for a classical link Lc ,

(3.1) rank (Kh′(Lc)) = 2∣Lc ∣ ,

where ∣Lc ∣ denotes the number of components of Lc and Kh′(Lc) its classical Lee
homology. In fact, (3.1) follows from the following two statements [3]:

rank (Kh′(Lc)) = ∣{alternately coloured smoothings of Lc}∣ ,(3.2)
{alternately coloured smoothings of Lc} = {orientations of Lc}(3.3)

given the following deûnition.

Deûnition 3.4 A smoothing of a virtual link diagram is alternately coloured if its
cycles are coloured exactly one of two colours in such a way that in a neighbourhood
of each classical crossing, the two incident arcs have diòerent colours. A smoothing
that can be coloured in such a way is known as alternately colourable.

(Any potential issue raised by the fact that Deûnition 3.4 regards diagrams, while (3.2)
and (3.3) are statements about links is resolved by_eorem 3.5, which shows that the
number of alternately coloured smoothings is a link invariant.)

In the virtual case we recover (3.2) (up to a scalar) but not (3.3).

https://doi.org/10.4153/CJM-2017-056-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-056-6


Doubled Khovanov Homology 1143

_eorem 3.5 Given a virtual link L,
rank (DKh′(L)) = 2∣ {alternately coloured smoothings of L}∣ .

We postpone stating the virtual generalisation of (3.3) until we have proved_eo-
rem 3.5, for which we require the following analogue of a classical result.

Lemma 3.6 Let D be a diagram of a virtual link L. _ere is an action of A on
CDKh′(D) that descends to an action on DKh′(L).

Proof Given a virtual link diagram D, deûne an action of A on CDKh′(D) in the
following manner: mark a point on D and maintain it across the smoothings of D.
_e action A × CDKh′(D) → CDKh′(D) is given by

s ⋅ ( (x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ xn)u + (x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ xn)l) =
(x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ s⋅x i ⊗ ⋅ ⋅ ⋅ ⊗ xn)u + (x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ s⋅x i ⊗ ⋅ ⋅ ⋅ ⊗ xn)l

where the i-th cycle is marked (component-wise multiplication ⋅∶A×A→ A is given
by m′). Clearly, this action endows CDKh′(D) with the structure of an A-module.
To show thatDKh′(D) is also anA-module, it suõces to show that the action deûned
above commutes with the diòerential. We verify this in the case of m′ and multipli-
cation by v−, with the marked point on the cycle corresponding to the ûrst tensor
factor.

m′

v− ⋅m′((v+ ⊗ v+)u/l) = v− ⋅ vu/l
+

= m′((v− ⊗ v+)u/l) = m′(((v− ⋅ v+) ⊗ v+)u/l) ,
v− ⋅m′((v+ ⊗ v−)u/l) = v− ⋅ vu/l

−
= m′((v− ⊗ v−)u/l) = m′(((v− ⋅ v+) ⊗ v−)u/l) ,

v− ⋅m′((v− ⊗ v+)u/l) = v− ⋅ vu/l
−

= m′((v− ⊗ v−)u/l) = m′(((v− ⋅ v−) ⊗ v+)u/l) ,
v− ⋅m′((v− ⊗ v−)u/l) = v− ⋅ vu/l

+
= m′((v− ⊗ vp)u/l) = m′(((v− ⋅ v−) ⊗ v−)u/l) ,

as required. _e other cases are le� to the reader.

Further, we deûne a new basis forA: the familiar “red” and “green” basis ûrst given
by Bar-Natan and Morrison.

Deûnition 3.7 Let {r, g} be the basis for A, where

“red” = r = v+ + v−
2

and “green” = g = v+ − v−
2

.

We denote the corresponding generators ofA⊕A{−1} as ru, rl, gu, and g l.

We denote which generator a cycle of a smoothing is labelled with by colouring
that cycle either red or green. _us, alternately coloured smoothings are such that
given any two cycles that share a crossing (i.e., they pass through the same crossing
neighbourhood), one is coloured red and the other green.
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We use the following deûnition in the remainder of this work.

Deûnition 3.8 Let D be an oriented virtual link diagram with n− negative classical
crossings, and let S be an alternately coloured smoothing in which m classical cross-
ings (positive or negative) resolved into their 1-resolution. Deûne the height ofS to
be ∣S ∣ ∶= m− n−. Of course, if su/l are the alternately coloured generators assigned to
S , then ∣S ∣ = i(su/l).

Proof of_eorem 3.5 Let D be a diagram of L and let S be an alternately coloured
smoothing of D, with cycles coloured either red or green, and let su be the algebraic
element given by
(3.4) su = ⊗

cycles of S

◻u
i ,

where

◻u
i =

⎧⎪⎪⎨⎪⎪⎩

ru , if the i-th cycle is coloured red,
gu , if the i-th cycle is coloured green,

and likewise deûne sl, so that with each alternately coloured smoothing we associate
two algebraic objects. We refer to such su/l’s as alternately coloured generators, a term
we justify with the following steps. Wewill show that such elements are homologically
non-trivial and distinct, and that they do indeed generate DKh′(L).
First, notice that alternately coloured smoothings have restricted incoming and

outgoing diòerentials: if a smoothing has an η′map either incoming or outgoing, then
it must have a crossing neighbourhood with only one cycle passing through it. Such a
crossing neighbourhood cannot satisfy the alternately coloured condition. Likewise,
if a smoothing has an incomingm′map or an outgoing ∆′map, itmust have a crossing
neighbourhood with only one cycle passing through. _us, an alternately coloured
smoothing has only incoming ∆′ maps and outgoing m′ maps, and homological non-
triviality of the associated su/l is equivalent to su/l ∈ ker(m′) and su/l ∉ im(∆′). With
respect to the {r, g} basis, we have

(3.5)
m′(r ⊗ r) = r, ∆′(r) = 2r ⊗ r,
m′(g ⊗ g) = g , ∆′(g) = −2g ⊗ g ,
m′(r ⊗ g) = m′(g ⊗ r) = 0,

so that clearly [su/l] /= 0 ∈ DKh′(L).
LetS1 andS2 be two alternately coloured smoothings of L and let su/l

1 , su/l
2 be their

associated alternately coloured generators. Notice that it is possible that S1 and S2
are alternately coloured smoothings associated with the same uncoloured smoothing
of L. We consider the following two cases:
(i) S1, S2 are not alternately coloured smoothings associated with the same un-

coloured smoothing of D;
(ii) they are.

(i) It is possible thatS1 andS2 are at diòerent heights (that is, they have a diòerent
number of 1-resolutions). _en [su/l

1 ] /= [su/l
2 ], as they are of diòering homological

gradings. If S1 and S2 are at the same height, i, say, we recall that CDKh′ i(L) is a
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direct sum of the modules associated with all smoothings of height i, so that su/l
1 −su/l

2
can be written

su/l
1 − su/l

2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
su/l
1
0
⋮
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
⋮
0
su/l
2
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
su/l
1
0
⋮
0

−su/l
2
0
⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

hence su/l
1 − su/l

2 ∉ im(∆′).
(ii) Mark a point on L such that the cycles of S1 and S2 on which the point lies

are opposite colours (such a point always exists as S1 /= S2), and deûne the action of
A as in Lemma 3.6. Notice that v− ⋅ r = r and v− ⋅ g = −g, so that

v− ⋅ su/l
1 = ±su/l

1 and v− ⋅ su/l
2 = ∓su/l

2 ,

as if the marked cycle is red in S1, then it is green in S2 and vice versa. As the action
descends to an action on DKh′(L), we see that [su/l

1 ] is an eigenvector of the action of
v− of eigenvalue ±1 and [su/l

2 ] is an eigenvector of eigenvalue ∓1, so that [su/l
1 ] /= [su/l

2 ].
At this point we have

rank (DKh′(L)) ≥ 2∣ {alternately coloured smoothings of L}∣ .

In order to tighten this to an equality, we shall again employ Gauss elimination along
with the observation that the diòerential restricted to elements corresponding to non-
alternately coloured smoothings is an isomorphism. In the case of the ∆′ andm′maps,
this is evident from (3.5). Regarding the η′ map, we have

(3.6)
η′(ru) = rl , η′(rl) = 2ru ,

η′(gu) = g l , η′(g l) = −2gu ,

so that η′ is an isomorphism (we are working over Q). _us, we Gauss eliminate
elements associated with non-alternately coloured smoothings of L and arrive at the
desired equality.

We now return to (3.3), in order to generalise it to the virtual case. It is clear that we
have some work to do, as the virtual Hopf link (as depicted in Figure 7), for example,
has no alternately coloured smoothings (one readily sees that the generators on the
right of Figure 7 will cancel in doubled Lee homology). Before describing the virtual
situation, we make some preliminary deûnitions.
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D S(D)

a

G(D)

b c a

ab
c c

b

Figure 10: _e shadow and Gauss diagram of a virtual link diagram.

Deûnition 3.9 Let D be a virtual link diagram. Denote by S(D) the diagram ob-
tained from D be removing the decoration at classical crossings; we refer to S(D) as
the shadow of D. Let a component of S(D) be an S1 embedded in such a way that at a
classical or virtual crossing we have exactly one of the following:
● All the incident arcs are contained in the component.
● _e arcs contained in the component are not adjacent.
● None of the arcs is contained in the component.

_us, components of S(D) are in bijection with those of D.

Deûnition 3.10 Let D be an n-component virtual link diagram and let S(D) be its
shadow. Denote by G(D) the Gauss diagram of D, formed in the following manner:
(i) Place n copies of S1 disjoint in the plane. A copy of S1 is known as a circle of

G(D).
(ii) Fix a bijection between the components of S(D) and the circles of G(D).
(iii) Arbitrarily pick a basepoint on each component of S(D) and on the correspond-

ing circle of G(D).
(iv) Pick a component of S(D) and progress from the basepoint around that compo-

nent (in either direction). When meeting a classical crossing, label it and mark
that label on the corresponding circle of G(D) (virtual crossings are ignored).
Continue until the basepoint is returned to.

(v) Repeat for all components of S(D); if a crossing is met that already has a label,
use it.

(vi) Add a chord linking the two incidences of each label. _ese chordsmay intersect
and have their endpoints on diòerent circles of G(D).

Gauss diagrams are more commonly deûned for diagrams, rather than shadows,
of links, but this deûnition contains all the information we require. An example of a
shadow and of a Gauss diagram can be found in Figure 10.

Deûnition 3.11 A circle within aGauss diagram is known as degenerate if it contains
an odd number of chord endpoints.
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_eorem 3.12 Given a diagram D of a virtual link L

∣ {alternately coloured smoothings of L}∣
= ∣{alternately coloured smoothings of D}∣

=
⎧⎪⎪⎨⎪⎪⎩

2∣L∣ if G(D) contains no degenerate circles,
0 otherwise.

Proof As stated above, the number of alternately coloured smoothings is a link in-
variant, so that we are free to use the Gauss diagram associated with any diagram
of L.
As observed by Kauòman [8] alternately coloured smoothings of a link diagram

are in bijection with particular colourings of the shadow of the diagram. Colouring
the arcs of the shadow either red or green1 such that at every classical crossing we have
the following (up to rotation):

Such a colouring is known as a proper colouring. Given a virtual link diagram D and
a proper colouring of S(D), one produces an alternately coloured smoothing of D by
resolving each classical crossing in the manner dictated by the proper colouring i.e.,
joining red to red and green to green. Two examples are given in Figure 11. It is easy to
see that this association deûnes a bijection between the set of proper colourings and
the set of alternately coloured smoothings.

Next, notice that a proper colouring of S(D) induces a colouring of the circles of
G(D): colour the connected components of the complement of the chord endpoints
in the manner dictated by the colouring of the shadow (so that when an endpoint is
passed the colour changes). AGauss diagramcoloured in such away is known as alter-
nately coloured. Examples are given in Figure 11. It is again easy to see that alternately
coloured Gauss diagrams are in bijection with proper colourings, so that we have a
bijection between alternately coloured smoothings of D and alternate colourings of
G(D).

In light of the above we see that we are required to verify that a Gauss diagram of
n circles has 2n alternate colourings if and only it has no degenerate circles.

Let G(D) contain a degenerate circle. On this circle the number of connected
components of the complement of the end points is odd, fromwhichwe deduce that it
cannot be alternately coloured (as the colourmust change when passing an endpoint).
_at there are 2n alternate colourings if there is no degenerate circle follows from the
observation that there are two possible conûgurations for each circle, and that given
an alternate colouring, �ipping the conûguration on one circle yields a new alternate
colouring.

1When reading a black and white copy, substitute darker grey for red and lighter grey for green.
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Figure 11: Alternately coloured smoothings (le�) and Gauss diagrams (right) associated with
proper colourings of a shadow (centre).

Corollary 3.13 Let K be a virtual knot. _en rank(DKh′(K)) = 4 and DKh′(K) is
supported in homological degree equal to the height of the alternately colourable smooth-
ing.

Proof Let D be a virtual knot diagram. _en G(D) satisûes the condition of _e-
orem 3.12, as it contains only one circle on which all chord endpoints must lie. Of
course, every chord has two endpoints, so that this circle must contain an even num-
ber of them. _e statement then follows from _eorem 3.5.

Classically, the alternately colourable smoothing of an oriented knot diagram is its
oriented smoothing. Classical Khovanov homology is rigged so that this smoothing
is at height 0, and subsequently classical Lee homology of a knot is supported in ho-
mological degree 0. _is is no longer the case with doubled Lee homology; virtual
knot 2.1 (given in Figure 6) provides an example of a knot for which the alternately
colourable smoothing is, in fact, the unoriented smoothing. Taking the connect sum
of 2.1 with any classical knot yields a virtual knot for which the alternately colourable
smoothing is neither the oriented nor the unoriented smoothing. _e height of the
alternately colourable smoothing of a knot will be used in the deûnition of the dou-
bled Rasmussen invariant in Section 4 and is shown to be equal to the odd writhe of
the knot in Subsection 4.3.

Corollary 3.14 Let L be a link of n components such that every two distinct compo-
nents are split. _en rank(DKh′(L)) = 2n+1.

3.2 Interaction with Cobordisms

A cobordism between classical links deûnes a map on classical Lee homology; this
behaviour is replicated by doubled Lee homology. Unlike the classical case, however,
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many connected cobordisms must be assigned the zero map, a consequence, for ex-
ample, of the vanishing of DKh′(L) for certain links or of the possibility of doubled
Lee homology of knots being supported in non-zero homological degrees. Neverthe-
less, there are classes of cobordisms for which the associatedmaps are non-zero (some
of which we use in Section 5). In this section we verify that genus 0 cobordisms and
a certain class of arbitrary genus cobordisms are assigned non-zero maps.

We begin by stating some deûnitions regarding virtual cobordism (see [9]).

Deûnition 3.15 Two virtual links L1 and L2 are cobordant if a diagram of one can
be obtained from a diagram of the other by a ûnite sequence of births and deaths of
circles, oriented saddles, and virtual Reidemeistermoves. Such a sequence describes a
compact, oriented surface S such that ∂S = L1 ⊔L2. Births of circles, oriented saddles,
and deaths of circles correspond, respectively, to 0-, 1-, and 2-handles of S.

Virtual links are equivalence classes of embeddings of disjoint unions of S1 into
thickened surfaces [13]; thus, the surface S is embedded in a 4-manifold of the form
M × [0, 1], where M is a compact, oriented 3-manifold with ∂M = Σk ⊔ Σ l , where Σ i
denotes a closed surface of genus i. _e 3-manifoldM is described in the standardway
in terms of codimension 1 submanifolds and critical points; starting from ∂M = Σk ,
codimension 1 submanifolds are Σk until we pass a critical point, a�er which they
are Σk±1. Critical points of M correspond to handle stabilisation (induced by virtual
Reidemeister moves). A ûnite number of handle stabilisations are made to reach Σ l .
We say that a link appears in S if a diagram of it appears in the sequence of diagrams
describing S.

Deûnition 3.16 Let S ↪ M× I be a cobordism between links L1 and L2, whereM is
a compact, oriented 3-manifold and ∣L1∣ = ∣L2∣. We say that S is a concordance if it is a
disjoint union of ∣L1∣ annuli such that each annulus has one boundary component in
L1 and another in L2. If a concordance exists between L1 and L2, we say that they are
concordant.

Deûnition 3.17 Let K be a virtual knot. If K is concordant to the unknot; that is, if
there exists an annulus bounded by K and the unknot, then K is slice. Further, deûne
the slice genus of K, denoted g∗(K), as
g∗(K) = min{g(S) ∣ S a compact, oriented, connected surface such that ∂S = K}

(here we have simply capped oò the unknot in ∂S with a disc).

Remark It is important to emphasize the distinction between a concordance and
cobordism of genus 0, as we will be referring to the latter frequently in the remainder
of this section. A connected cobordism of genus 0 between virtual knots is a con-
cordance, but this is not true for links. For example, a 0-handle addition is a genus 0
cobordism, but it is not a concordance, as it does not preserve the number of compo-
nents.

Of course, the subject of Deûnition 3.15 is really a presentation of a cobordism; two
distinct presentations can be equivalent under isotopy (relative to their boundary),
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and represent the same cobordism. However, as mentioned by Rasmussen and others
in the classical case, we expect isotopic presentations to be assigned the same map.
Like Rasmussen, we do not pursue this further, and restrict ourselves to working with
presentations. Moreover, we shall ignore the diòerence between a presentation and a
cobordism, referring to the surface S as a cobordism between L1 and L2.

Deûnition 3.18 Let S be a cobordism between two virtual links L1 and L2 that is
described by exactly one virtual Reidemeister move or one oriented 0-,1-, or 2-handle
addition. Such a cobordism is known as elementary.

Wewish to associatemapswith cobordisms such that, where they are non-zero, the
maps respect the ûltration and send alternately coloured generators (of the homology
of the intitial link) to linear combinations of alternately coloured generators (of the
homology of the ûnal link).

Of course, any cobordism can be built by gluing elementary cobordisms end to
end, so we ûrst investigate these simple cobordisms. In all there are ten of them: four
given by the purely virtual Reidemeister moves and the mixed move, three given by
the classical Reidemeistermoves, and three given by the 0-, 1-, and 2-handle additions.
We separate the work into elementary cobordisms that contain virtual Reidemeister
moves and those that contain handle additions.

(Virtual Reidemeister moves): Let D1 and D2 be diagrams of virtual links L1 and L2,
and let S be an elementary cobordism between them that contains a purely virtual
Reidemeister move or mixed move (as depicted in Figure 4). _en CDKh′(D1) =
CDKh(D2), as such moves preserve the number of cycles in a smoothing and the
incoming and outgoing diòerentials. _us, we associate the map

ϕS = id∶DKh′(L1) Ð→ DKh′(L2)

with S. It is also clear that such a cobordism sends alternately coloured smoothings
of D1 to those of D2, so that alternately coloured generators of DKh′(L1) are sent to
those of DKh′(L1).

If S contains a classical Reidemeister move, then ϕS is one of the maps deûned
in [19, Section 6], with the addition of the appropriate u/l superscripts. We satisfy
ourselves with a quick demonstration that classical Reidemeister moves send alter-
nately coloured smoothings to alternately coloured smoothings via proper colour-
ings of shadows. As mentioned above, given a virtual link diagram D, the set of its
alternately coloured smoothings is in bijection with the set of proper colourings of its
shadow. Let D and D′ be related by a classical Reidemeister move. _en D and D′ are
identical except within a neighbourhood of the move. Given a proper colouring of
S(D) deûne a proper colouring of S(D′) that is identical to that of S(D) outside the
proscribed neighbourhood; the colouring within is dictated by that of arcs incident to
the neighbourhood. Some examples are given in Figure 12. It is clear that this deûnes
a bijection between the proper colourings of S(D) and those of S(D′), and it follows
that the maps associated with the classical Reidemeister moves are isomorphisms on
doubled Lee homology.
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Figure 12: Examples of the aòects of classical Reidemeister moves on proper colourings of shad-
ows. Notice the endpoints of the arcs are coloured the same colour on the le�- and right-hand
sides.

(Handle additions): Let D1 and D2 be diagrams of virtual links L1 and L2, and let S
be an elementary cobordism between them that contains a handle addition. _en S
deûnes amapof cubes between the cube of smoothings ofD1 and that ofD2: removing
a neighbourhood of the classical crossings of D1 and D2, both diagrams look identical
except in the region, in which the handle is attached. Moreover, as handle additions
do not change the number of crossings of diagram, the smoothings of D1 and D2 are
in bijection (a string of 0’s and 1’s deûnes uniquely a smoothing of D1 and of D2).
Let the map of cubes deûned by S be the map that sends a smoothing of D1 to the
associated smoothing of D2. As the diagrams are identical except in a small region
this map acts simply on smoothings and depends on the handle addition contained
in S:
● 0-handle: a cycle is added that shares no crossings with any other cycle or itself.
● 1-handle: two cycles are merged into one cycle, one cycle is split into two, or one
cycle is sent to one cycle (while the 1-handle is necessarily oriented, it is nonetheless
possible for it to induce such a term as a map of cubes.)

● 2-handle: a cycle that shares no crossings with any other cycle or itself is removed.
_us we deûne a map ψ∶CDKh′(D1) → CDKh′(D2), whose aòect on the speciûc
cycle or cycles involved is as follows (and acts as the identity on the uninvolved cycles)
● 0-handle: ι′∶Q→ A where ι′(1) = vu/l

+
so that ι′(1) ⊗ vu

+
= (v++)u, for example.

● 1-handle: eitherm′, ∆′, or η′ as dictated by the corresponding entry inmap of cubes.
● 2-handle: є′∶A→ Q, where є′(vu/l

+
) = 0, є′(vu/l

−
) = 1.

We deûne ϕS ∶DKh′(L1) → DKh′(L2) to be the map induced by ψ. Notice that ϕS is
ûltered of degree 1 for 0- and 2-handle additions and ûltered of degree −1 for 1-handle
additions, and that it preserves homological degree.
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Figure 13: A cobordism with shared degree −2 that is assigned the zero map. _e grey lines
denote that the right-hand component has genus; it is formed by a 1-handle between a single
component followed by a 1-handle between two components.

Deûnition 3.19 Let D1 and D2 be diagrams of virtual links L1 and L2, and let S be a
cobordism between them. _en S can be decomposed as a ûnite union of elementary
cobordisms, so that

S = S1 ∪ S2 ∪ ⋅ ⋅ ⋅ ∪ Sn ,
where S i is an elementary cobordism. Deûne ϕS = ϕSn ○ ϕSn−1 ○ ⋅ ⋅ ⋅ ○ ϕS1 .

It is possible that a map associated to a cobordism is necessarily zero, owing to the
doubled Lee homology of a link (or links) appearing in it being trivial in particular
degrees (or possibly every degree). Homological degrees which survive throughout a
cobordism are important, therefore.

Deûnition 3.20 Let D1 and D2 be diagrams of virtual links L1 and L2, and let S be a
cobordismbetween them such that the doubled Lee homology of every link appearing
in it is non-trivial in homological degree k. Such a homological degree is known as a
shared degree (of S).

_e existence of shared homological degrees is not enough to guarantee that a
cobordism is assigned a non-zero map, however. Consider the cobordism depicted
in Figure 13; the le�-hand component is the identity cobordism on the classical Hopf
link, while the right-hand component is a genus 1 cobordism from virtual knot 2.1 to
the unknot. It can be quickly veriûed that −2 is a shared degree of this cobordism, but
that the map assigned to it is zero.

_e remainder of this section is concerned with the task of verifying that genus
0 cobordisms, as well as a certain class of arbitrary genus cobordisms, are assigned
non-zero maps, as advertised above. In what follows, a cobordism is said to beweakly
connected if every connected component has a boundary component in the initial
link.

https://doi.org/10.4153/CJM-2017-056-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-056-6


Doubled Khovanov Homology 1153

_eorem 3.21 Let S be a genus 0 cobordism between a virtual knot K and a virtual
link L. Suppose that S contains no closed components and that DKh′(L) /= 0. _en ϕS
is non-zero.

_eorem 3.22 Let S be a weakly connected cobordism between virtual knots K and
K′ with a non-empty set of shared degrees. Further assume that S can be decomposed as
the union of two cobordisms, S1 and S2, such that S1 ∩ S2 = L where L is a virtual link.
Suppose that, in addition to virtual Reidemeister moves, S1 contains only 1-handles be-
tween a single link component, and S2 handles between distinct link components. _ere
is exactly one alternately colourable smoothing of L, denotedS , such that the associated
generators are in the image of ϕS1 , and a ûnite set of alternately colourable smoothings
of L, denotedL , such that the associated generators are in the complement of the kernel
of ϕS2 . _en ϕS is non-zero if and only ifS ∈ L .

A cobordism satisfying the criteria of _eorem 3.22 is known as a targeted cobor-
dism.

We begin our path to the proofs of _eorems 3.21 and 3.22 by investigating ele-
mentary cobordisms; many maps assigned to them are non-zero automatically.

Proposition 3.23 Let D1 and D2 be diagrams of virtual links L1 and L2, and let S
be an elementary cobordism between them that is a 0- or 2-handle addition, or a 1-
handle addition between two distinct link components. If L1 has a non-zero number of
alternately coloured smoothings, then S has shared degrees and ϕS is non-zero in them.

Proof We are required to verify two criteria , (i): that D2 has at least one alternately
coloured smoothing at the same height as one of the alternately coloured smoothings
ofD1, and (ii): that ϕS sends at least one alternately coloured generator ofDKh′(L1) to
a linear combination of those ofDKh′(L2). For 0- and 2-handles ( i ) follows from the
fact that the cycle being added or removed does not take part in any of the crossings in
D1 or D2, and thus places no restrictions on a smoothing being alternately coloured.
As a handle addition does not change the number of classical crossings, it is clear that
an alternately coloured smoothing of D1 is sent to an alternately coloured smoothing
of D2 of the same height. Further, noticing that

(3.7) ι′(1) = (r + g)u/l , є′(ru/l) = − 1
2
, є′(gu/l) = 1

2
,

we see that (ii) is satisûed. (Note that 0-handles double the number of alternately
coloured smoothings, while 2-handles halve it.)
For 1-handle additions between two distinct link components we verify (i) in the

following manner: consider the Gauss diagrams G(D1) and G(D2). By assumption
G(D1) contains no degenerate circles. As the 1-handle constituting S is between two
distinct link components, G(S(D2)) can be obtained from G(D1) by combining two
circles (those corresponding to the components between which the handle is added)
and adding all chord endpoints that lie on them to the new circle, leaving the other
circles unchanged. _us, the number of chord endpoints lying on the new circle must
be amultiple of 4 and it is not degenerate. As the other circles are unchanged, it is clear
that G(D2) has no degenerate circles and D2 has alternately coloured smoothings;
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note that it has half the number that D1 has, however. _at there are heights at which
bothD1 andD2 have alternately coloured smoothings, again follows from the fact that
handle additions do not change the number of classical crossings. _e statement (ii)
follows from (3.5) and (3.6).

In the case of 1-handles involving a single link component, we are able to determine
whether they preserve the existence of alternately coloured smoothings by looking at
their eòect on Gauss diagrams. Using this we can specify the handle additions that
are associated with non-zero maps.

Lemma 3.24 Let D1 and D2 be diagrams of virtual links L1 and L2, and let S be an
elementary cobordism between them which is a 1-handle addition involving a single link
component. Further, assume DKh′(L1) is non-trivial. _en DKh′(L2) is trivial if and
only if there is a proper colouring of S(D1) such that the handle addition is between two
strands of opposite colour.

Proof It follows from _eorem 3.5 that DKh′(L2) is trivial if and only if D2 has no
alternately coloured smoothings. Consider the Gauss diagram of the shadow of D1:
as the handle addition is between a single link component it can be represented in the
following manner:

On the le�, the circle ofG(D1) corresponding to the component ofD1 undergoing the
handle addition is depicted; the dotted line shows the location of the handle addition.
Clearly, if the handle is added between two regions of opposite colour the dotted line
must enclose an odd number of chord endpoints, so that the newly created circles are
degenerate (as depicted on the right). Conversely, it is easy to see that if the handle
is between two regions of the same colour then the newly created circles are non-
degenerate. To conclude, note the regions are either both coloured the same colour in
all proper colourings of S(D1) or are coloured opposite colours in all proper colour-
ings, as all proper colourings are related by �ipping the colours on a ûnite number of
circles.

Corollary 3.25 Let D1 and D2 be diagrams of virtual links L1 and L2, and let S be an
elementary cobordism between them that contains a 1-handle addition between a single
link component. Further, assume that DKh′(L1) is non-trivial and that the 1-handle
addition is between strands of the same colour in S(D1). _en S has shared degrees and
ϕS is non-zero in them.

We omit the proof of Corollary 3.25, as it uses very similar ideas to that of Propo-
sition 3.23 along with (3.5) and (3.6).
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Using the map of cubes deûned by a handle addition (see page 3.2) we continue
to investigate the maps associated with 1-handle additions further. In what follows
we suppress the upper/lower subscripts of the generators s, as it easy to see that su ∈
im(ϕS) if and only if sl ∈ im(ϕS). Also, whenever we state equalities such as ϕS(s) =
s′, for example, we shall always mean equality up to a (non-zero) scalar.

Proposition 3.26 Let D1 and D2 be diagrams of virtual links L1 and L2, and let
S be an elementary cobordism between them that is a 1-handle addition. Further, let
DKh′(L1) and DKh′(L2) be non-trivial. (Recall that the smoothings of D1 and D2 are
in bijection.) _ere are two cases.
(i) If the 1-handle is between two distinct components of L1, then every alternately

coloured smoothing of D2 is associated with an alternately coloured smoothing
of D1.

(ii) If the 1-handle involves a single component of L1, then every alternately coloured
smoothing of D1 is associated with an alternately coloured smoothing of D2.

(A smoothing of D1 is associated with a smoothing of D2 if and only if it is sent to it
under the map of cubes deûned by S.)

Proof As observed in Section 3, the alternately coloured smoothings of a diagram
are in bijection with the proper colourings of the shadow of the diagram. In case
(ii), one readily observes that a proper colouring of S(D1) deûnes a proper colouring
of S(D2) (as the handle must join two strands of the same colour, a consequence of
Lemma 3.24). Moreover this proper colouring of S(D2) induces the same crossing
resolutions as those of the proper colouring of S(D1), so that corresponding alter-
nately coloured smoothings are associated. In case (i), notice that the reverse cobor-
dism (from L2 to L1) satisûes (ii).

Corollary 3.27 Let D1 and D2 be diagrams of virtual links L1 and L2, and let S be an
elementary cobordism between them which is a 1-handle addition with shared degrees.
_en, for k a shared degree
(i) If the handle addition is between two distinct components of L1, then ϕS surjects

onto⊕i DKh′k(L2).
(ii) If the handle addition is between a single component of L1, then for all

s ∈ ⊕
i
DKh′k(L1),

we have ϕS(s) /= 0.

Proof (i) Let s2 ∈ DKh′k(L2) be deûned by an alternately coloured smoothing
S2 of D2. _en by Proposition 3.26,S2 is associated with S1, an alternately coloured
smoothing of D1 (and is mapped to it under the map of cubes deûned by S). Let s1
denote the alternately coloured generator of DKh′k(L1) deûned by S1. If ϕS acts by
either ∆′ or η′ on s1, then ϕS(s1) = s2 automatically (by (3.5) and (3.6)). If it acts
by m′, then it is possible that ϕS(s1) = 0, if the cycles undergoing the merge map
are coloured opposite colours. Notice that ifS2 is obtained from S1 by merging two
cycles, then S1 is obtained from S2 by splitting two cycles. As observed in the proof
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Figure 14: Cancelling degenerate components. _e label D denotes a degenerate component.

of Proposition 3.26, by looking at proper colourings S(D2) and S(D1) associated with
S2 and S1, respectively, we see that the relevant cycles cannot be coloured opposite
colours in S1; thus, ϕS(s1) = s2 (again by (3.5)).

(ii) Let s ∈ ⊕i DKh′k(L1) be deûned by the alternately coloured smoothing S of
D1. By Lemma 3.24 the handle addition must be between cycles of the same colour in
S so that ϕS(s) /= 0 by (3.5) and (3.6).

Proof of_eorem 3.21 First, we prove a fact about links appearing in genus 0 cobor-
disms before using this fact and an induction argument to prove the theorem in this
restricted case.

Let S be a genus 0 cobordism between a virtual knot K and a virtual link L such
that DKh′(L) /= 0. Assume towards a contradiction that a link, L̃, appearing in S is
such that DKh′(L̃) = 0. By _eorems 3.5 and 3.12, S(D) must contain a degenerate
circle for D any diagram of L̃. Further, by Lemma 3.24, we see that degenerate circles
are always created in pairs in a cobordism, and that degenerate circles can be cancelled
against one another to produce non-degenerate circles (see Figure 14). _is cancelling
process is as follows: add a 1-handle between the components of L̃ that correspond to
the degenerate circles, producing a new circle. Let the two initial degenerate circles
be C1 and C2, and let N i denote the number of chord endpoints lying on C i . It is
easy to see that the number of chord endpoints lying on the newly created circle is
N = N1 +N2, and that N must be even, as N1 and N2 are odd. _us, the newly created
circle is non-degenerate.

In what follows we call a component of a link diagram degenerate if the circle cor-
responding to it in the associated Gauss diagram is degenerate. We might also speak
of degenerate components of links, as virtual Reidemeister moves cannot change the
mod 2 number of chord endpoints lying on a circle.
As K has non-trivial doubled Lee homology (it is a knot), no diagram of it con-

tains a degenerate component. _erefore, at least one 1-handle involving a single link
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component must occur in S to produce L̃ (recall again Lemma 3.24). As L also has
non-trivial doubled Lee homology, we see that we must remove all degenerate link
components (by the process outlined above) in order to reach L from L̃. But degen-
erate circles are always formed in pairs, and we see that an attempt to cancel them
all without introducing genus (which we are prohibited from doing as S is of genus 0
by hypothesis) leads to a non-compact situation; consider Figure 14. As we are con-
sidering only compact cobordisms (recall Deûnition 3.15), we arrive at the desired
contradiction.

Wenowpresent the aforementioned induction argument: we shall build up genus 0
cobordisms with elementary cobordisms. Let S′ be a genus 0 cobordism between a
virtual knot J and virtual link L1 (distinct fromK, L, and L̃ above) such that S′ contains
no closed components, DKh′(L1) /= 0, and ϕS′ is non-zero. We claim that if Se is an
elementary cobordism between L1 and L2 such that g(S′ ∪ Se) = 0 then ϕS′∪Se is
non-zero also. Note that the argument above implies that we can restrict to the case
in which DKh′(L2) /= 0; if this did not hold, then S′ ∪ Se could not form part of a
genus 0 cobordism between links that both have non-trivial doubled Lee homology.

If Se is a virtual Reidemeister move or a 0-handle addition, then ϕS′∪Se is non-
zero as ϕSe has trivial kernel. If Se is a 2-handle addition then ker(ϕSe ) is spanned by
the image of the map associated with a 0-handle addition. But if a 0-handle addition
precedes Se , then S′ ∪ Se would contain a closed component, which it does not by
assumption, so that ϕS′∪Se is non-zero.

If Se is a 1-handle involving a single link component, we see that ϕSe has trivial
kernel by Corollary 3.27, as we are working in the case in which DKh′(L2) /= 0.

We are le� with the case in which Se is a 1-handle between distinct link compo-
nents. If S′ ∪ Se is to have genus 0, the link components of L1 involved in Se must
belong to diòerent connected components of S′. As S′ begins with J, a virtual knot, at
least one of the components of S′ involved in Se must be have no boundary compo-
nent in J; i.e., its ûrst appearance in S′ is a 0-handle. (Cutting the cobordism depicted
in Figure 14 at the link labelled L′ yields an example.)

Let x ∈ im(ϕS′). We can write x = ∑i si , where si is an alternately coloured
generator of L1. LetSi denote the alternately coloured smoothing of L1, which deûnes
si , andCi the associated proper colouring of the shadow (of the appropriate diagram)
of L1. _en ϕS′∪Se (x) = 0 if and only if the link components of L1 involved in Se are
coloured opposite colours in every Ci (recall the bijection between components of a
link diagram and components of its shadow given in Deûnition 3.9). _is can be seen
from (3.5).
As observed above, at least one of the connected components of S′ involved in

Se begins with a 0-handle, and (3.7) shows that the image of the map assigned to a
0-handle is a linear combination of both red and green. _erefore, given an arc of
S(L1) lying on a component which begins with a 0-handle, if Ci has the arc labelled
a particular colour, there must exist a C j in which the arc is coloured the opposite
colour, and ϕS′∪Se is non-zero.

_e base cases of the induction are the elementary cobordisms: they are all clearly
of genus 0 and satisfy the induction hypothesis, under our assumption that both
the initial and terminal links have non-trivial doubled Lee homology. _us, given a
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genus 0 cobordism between a virtual knot and a virtual link with non-trivial doubled
Lee homology, the assigned map is non-zero.

Proof of_eorem 3.22 Let S,S , andL be as in the theorem statement. _e cobor-
dism S2 is a genus 0 cobordism between a link and a knot, and so ϕS2 is non-zero by
_eorem 3.21. Recall that L is the set of alternately colourable smoothings of L such
that the associated generators are in the complement of the kernel of ϕS2 ; this is nec-
essarily non-empty as ϕS2 is non-zero. Further, ϕS1 has trivial kernel (as observed in
the proof of _eorem 3.21) so that img(ϕS1) is of rank 4, spanned by the alternately
coloured generators associated to exactly one smoothing of L, namely S ; to see this,
recall that

ϕS1(su) /= 0 ⇐⇒ ϕS1(sl) /= 0 ⇐⇒ ϕS1(su) /= 0 ⇐⇒ ϕS1(sl) /= 0,

so that if the generators associatedwithmore than one smoothing of L lay in the image
of ϕS1 , it could not be of rank 4 (generators associated with diòerent smoothings are
linearly independent). By assumption, S ∈ L so that, if su/l , su/l are the generators
associated with S , then su/l , su/l ∉ ker(ϕS2), and ϕS = ϕS2 ○ ϕS1 is non-zero.

Remark In proving _eorems 3.21 and 3.22, we could not follow Rasmussen’s ap-
proach of propagating orientations through the cobordism, as we no longer neces-
sarily have the relationship between orientations of a link and its alternately coloured
smoothings. Also, while all themaps associated with elementary cobordisms are non-
zero (as long as the homologies do not vanish), the full map associated with S may fail
to be non-zero without requiring a non-empty set of shared degrees (in the classical
case every cobordism has shared degree 0). Moreover, the proof in the classical case
is concerned only with this degree, while wemust investigate the map associated with
cobordisms in every homological degree.

4 A Doubled Rasmussen Invariant

As demonstrated in the preceding section, for an oriented virtual knot, K, DKh′(K)
is a rank 4 bigraded group, supported in a single homological degree that can be de-
termined easily from any diagram of K. In Subsection 4.1, we show that the data
provided by the quantum gradings in which DKh′(K) is supported are equivalent to
a single integer (in the classical case this integer is necessarily even), so that the in-
formation contained in DKh′(K) is equivalent to a pair of integers. In Subsection 4.2
we give some properties of this pair of integers, and in Subsection 4.3 we show that
one of the members of the pair is equal to the odd writhe of the given knot. Finally,
in Subsection 4.4 we describe a class of knots for which the invariant can be quickly
calculated.

4.1 Definition

We referred to a ûltration of CDKh′(K) in Deûnition 3.1; let us concretise it (fol-
lowing Rasmussen [19]). Let D be an oriented virtual knot diagram of K with n+
positive classical crossings and n− classical crossings. _e homological grading on
CDKh′(K), denoted i, is as deûned in (2.3). _e quantum grading is the standard
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one: deûne p(vu
+
) = 1, p(vu

−
) = −1, p(vl

+
) = 0, p(vl

−
) = −2, p(⊗ x) = ∑ p(x);

then the quantum grading is the shi� j(x) = p(x) + i(x) + n+ − n−. Let Fk = {x ∈
CDKh′(K) ∣ j(x) ≥ k}, so that we have the ûltration

0 = Fn ⊂ Fn−1 ⊂ ⋅ ⋅ ⋅ ⊂ Fm = CDKh′(K)
for some n,m ∈ Z; let s denote the associated grading i.e., s(x) = k if x ∈ Fk and
x ∉ Fk+1.

Deûnition 4.1 For a virtual knot K, let
sumax(K) = max{s(x) ∣ x ∈ DKh′(K), x /= 0, x ∈ A⊗n},
slmax(K) = max(K){s(x) ∣ x ∈ DKh′(K), x /= 0, x ∈ A⊗n{−1}},

and similarly deûne su/l
min(K).

_at su/l
max(K) can be determined from su/l

min(K) (and vice versa) follows in large
part from the following augmented version of [19, Lemma 3.5].

Lemma 4.2 For a virtual knot K,
DKh′(K) = DKh′1(K) ⊕ DKh′2(K) ⊕ DKh′3(K) ⊕ DKh′0(K),

where DKh′ i(K) is generated by elements of quantum grading congruent to i mod 4.
Furthermore, we have the following:
(i) Either

su ± su ∈ DKh′1(K) and su ∓ su ∈ DKh′3(K)
or

su ± su ∈ DKh′0(K) and su ∓ su ∈ DKh′2(K).
(ii) Either

su ± su ∈ DKh′1/3(K) and sl ± sl ∈ DKh′0/2(K)
or

su ± su ∈ DKh′0/2(K) and sl ± sl ∈ DKh′3/1(K).
Here su/l denotes an alternately coloured generator as deûned in (3.4), and su/l denotes
the generator formed by replacing r with g and g with r.

Proof _at DKh′(K) decomposes into the given direct sum follows from the form
of the diòerential: a part graded of degree 0 and other graded of degree 4. _e state-
ments within (ii) are obvious consequences of the construction of su/l.

We are le� with (i). _e mod 4 behaviour of the quantum grading is compli-
cated by the fact that doubled Khovanov homology is supported in both odd and
even quantum gradings, a departure from the classical case. We shall prove the case
when s(sl) ∈ 2Z; this corresponds to the ûrst statement in (i), the second follows
identically modulo a grading shi�.
Following Rasmussen, deûne ι∶DKh′(K) → DKh′(K) so that ι acts as the identity

on DKh′0(K) ⊕ DKh′1(K) and as multiplication by −1 on DKh′2(K) ⊕ DKh′3(K).
Next, deûne i∶A → A by i(v+) = v+ and i(v−) = −v−. _en i(r) = g and i(g) = r,
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and i⊗n ∶A{−1} → A{−1} acts as the identity on DKh′0(K) and as multiplication by
−1 on DKh′2(K). _us, we have

ι(sl) = i(sl) = sl ,

which yields

ι(sl + sl) = i(sl + sl) = sl + sl and ι(sl − sl) = i(sl − sl) = −(sl − sl),

from which we deduce that sl +sl ∈ DKh′0(K) and sl −sl ∈ DKh′2(K). We conclude
by invoking (ii) .

Corollary 4.3 Let K be a virtual knot. _en su/lmax(K) > su/lmin(K).

Proposition 4.4 Let K be a virtual knot. _en su/lmax(K) = su/lmin(K) + 2.

Proof Consider the map

∂∶DKh′(K ⊔ ) Ð→ DKh′(K)
induced by the connect sum K# = K (this is well deûned, as it is between K and
a crossingless unknot diagram). _is is well deûned, preserves homological degree,
and, with respect to the quantum degree, is graded of degree −1 (as it is simply id ⊗
m′). Again we follow Rasmussen and denote the alternately coloured generators of
DKh′(K) by their decoration at the connect sum site, i.e., su/l

r and su/l
g . _e alternately

coloured generators of DKh′(K ⊔ ) are then su/l
r ⊗ ru/l, su/l

r ⊗ gu/l, su/l
g ⊗ ru/l, and

su/l
g ⊗ gu/l. Under ∂ we have

∂(su/l
r ⊗ gu/l) = ∂(su/l

g ⊗ ru/l) = 0,

∂(su/l
r ⊗ ru/l) = su/l

r ,

∂(su/l
g ⊗ gu/l) = su/l

g .

Noticing that

su/l
max(K) = s(su/l

r ± su/l
g ) and ∂((su/l

r ± su/l
g ) ⊗ ru/l) = su/l

r ,

we obtain
s((su/l

r ± su/l
g ) ⊗ ru/l) ≤ s(su/l

r ) + 1,

su/l
max(K) − 1 ≤ su/l

min(K) + 1,

as ∂ is graded of degree −1 (that su/l
min(K) = s(su/l

r ) follows from Lemma 4.2).

_us, any of the four quantities deûned in Deûnition 4.1 determines all of the oth-
ers, and we are able to make the following deûnition.

Deûnition 4.5 For a virtual knot K, let s(K) = (s1(K), s2(K)) ∈ Z ×Z, where

s1(K) = slmax(K) and s2(K) = i(su/l) = ∣S ∣,
where i denotes homological grading and su/l is an alternately coloured generator of
K associated with the alternately coloured smoothing S . We refer to s(K) as the
doubled Rasmussen invariant of K.
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4.2 Properties

Proposition 4.6 For a classical knot K, s(K) = (s(K), 0), where s(K) denotes the
classical Rasmussen invariant.

Proof For K a classical knot, DKh′(K) decomposes as

DKh′(K) = Kh′(K) ⊕ Kh′(K){−1}

so that clearly sumax = smax(K), where smax(K) denotes the classical quantity. _en

s(K) = smax(K) − 1 = sumax(K) − 1 = slmax(K).

_at s2(K) = 0 is observed on page 3.1.

_e doubled Rasmussen invariant exhibits the same behaviour with respect tomir-
ror image and connect sum as its classical counterpart.

Proposition 4.7 Let K be a virtual knot and let K denote its mirror image. _en
s(K) = −s(K).

Proof _e statement s1(K) = −s1(K) follows, as in the classical case, from the exis-
tence of the isomorphism of dual complexes

r∶ (A⊕A{−1},m′ , ∆′ , η′) Ð→ ((A⊕A{−1})∗ , ∆′∗ ,m′∗ , η′∗) .

_at s2(K) = −s2(K) is seen as follows: let D be a diagram of K with n+ positive clas-
sical crossings and n− negative classical crossings. Let S be the alternately colourable
smoothing of D, so that s2(K) = ∣S ∣, the height ofS . Further, notice that

∣S ∣ = nu
p + no

n − n− = nu
p + no

n − (nu
n + no

n) = nu
p − nu

n ,

where
nu

p = the number of positive crossings resolved into their unoriented smoothing,
no

p = the number of positive crossings resolved into their oriented smoothing

and likewise nu
n and no

n (for a classical knot nu
p = nu

n = 0, of course). It is quickly
observed that

nu
n = nu

p , no
p = no

n ,

where n∗
∗
denote the corresponding quantities for D. _en

∣S ∣ = nu
p − nu

n = n+ − no
p − nu

p = n− − no
n − nu

p = nu
n − nu

p = −∣S ∣.

Proposition 4.8 Let K1 and K2 be virtual knots and denote by K1#K2 any of their
connect sums. _en s(K1#K2) = s(K1) + s(K2).

Proof It is readily apparent that S = S1 ⊔S2, whereS / S1 / S2 is the alternately
colourable smoothing of K1#K2 / K1 / K2. _en ∣S ∣ = ∣S1∣ + ∣S2∣, which proves the
claim regarding s2(K1#K2).
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Let

∂∶DKh′(K1#K2) → DKh′(K1 ⊔ K2) be the map realised by acting ∆′ on the
cycle as dictated by the connect sum. Regarding s1(K1#K2), the proof follows in iden-
tical fashion to the classical proof when one notices that we only require the existence
of

∂

(as opposed to the short exact sequence used in [19]).

4.3 Relationship with the Odd Writhe

Kauòman deûned the odd writhe of a virtual knot in terms of Gauss diagrams [8]. In
this section we show that the doubled Rasmussen invariant contains the odd writhe.

Deûnition 4.9 Let D be a diagram of a virtual knot and let G(D) be its Gauss
diagram. A classical crossing of D, associated with the chord labelled c in G(D), is
known as odd if the number of chord endpoints appearing between the two endpoints
of c is odd. Otherwise, it is known as even. _e odd writhe of D is deûned

J(D) = ∑
odd crossings of D

sign of the crossing.

_eorem 4.10 Let D be a virtual knot diagram of K. _e odd writhe is an invariant
of K, and we deûne J(K) ∶= J(D).

_e odd writhe of a virtual knot K provides a quick way to calculate s2(K).

Proposition 4.11 Let be D a diagram of a virtual knot K. _en s2(K) = J(K).

Proof Weclaim that a classical crossing inD is odd if and only if it is in its unoriented
resolution in the alternately colourable smoothing of D.

(⇒): Let c denote an odd classical crossing of D. Leaving the crossing from either of
the outgoing arcs, we must return to a speciûed incoming arc. Between leaving and
returning, we will have passed through an odd number of classical crossings (which
are not c). _us, the incoming arc must be coloured the opposite colour to the out-
going, and c is resolved into its unoriented resolution in the both of the alternately
coloured smoothings of D, as depicted here:

(⇐): Let c denote a classical crossing of D that is resolved into its unoriented smooth-
ing in the alternately colourable smoothing of D. _e colouring at c must be as de-
picted above. Again, leaving c from either outgoing arc and returning at the speciûed
incoming arc, we see that, as the colours of the arcs are opposite, an odd number of
classical crossings must have been passed.
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_e contributions of odd and even crossings to J(K) and s2(K) are summarised
in the following table, from which the result follows. _e contributions to s2(K) are
clear when one recalls that the height of a smoothing contains the shi� −n−, the total
number of negative classical crossings of D.

sign parity reso. J(K) s2(K)
+ odd 1 +1 +1
+ even 0 0 0
− odd 0 −1 −1
− even 1 0 0

Corollary 4.12 Let K1 and K2 be virtual knots and let K1#K2 denote any of their
connect sums. _en J(K1#K2) = J(K1) + J(K2).

4.4 Leftmost Knots and Quick Calculations

To conclude this section we identity a class of knots for which the calculation of the
doubled Rasmussen invariant is trivial, a generalisation of the case of computation
of the classical Rasmussen invariant of positive classical knots. _e key here, as in
the classical case, is that the alternately coloured smoothings of the class of knots in
question have no incoming diòerentials.

Deûnition 4.13 Let D be a virtual knot diagram. We say that D is le�most if it
contains only positive even and negative odd classical crossings. A virtual knot is
le�most if it has a le�most diagram.

Proposition 4.14 Let D be a le�most diagram of a virtual knot K with n− negative
classical crossings. _en s2(K) = −n−, the minimal non-trivial homological grading of
DKh′(K).

Proof Let D be a le�most diagram of a virtual knot. By Proposition 4.11 we have
s2(K) = J(K) = −n−, as a crossing in D is odd if and only if it is negative.

Proposition 4.15 Let D be a le�most diagram of a virtual knot K. _en s1(K) =
max{s(s + s), s(s − s)}, where s is an alternately coloured generator associated with
the alternately colourable smoothing of D.

Proof By Proposition 4.14 the alternately colourable smoothing of D is at the min-
imal non-trivial height of the cube of resolutions. By construction, there is only one
smoothing at this height. Further, this smoothing has no incoming diòerentials. Re-
calling Deûnition 4.5, we obtain the result.

5 Applications

We now describe some applications of the invariants DKh(L) and s(K). All of the
given applications are related to virtual link concordance, to a greater or lesser extent.
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5.1 Cobordism Obstructions

Asmentioned in Subsection 3.2, we can use the information contained in the quantum
degree of DKh′(L) to obtain obstructions to the existence of cobordisms between L
and other links. First, we repeat the procedure used to show that the classical Ras-
mussen invariant yields a bound on the slice genus to obtain a bound on the genus
of a certain class of cobordisms from a knot to the unknot, and between two given
knots. We then obtain an obstruction to the existence of a connected genus 0 cobor-
dism between a link and a given knot. Finally, we use doubled Lee homology to show
that virtual knots with non-zero odd writhe are not slice.

5.1.1 Genus Bounds

In this section we use the fact that genus 0 cobordisms and targeted cobordisms are
assigned non-zero maps to obtain obstructions to the existence of cobordisms of cer-
tain genera between pairs of virtual knots. First we obtain a lower bound on the genus
of targeted cobordisms between pairs of knots whose s2 invariants agree.

_eorem 5.1 Let K be a virtual knot with s2(K) = 0 and S a targeted cobordism from
K to the unknot such that 0 is a shared degree of S. _en

∣s1(K)∣
2

≤ g(S).

Proof Let K and S be as in the theorem statement. _en, by _eorem 3.22, ϕS is
a non-zero map. As in the classical case, it is easy to see that ϕS is ûltered of degree
−2g(S). Let x ∈ DKh′(K) realise sumax(K), so that

1 ≥ s(ϕS(x)) ≥ sumax(K) − 2g(S),

as sumax( ) = 1. _is yields

2g(S) + 1 ≥ sumax(K) and 2g(S) ≥ s1(K).

Repeating the argument for K, and using Proposition 4.7, we obtain −2g(S) ≤ s1(K),
which yields the desired result.

Corollary 5.2 Let K be a virtual knot with s2(K) = 0 and let S be a targeted cobor-
dism from K to the unknot such that 2g(S) < ∣s1(K)∣. _en there exists a link L that
appears in S with DKh′0(L) = 0.

In a very similar manner, we able to show the following.

_eorem 5.3 Let K1 and K2 be a pair of virtual knots with s2(K1) = s2(K2), and
let S be be a targeted cobordism between them such that s2(K) is a shared homological
degree of S. _en

∣s1(K1) − s1(K2)∣
2

≤ g(S).
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Further, concordances between virtual knots are obstructed by the quantum de-
gree component of the doubled Rasmussen invariant, s1 (in Subsubsection 5.1.3 we
show that the homological component is such an obstruction, also).

_eorem 5.4 Let K and K′ be virtual knots such that s2(K) = s2(K′). If s1(K) /=
s1(K′), then K and K′ are not concordant.

_e proof of_eorem 5.4 follows almost exactly along the lines of that of_eorem
5.1, which itself is very similar to the classical case; all we require is that the map
assigned to a concordance between knots is non-zero, which is veriûed in _eorem
3.21.

Corollary 5.5 Let K be a virtual knot with s2(K) = 0. If s1(K) /= 0, then K is not
slice.

5.1.2 Obstructions to Genus 0 Cobordisms Between Knots and Links

We can extend _eorem 5.4 to the case of genus 0 cobordisms between a knot and a
link, provided the homologies of the knot and link in question are compatible, and
the cobordism is connected.

_eorem 5.6 Let L be a virtual link of ∣L∣ components. Further, let S be a connected
genus 0 cobordism between L and a virtual knot K such that DKh′s2(K)(L) /= 0. Let
M(L) be the maximum non-trivial quantum degree of elements x ∈ DKh′(L) such that
ϕS(x) /= 0. _en M(L) ≤ s1(K) + ∣L∣.

Proof Let L, K, and S be as in the theorem statement. _en ϕS is non-zero by_eo-
rem 3.21. It is clear that ϕS is ûltered of degree−(∣L∣−1): aminimumof ∣L∣−1 1-handles
are needed to take a ∣L∣-component link to a knot, and any surplus 1-handles must be
paired with 2-handles. It is also clear that if x ∈ DKh′(L) is such that ϕS(x) /= 0, then
x ∈ DKh′s2(K)(L). For such an x we have that s(x) ≥ M(L) and

M(L) − (∣L∣ − 1) ≤ s(x) − (∣L∣ − 1) ≤ s(ϕS(x)) ≤ sumax(K)

so that
M(L) − ∣L∣ + 1 ≤ s1(K) + 1,

as required.

Corollary 5.7 Let L be a virtual link of ∣L∣ components such that DKh′(L) /= 0.
Further, let K be a virtual knot such that DKh′(L) is trivial in homological degree s2(K)
or M(L) > s1(K) + ∣L∣. _en any genus 0 cobordism from L to K is disconnected.

A particular consequence of Corollary 5.7 is that, given a virtual link L for which
DKh′(L) /= 0 and DKh′0(L) = 0, all genus 0 cobordisms from L to classical knots
must be disconnected: no classical knots can be obtained from L by simply merging
its components.
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5.1.3 The Odd Writhe is an Obstruction to Sliceness

_e odd writhe of a knot is very easy to calculate. Despite this, it can detect non-
classicality (and hence non-triviality) and chirality of many virtual knots [8]. Here
we show that it also contains information regarding the concordance class of a virtual
knot.

_eorem 5.8 Let K be a virtual knot. If J(K) /= 0, then K is not slice.

Proof We prove the contrapositive. Assume towards a contradiction that K is a slice
virtual knot such that J(K) /= 0. _en s2(K) /= 0 by Proposition 4.11. Let S realise a
slice disc so that ϕS is non-zero by_eorem 3.21. Recall that ϕS preserves homological
degree by construction. _ere must exist x ∈ DKh′s2(K)(K) such that ϕS(x) /= 0. But
then

ϕS(x) /= 0 ∈ DKh′s2(K) ( ) = 0,

as s2(K) /= 0, a contradiction.

_e proof of _eorem 5.8 can be used mutatis mutandis to show that the set of
concordance classes of virtual knots is partitioned by the odd writhe.

_eorem 5.9 Let K1 and K2 be virtual knots. If J(K1) /= J(K2), then K1 and K2 are
not concordant.

Corollary 5.10 Let K be a virtual knot. If J(K) /= 0, then K is not concordant to a
classical knot.

5.1.4 Examples

Consider the classical knot T(4, 3), as given in Figure 15. By converting a particular
subset of its crossings to virtual crossings we are able to produce a virtual knot K
whose alternately colourable smoothing is its oriented smoothing (K is also positive,
as T(4, 3) is). _us s2(K) = 0 and the oddwrithe provides no obstruction to sliceness.
However, K is a le�most knot (as deûned in Subsection 4.4), so that

s1(K) = max{s(sl + sl), s(sl − sl)}

by Proposition 4.15. It can be quickly veriûed that max(s(sl + sl), s(sl − sl)) = 1 so
that K is not slice by Corollary 5.5.
Further, consider the classical two-component link 92

61, as depicted in Figure 16.
By an argument identical to that used in the case of le�most knots we can show that
the maxiumum quantum degree of all elements in DKh′0(L) is 5. In the context
of _eorem 5.6, considering connected genus 0 cobordisms from L to the unknot,
M(L) = 5 and as ∣L∣ = 2, s1 ( ) = 0, it follows that there does not exist a connected
genus 0 cobordism from L to the unknot.

_e method used in both the above examples can be applied to many positive ori-
ented classical link diagrams in order to produce virtual link diagrams for which the
quantum degree information (at particular homological degrees) is easy to compute.
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1

T (4, 3) K

Figure 15: _e classical torus knot T(4, 3) on the le�, and a virtual knot K formed by converting
a subset of its crossings to virtual crossings on the right.

9261 L

Figure 16: _e classical link 92
61 , on the le�, and a virtual link L formed by converting a subset

of its crossings to virtual crossings, on the right.

5.2 Connect Sums of Trivial Diagrams

First let us recall the deûnition of the connect sum of virtual knot diagrams (see [16]).

Deûnition 5.11 Let D1 and D2 be oriented virtual knot diagrams. If D1 ⊔ D2 ↪ R2

is such that there exists a disc B ↪ R2 with B ∩ D1 = I and B ∩ D2 = I (where I
denotes an oriented unit interval and I an interval with reverse orientation), then we
denote by D1#BD2 the diagram produced by 1-handle addition with attaching sphere
S0 × D1 = I ⊔ I.

_e connect sum operation is well deûned on classical knots. As mentioned in
Subsection 1.1, this is not the case for virtual knots. Given a pair of virtual knots K1
and K2 with diagrams D1 and D2, respectively, the result of the connect sum oper-
ation D1#BD2 depends on the diagrams used and the choice of disc B. By an abuse
of notation, we use K1#K2 to refer to any of the knots produced by a connect sum
operation on K1 and K2.

_ere are two ways in which to interpret the ill-deûned nature of the connect sum
operation on virtual knots. _e ûrst is in a diagrammatic manner: no longer can one
area of the diagram be freely moved over all others, due to presence of the forbidden
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Figure 17: _e forbidden moves.

moves. _ese are moves on diagrams, depicted in Figure 17, which do not follow
from the virtual Reiedemeister moves (in fact, they can be used to unknot any virtual
knot [18]). Classically, Reidemeister moves commute, in a certain sense, with handle
addition: for example, let D1 and D2 be classical unknot diagrams. _en D2 can be
treated as a small neighbourhood of D1#D2 and slid under (or over) the rest of the
diagram. _us, the sequence of Reidemeister moves that takes D1 to the crossingless
unknot diagram can be replicated on D1#D2, taking it to D2, which is itself an unknot
diagram. Nontrivial diagrams are treated similarly. Virtually, however, this cannot be
replicated, as areas of a diagram cannot always be moved across others.

_e second, deeper, interpretation is as a consequence of the higher-dimensional
topological information constituting a virtual knot; asmentioned above, a virtual knot
is an equivalence class of embeddings of S1 into thickened closed orientable genus g
surfaces, up to isotopy of the thickened surface and handle stabilisations of the (un-
thickened) surface [7]. Not only does a virtual knot depend on how the copy of S1 is
knotted about itself, but also on how it is ‘knotted’ about the topology of the thickened
genus g surface into which it is embedded.

In this light we see that the connect sum operation is not only a 1-dimensional
1-handle addition between the copies of S1, but that it also induces a 3-dimensional
1-handle addition on the thickened genus g surfaces.2 _is contrasts with the clas-
sical case, in which both copies of S1 can be contained in one copy of S3 and only
a 1-dimensional 1-handle needs to be added. Diòerent choices of the disc B (as in
Deûnition 5.11) correspond to diòerent choices of 3-dimensional handles. _e author
suspects that the dependence of the connect sum operation on both the diagrams
involved and the choice of B is inherited ultimately from the non-triviality of the fun-
damental group of a genus g surface.
A novel manifestation of this ill-deûnedness is that there exist non-trivial virtual

knots that are connect sums of a pair of trivial virtual knots. _e ûrst example of this
is given by Kishino’s knot [12] as depicted in Figure 18. Doubled Khovanov homology
yields a condition on a virtual knot being a connect sum of two trivial diagrams.

_eorem 5.12 Let K be a virtual knot that is a connect sum of two trivial knots. _en
DKh(K) = DKh ( ).

In order to prove _eorem 5.12, we deûne a reduction of doubled Khovanov ho-
mology, in direct analogy to the classical case [11, 21].

2It is possible for the connect sum operation to induce not a 3-dimensional handle addition, but a
slightly more complicated operation. We refer the reader to [17, p. 41, Fig. 2.7].
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Figure 18: Kishino’s knot

Deûnition 5.13 (Reduced doubled Khovanov homology) Let L be an oriented vir-
tual link diagram with a marked point on each component (away from the crossings
of L). Distribute these marked points across the cube of smoothings so that each
smoothing of L contains ∣L∣ marked points. Deûne C(L) to be the chain subcomplex
of CDKh(L) spanned by those states in which all the marked cycles are decorated
with either vu

−
or vl

−
(all the marked cycles are decorated with the same algebra ele-

ment). _at C is a subcomplex is evident from (2.2) and (2.1) (it is also graded).
LetH(L) denote the homology of C(L). We refer toH(L) as the reduced doubled

Khovanov homology of L.

_e proof of invariance of H(L) under virtual Reidemeister moves follows as in
the classical case. Invariance under the choice of basepoints follows similarly.

Lemma 5.14 Let L be a virtual link diagram. _en CDKh(L)/C(L) ≅ C(L){2}.

Proof We prove the statement for a virtual knot diagram K (link diagrams follow
essentially identically). Let CDKh(K)/C(K) = C′(K). _e isomorphism g∶C′(K) →
C(K) is straightforward to deûne. Given a representative, x, of an element of C′(K),
the marked cycle must be decorated with either vu

+
or vl

+
; i.e., we must have x = x1 ⊗

x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l
+
⊗ ⋅ ⋅ ⋅ xn . Deûne

g(x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l
+
⊗ ⋅ ⋅ ⋅ xn) = x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l

−
⊗ ⋅ ⋅ ⋅ xn ,

g−1(x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l
−
⊗ ⋅ ⋅ ⋅ xn) =1 ⊗x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l

+
⊗ ⋅ ⋅ ⋅ xn .

_at g is well deûned is clear and that it is a chainmap is apparentwhen one consid-
ers the schematic given in Figure 19; the only issue that could arise is due to the factor
of 2 in the η map, the position of which ensures that it does not cause any trouble.
_at the degree of g is −2 is obvious.

Proof of_eorem 5.12 Let K be as in the proposition. By an abuse of notation let
K = D1#D2 be the diagram that is the result of a connect sumbetweenD1 andD2, both
of which are unknot diagrams. We are free to pick marked points on the diagrams K
and D1 ⊔D2 so that the situation is as in Figure 20, from which we observe that there
is a chain complex isomorphism f ∶C(K) → C(D1 ⊔D2). _e isomorphism is deûned
as follows:

f (x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l
−
⊗ ⋅ ⋅ ⋅ ⊗ xn) = x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l

−
⊗ vu/l

−
⊗ ⋅ ⋅ ⋅ ⊗ xn ,

f −1(x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l
−
⊗ vu/l

−
⊗ ⋅ ⋅ ⋅ ⊗ xn) = x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ vu/l

−
⊗ ⋅ ⋅ ⋅ ⊗ xn ,
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m ∆ η

2

Figure 19: A schematic for the interaction between the map g and the diòerential. _e enclosed
dots depict generators of C(K); g sends a dot outside an enclosure to the corresponding dot
inside.

where vu/l
−
and vu/l

−
⊗ vu/l

−
decorate the marked cycles. _at f is a chain map follows

from the observation that if su/l is a state ofC(K), then f (su/l) has the same incoming
and outgoing diòerentials. It is clear that f is graded of degree −1.

We have established the isomorphism C(K) ≅ C(D1 ⊔ D2){1}; further, there is a
chain homotopy equivalence between C(D1 ⊔ D2) and C ( ) as D1 and D2 are
unknot diagrams. It is easy to see that C ( ) = C ( ) {−1} so that

C(K) ≅ C(D1 ⊔ D2){1} ≃ C ( ) {1} ≃ (C ( ) {−1}) {1} = C ( )
and

(5.1) H(K) =H ( ) .

In addition, there is an exact triangle

H(K) DKh(K)

H(K){2},

which is arrived at via the short exact sequence

0Ð→ C(K) Ð→ CDKh(K) Ð→ CDKh(K)/C(K) Ð→ 0,

Lemma 5.14 and the observation that (5.1) implies that H(K) is supported in homo-
logical degree 0. Also, by (5.1) we obtain rank(H(K)) = 2 so that the triangle splits
and

DKh(K) =H(K) ⊕H(K){2} =H ( ) ⊕H ( ) {2} = DKh ( ) .

Proposition 5.15 Let K and K′ be virtual knots which are connect sums of the same
pair of initial virtual knots J and J′: that is, there exist diagrams D1 and D2 of J and D3
and D4 of J′ such that K = D1#D3 and K′ = D2#D4. _en C(K) ≃ C(K′).
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D1 D2

D2D1

Figure 20: Marked diagrams of K (above) and D1 ⊔ D2 (below).

Proof We have C(K) ≅ C(D1 ⊔D3) ≃ C(D2 ⊔D4) ≅ C(K′), as D1 ⊔D3 and D2 ⊔D4
are both diagrams of J⊔ J′ and the isomorphisms are essentially identical to that given
in the proof of _eorem 5.12.

Remark Of course, there is still a pair of short exact sequences

0 C(K) CDKh(K) C(K){2} 0,

0 C(K′) CDKh(K′) C(K′){2} 0,
≃ ≃

but the associated long exact sequences no longer split. Indeed, it is not true in general
that

DKh(K) =H(K) ⊕H(K){2};
the aforementioned virtual knot 2.1 provides a counterexample.

Acknowledgments We thank the referees for many helpful comments and sugges-
tions.
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