
Ill 

Solar magnetism and large-scale 
flows 

- Solar rotation from helioseismology 

- The theory of differential rotation 

- Evolution of large-scale and small-scale magnetic fields 

- The solar dynamo 

- Indicators of solar activity 

- How typical is the Sun among solar type stars 

https://doi.org/10.1017/S0252921100079574 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100079574


The Sun's Internal Differential Rotation 
From Helioseismology 

Philip R. Goode 

Department of Physics 
New Jersey Institute of Technology, Newark NJ, USA 

Abstract: Well-confirmed helioseismic data from several groups using various observa­
tional techniques at different sites have allowed us to determine the differential rotation 
in the outer half of the Sun's interior. The resulting rotation law is simple - the surface 
differential rotation persists through much of the convection zone with a transition to­
ward solid body rotation beneath. To date there is no appealing evidence for a rapidly 
rotating core. There is however, weak evidence for a solar cycle dependence of the Sun's 
internal rotation. 

1. Introduction 

Knowledge of the sun's internal rotation is a key to unlocking secrets of both 
solar evolution and the cause of surface activity. Prom helioseismology we have 
learned what we know about the Sun's internal rotation. Our seismic information 
comes from observations of intensity fluctuations in white light or Doppler shifts 
in a particular line. The oscillations discussed here are observed as the surface 
manifestation of trapped standing sound waves which sample the solar interior. 
Goldreich and Kumar (1989) have shown that these acoustic vibrations are appar­
ently excited by turbulence in the outer most layers of the convection zone. The 
oscillations are global in nature and have a period of about five minutes. Global 
means that the lifetime of a mode is longer than the time it takes for the mode 
to circuit the part of the solar cavity it samples. Each normal mode samples its 
particular region of the interior and the seismology to be reviewed here is from 
oscillations which best sample between 0.5 and 0.9 R, where R is the solar radius. 
This choice is made because those data represent the only confirmed seismic data. 
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2. The nature of the oscillations 

The solar oscillations are described by 

tnlm(rA<f>) = r M ^ M ^ M ^ ^ ] * ™ ^ ) , (1) 

where the yni andzni are the radial and horizontal fluid displacement and w is the 
angular frequency of the oscillation. The n, I and m quantum numbers are the 
radial order, angular degree and angular order respectively. The well-confirmed 
splitting data under consideration here are for /-values roughly between 10 and 
100. In a high frequency asymptotic limit which is sufficiently valid in the five 
minute regime for us to gain insight to the oscillations, we can describe a unitless 
oscillation f by 

f" + fi^--Ki + i) + o(\^\\i)) = o, (2) 

where c is the local speed of sound. The inner turning point for the sound waves 
occurs when the first two terms in brackets are comparable. This means that the 
lower the degree of the oscillation the deeper it samples. On the other hand, near 
the surface where the speed of sound is low, the outer turning point is reached 
- for the intermediate /-values under consideration here - where the first term 
is comparable to the logarithmic derivative of the density. Thus the sampling 
depends on frequency rather than /. Since the five minute band is rather narrow, 
the oscillations sample the outer regions in the same way. This leads to the curious 
result that we know the rotation rate better at the base of the convection zone 
than near its top. If the Sun lacked perturbing forces like those due to rotation 
and magnetism then each (nZ)-multiplet would be (2/-f-l)-fold degenerate in m. 
The observers tell us that it is best to view the available data in (nZ)-multiplets 
with a fine structure in m so that 

N 
Vnlm - Vnl0 = I ^ a t i „ , P , ( —) , (3) 

t = l 

where Pj is a Legendre polynomial and L = I or \fl(l + 1) depending on the choice 
of the observer and N = 5 or 6 for now. The fact that equation (3) works implies 
that the perturbations manifest in the a-coefficients have the rotation axis as their 
axis of symmetry. If for instance, the Sun possessed an intense inclined magnetic 
field in its core, there would be difficulty in using equation (3) to describe the fine 
structure especially in multiplets which sample this region (/ < 5). In detail, each 
multiplet would be characterized by at least (2/ + l ) 2 peaks per multiplet which 
is inconsistent with equation (3). The antisymmetric a-coefficients in equation 
(2) arise from the linear effect of rotation and the symmetric ones from shape 
distorting forces like the centrifugal force. The aj- , 03- and a^- terms are precisely 
correlated with a rotation law of the form 
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Q{r,9) = flo(r) + tti(r)cos26 + Q2{r) cos4 9, (4) 

where 9 is the co-latitude. The inverse problem to determine Q{r, 9) follows from 
formally accounting for the effects of the Coriolis force and advection on the fine 
structure in the oscillation spectrum. In general, the three equations to determine 
(20(r), i2i(r), and Q2{r) are coupled. However, the coupling is so weak that at the 
current level of accuracy in the five minute oscillation data the coupling can be 
safely ignored and 

— Kni(r)fio(r)dr = aiini+Ho3(L)a3t„i+Ho5(L)a5ini —• ai>tl/+a3i„/-|-a5,„/ (5) 

^ lKnl(r)Qi{r)dr = H13(L)a3,„i + Hi5(L)a5,ni —• -5a3 )„ / - 14a5)„/ (6) 

- ^ Jl<nl(r)n2(r)dr = H25(L)a5,nl —» 21aB>„, (7) 

where the H(L) and angular integral coupling coefficients and the arrows indicate 
L2 » 1. Examples of the H(L) are given in Table 1. If L2 = /(/ + 1) is chosen 
instead of L = I then asymptotic limit is reached for lower /. The kernel, K„i is 

Knl(r) = [y2
nl(r) + l2z2

nl(r) - 2ynI(r)znl(r)]pri, (8) 

where p is the density. 

Table 1. The #(.L)-coefficients 

/ 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
oo 

10 
20 
30 
40 

H2S(L) 
24.38 
22.90 
22.31 
22.00 
21.81 
21.68 
21.58 
21.51 
21.46 
21.41 
21.00 

20.15 
20.78 
20:90 
20.94 

H13(L) 
-5.46 
-5.24 
-5.16 
-5.12 
-5.10 
-5.08 
-5.07 
-5.06 
-5.05 
-5.05 
-5.00 

-4.97 
-4.99 
-5.00 
-5.00 

L = l 

H1S(L) 
-17.88 
-16.12 
-15.25 
-15.10 
-14.89 
-14.74 
-14.64 
-14.56 
-14.50 
-14.45 
-14.00 

L=y/l(l+l) 

-13.19 
-13.19 
-13.90 
-13.95 

H03(L) 
1.24 
1.12 
1.08 
1.06 
1.05 
1.04 
1.04 
1.03 
1.03 
1.02 
1.00 

0.99 
1.00 
1.00 
1.00 

H05(L) 
1.65 
1.34 
1.23 
1.17 
1.14 
1.12 
1.10 
1.09 
1.08 
1.07 
1.00 

0.90 
0.97 
0.99 
0.99 
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50 
60 
70 
80 
90 
oo 

20.96 
20.97 
20.98 
20.99 
20.99 
21.00 

-5.00 
-5.00 
-5.00 
-5.00 
-5.00 
-5.00 

-13.97 
-13.98 
-13.98 
-13.99 
-13.99 
-14.00 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.99 
1.00 
1.00 
1.00 
1.00 
1.00 

3. The data 

The resolved disk observational data have been used to determine the confirmed 
rotation laws. In these observations as many as 106 elements are used to detect os­
cillations. From these data splittings for I between 0 and 1000 can be determined 
in principle. The analysis proceeds by reducing the data into subspectra from 
which splittings can be identified. Even these projected spectra are quite compli­
cated. Major complications arise from spatial and temporal sidebands which are 
a consequence of the fact that we observe only one side of the Sun and, to date, 
observe from a single site. To simplify the data reduction, many groups average 
their data over n. Libbrecht (1989) has shown that intrinsic linewidths of the peaks 
are sufficiently narrow that more accurate data will come from longer observing 
runs. Further, global networks like Global Oscillations Network Group (GONG) 
should provide data from multiple sites by the mid-1990s effectively eliminating 
the day-night temporal sidelobe problem. This network should yield data strings 
10 time longer than the longest available now (~ 100 days). Nonetheless, there are 
several data sets currently available from which the internal rotation rate of the 
Sun has been determined. Some of the properties of these sets are given in Table 
2. Each set provides data from somewhat different parts of the five minute spec­
trum - different in both /-range and frequency range. The data are from various 
observational groups using different instruments at several sites. Further, among 

Table 2. The splitting data sets 

Duvall et al. (1986) 
Duvall and Harvey (1984) 
Tomczyk (1988) 
Rhodes et al. (1987) 
Brown and Morrow (1988) 
Libbrecht (1989) 

Epoch 

1982.0 
1983.4 
1984.5 
1984.6 
1984.9 
1986.5 

Frequency 
Range(mHz) 

2.4 - 4.0 
1.5-4.0 
2.57-3.74 
2.2 - 3.6 
2.5 - 4.0 
1.5 - 4.0 

Range 
i n / 

20-98 
1-131 

10-120 
3-89 
15-99 
10-60 

Averaged 
over n 

yes 
no 
yes 
yes 
yes 
no 

the groups of observers, intensity and four different kinds of Doppler measurements 
were used as well as different reduction methods. Yet all the data are remarkably 
similar. The longest data string is that due to Libbrecht (1989). Further, this set 
is not averaged over n. As a result the most accurate inversions follow from these 
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data and extra attention is given to that set in this review. Splitting data results 
from that set are shown in Fig. 1. 
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Fig. 1. Odd a-splitting coefficients (nHz) vs. /from Libbrecht's (1989) data. The solid 
line represents the determination of the coefficients from the mean rotation law of Eq. 
(9). 

We have averaged the data over n and binned it in / for ease of viewing. We 
see that the a\ are largely independent of / and have an average of about 440 nHz. 
The solid line through the ax data follows from assuming the mean rotation law 
from Libbrecht's (1989) data, 

n(r, 9) = 460.2 ± 0.2 - (58.3 ± 1.3) cos2 6 - (73.1 ± 2.6) cos4 0. (9) 

This rotation law is quite close to that for the surface differential rotation. If we 
assumed rotation constant on cylinders instead, then the calculated ax varies be­
tween 420 and 430 nHz. The 420 nHz value applies for / ~ 40 where we know a,\ 
best. There the discrepancy is ~ 10<r. The a3 coefficients average about 20 nHz . 
Their tendency to decrease with / results in rotation laws which show a decreased 
differential rotation with depth. The solid line is from a differential rotation which 
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does not decrease with depth. The as-coefficient averages about —3 nHz and shows, 
perhaps, a trend for a5 to increase toward zero with decreasing /. If we assume 
rotation constant on cylinders, the calculated 03 and 05 values would not be in­
consistent with those from Eq. (9). Prom Fig. 1 it is clear that we know ai better 
than 03 and a3 better than a5. With this and Eqs. (5)-(7), we will know (2o(r) 
better than Q\(r) and Q\{r) better than ^(r). Another way to understand why 
we know the rotation rate best in the Sun's equatorial plane is to recall that sec­
toral modes (m = ±/) are the ones which are confined to that region of the solar 
interior. Thus, we could determine the equatorial rate by observing the spacing 
between m = +/ and m = — I modes rather than the spacing between each of the 
(2/ + 1) — m peaks. The errors for each / would be reduced by a factor of 2/ - the 
spacing between the two sectoral components. 

-1—i^'l"! nifiMttm\—^"f-f* 

1 
It j l 

• ftv/2< 1M) CCO. 

'|H|l' 

• — 

_L JL. _l_ 
200 300 

Spherical Harmonic Degree ((). 

Fig. 2. en + a3 + a5(nHz) vs. / from the data of Rhodes et al. (1990b) for the /=3-500 
range. 

The inner turning points for modes with / = 10 and 60 are about 0.3 R and 
0.8 R, respectively. Thus, it is clear that modes in the /=10-60 range cleanly sample 
the region near the base of the convection zone. Considering the range of turning 
points, the asymptotic limits of Eqs. (5)-(7) and most importantly the data in 
Fig. 1, we anticipate the transition away from differential rotation with increasing 
depth. The detailed results are presented in the next section. 

There are small differences between a\-, a%- and 05-coefficients from data set 
to data set. However the a\ + 03 + a5 values axe more robust from set to set 
suggesting that there is some residual correlation between the a-coefficients. This 
is also reflected in the fact that the first splitting data for the / = 1 — 500 range are 
for a\ + as + a5 only. These data are due to Rhodes et al. (1990b) and axe those 
above Z=120 are from 1988. The new high-/ splitting data are consistent with but 
more accurate than the earlier sets due to Hill et al. (1988) and Deubner et al. 
(1979). The new high-/ data are especially valuable in determining structure in 
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the rotation near the surface in the equatorial plane. The primary feature they 
reveal is a ~ 5% bump in QQ centered at 0.93 R and having a width of about 0.1 R 
(Korzennik, 1990). However, this result must be regarded with caution because 
the bump in the splitting data centered near /=80 occurs where the sidelobes are 
very close to the "true" peaks. 

For / < 5 whole disk observations should be useful. To date however, the limited 
results are contradictory. For instance, the reported rotational splitting for / = 1 
by Jefferies et al. (1988) for the period of 1981-1984 is about 750 nHz implying a 
rapidly rotating core. On the other hand, Woodard (1984) reports an upper limit 
consistent with a core rotating more slowly than the surface in its equatorial region. 
Other results range between these two. Owing to this absence of consistency in 
the low-/ splittings we do not use them in the calculation of the internal rotation. 

Three groups have used whole disk observations to report the discovery of 
rotational splittings in gravity modes. Gravity modes are confined to the interior 
and such a discovery would enable a much more accurate seismology. Even though 
consistent splittings are reported by three groups indicating a rapidly rotating 
core, the groups also report significantly different identifications and frequencies 
for the p-modes. Until these discrepancies are cleared up, the identification of g-
mode splittings should be regarded as unconfirmed. This situation is quite different 
than that for the acoustic modes for which the observers listed in Table 2 agree 
on the mode identifications and frequencies and their splittings. The SCLERA 
group reports rotational splittings which are about 3-4 times larger than any of 
the aforementioned splittings (Hill, 1984). This group observes fluctuations in the 
limb darkening function near the Sun's equator. The spectra are considerably more 
complicated than any of the spectra from aforementioned data. 

We have well-confirmed rotational splitting data for acoustic modes in the five 
minute band for /-values in the 10-120 range. These facilitate the determination 
of the differential rotation between 0.4 R and 1.0 R. 

4. The inversions 

The typical approach to solving the inverse problem posed by equations (5)-(7) 
is a least squares one in which \ 2 per degree of freedom is minimized to determine 
the rotation rate. The problem here is that the data have a finite resolution width, 
and a gridding which is too fine will yield artificial short wavelength oscillations in 
the calculated rotation. The resolution width shown in Fig. 3 is for 0.7 R from Lib-
brecht's (1989) data using the Backus-Gilbert (1970) method. This least squares 
approach circumvents the problem of short wavelength oscillations but the cost is 
that the calculations require a large amount of time on a sizeable computer. The 
method employed here is regularization in which one minimizes a\, where 

<*l=xl+ V,MSP„ (10) 

and where 77, is the regularization parameter and M, is the number of (nl)-
multiplets and 
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Fig. 3. Unitless Backus-Gilbert (1970) kernel for 0.70 R vs. fractional radius using the 
data of Libbrecht (1989). 

f.dO,. 
J ' dr] 'dr (11) 

and s = 0, 1 or 2 as in Eqs. (5)-(7). However, r\a is not a free parameter. The 
constraint invoked here reflects our a priori view that the rotation rate is a slowly 
varying function of radius. In the minimization of a2

s we vary rj3 until x« per degree 
of freedom is 1. 

Q° '•",» 

-i 1 1 1 1 1 1—r 

i i i i ' i i i_ 
M 0.4* OJI 0.«7 0.7« 0.15 0.*4 1.0 

Fractional Radius 

Fig. 4. | k vs. fractional radius from the data of Rhodes et al. (1987, 1990a). 

Then the l a least square errors from the inversion are consistent with the la 
errors in the data. In practice, the x«-space is fairly flat and we further weaken r/s 
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until short wavelength oscillations almost begin to appear in the rotation. In Fig. 4, 
we see that (20(r) calculated using the Backus-Gilbert (1970) approach compares 
favorably to that from regularization. 

J i i i i i i i_ 
•*1 0.49 tJ t 0.47 0.74 0J9 0.94 1.9 J I I I I I I I 

0.4 0.49 OJI 0.47 0.7C 0.05 0.94 1.0 

Fnctiwul Radhu 

-i 1 1 1 1 1 1—r~_ 

•ha. . * 4 «$«}i>»4\ 
(MO-40) 

0.4 t.49 0.59 0.47 0.74 0.05 0.94 1.0 

Fig. 5. £a? 2± a n d £x v s . fractional radius from Libbrecht's (1989) data. The errors 
from the Rhodes et al. (1987, 1990a) are about twice as large as those from Libbrecht's 
(1989) data. The shaded functions appear where the two rates from the Rhodes et al. 
(1987, 1990a) data differ. 

In Fig. 5, we see the overall agreement for Q0(r), i2i(r), Q2{r) from Libbrecht's 
(1989) data and those from Rhodes et al. (1987, 1990a) data for /=3-89 and its 
Z=10-60 subset. The error bars on the full Rhodes et al. (1987, 1990a) data set are 
about twice those from Libbrecht's reflecting the fact that Rhodes et al. averaged 
over n and their observation run has fewer days in it. The f20(r) functions tend 
to be flat through the convection zone with a sharp gradient below. It seems 
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though that the sharpness-of the gradient depends on which data are excluded. 
Near the surface, as mentioned earlier, the Rhodes et al. (1990b) data yielded a 
bump in i2o(r) near 0.93R. However that rate is fairly flat throughout the rest 
of the convection zone showing a decreasing rate going inwards like that in Fig. 
5 from the data of Libbrecht. The decrease beneath the bump starts near the 
base of the convection zone. The low-/ data are not so secure so it is not clear 
whether or not flo(r) continues to decline beneath 0.6R. For i2\(r) both sets show 
a strong tendency away from differential rotation beneath the convection zone. 
For / ^ ( r ) the results are consistent at the l a level in the least square error bars, 
while showing opposite trends. The function ^(r) is not yet well determined. 

villi*) _ 
o 0 o o o o o o o o J o 

...If"' 
1 

B 0 O 0< 

" • o . 

oo°00oooo»0 

0° 
o , vnrm 

. • "•. ••• 1 
0 0 O • B 0 ••.,• 

1. ..' » »!$7 l!*7 %Si l . b ».U I., 

Fig. 6. ^L at three latitudes vs. fractional radius from the data of Tomczyk (1988). 

Nonetheless, the net tendency away from the surface like differential rotation 
is clear and is arbitrarily illustrated with the /=10-120 splitting data of Tomczyk 
(1988). Regularization oversmooths the rotation rate and so the gradients in fio(r) 
and Oi(r) could be even sharper than they appear in Fig. 4. Fig. 7 shows the re­
sults from Libbrecht's (1989) data of allowing a discontinuity at 0.73 R, near the 
base of the convection zone. The striking result is surface-like differential rotation 
throughout the convection zone with an abrupt transition to solid body rotation 
beneath at a rate close to mid-latitude surface rate. Moving the arbitrary disconti­
nuity either closer to or further from the surface results in a reduction in magnitude 
of the jump. In fact, the jump essentially vanishes if the arbitrary discontinuity 
is moved by O.IR in either direction. Of course Fig. 7 is only a curiosity because 
of the limited resolving power of the data as illustrated in Fig. 2. Owing to the 
resolving power we do not pay a high price for the oversmoothing of regularization. 
To further illustrate the accuracy to which we know the rotation we try a second 
constraint 
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Fig. 7. j * , j£ and - ^ vs. fractional radius from Libbrecht's (1989) data allowing a 
discontinuity at 0.73 R. 

In Fig. 8, the results of this constraint are compared to that of equation (11) for the 
data of Libbrecht. For £lo(r), the results are the same except that, not surprisingly, 
the gradient in QQ is larger near the base of the convection zone. For the two fi\(r) 
results the trends are the same but the role of the constraint is larger here. The 
f22(r) functions are controlled by the constraints. The first determination of the 
Sun's internal rotation was made by Duvall et al. (1984). That inversion for the 
rotation near the equatorial plane is largely consistent with the fio(r) values here. 
However, the results also suggested the hint of a rapidly rotating core. That hint 
is probably an artifact of the previously discussed short wavelength oscillations in 
rotation resulting from too fine a grid in Qo{r). In Fig. 9, regularized inversions 
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are compared with r?o for Figures 4-7 to that from a much smaller r)0 with a step 
size of 0.05 R. The latter solution roughly shows the form given by Duvall et al. 
(1984) including the dip near 0.3R and the rapidly rotating core. As 770 is increased 
from the too small value to a reasonable one, first the oscillations near the center 
disappear then those near the surface disappear. 

Fie. 8. £*, #"• and %*• vs. fractional radius from the data of Libbrecht (1989). The error 
bars are on the inversion using the constraint of Eqs. (12). 
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5. Is the internal rotation time dependent? 

We have rotation splitting data from the last solar maximum until now. The only 
change in rotation that appears to be marginally significant is in J?o m the radiative 
interior (Goode et a/., 1991; Goode and Dziembowski, 1991) near 0.4R. The rate 
at that location appears to be anticorrelated with surface activity as shown in Fig. 
10. In detail, that rate was maximal at solar minimum. 

Further, QQ near the base of the convection zone does not appear to change at 
all over the cycle. Dziembowski and Goode (1991) inverted the symmetric part of 
preliminary oscillation data of Libbrecht and Woodard (1990) from the summer 
of 1986 and 1988 to determine that there appears to be a persistent megagauss 
quadrupole toroidal field near the base of the convection zone. Such a field is too 
intense to vary over the activity cycle. In an effort to rationalize these apparently 
disparate and marginally significant effects of rotation and magnetism, Goode and 
Dziembowski (1991) suggested the possibility of a torsional oscillation vaguely like 
that suggested years ago by Walen (1947). 

The rationalization is a picture in which the megagauss field is maintained by 
a dynamo action on an "invisible" constant kilogauss poloidal field near the base 
of the convection zone. The equation of motion for the torsional oscillation is 

pr2 sin2 9 ^ - = ^ ( B p • V)[r2 sin2 0 (B p • V)Q] (13) 

where B p is the poloidal field and its kilogauss magnitude is chosen so that the 
torsional oscillation has a period comparable to that of the activity cycle. The 
dynamo action generating the toroidal field, B^, is described by 

- ^ = r s i n 0 ( B p . V ) / 2 . (14) 

Since we expect the time dependent dynamo to be amplitude limited, the larger 
Bp is the smaller amplitude variation in Q over time. Thus, we would expect that 
the rotation rate near the base of the convection zone would change much less 
than the rate deep down where Bp would be considerably smaller. Of course there 
are problems with this picture, like how would the rotational energy stored deep 
down, even after conversion to magnetic energy, be transferred to the surface over 
11 years. 

6. Conclusions 

Various groups of observers have collected several sets of consistent splitting data 
spanning overlapping regions of the five minute period acoustic band. These data 
have been used to infer that the surface rate at any point persists through the 
convection zone going inward along the radius from the chosen point. Near the 
base of the convection zone there is a fairly abrupt transition towards solid body 
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rotation beneath. The solid body rate is close to that of an intermediate surface 
latitude. Brown et al. (1989) and Dziembowski et al. (1989) used the confluence 
of the radial and latitudinal gradients to suggest that the dynamo driving solar 
activity is seated near the base of the convection zone. The rotation law in the 
convection zone is not consistent with rotation on cylinders as suggested by de­
tailed treatments of the consequences of turbulent convection on solar activity. 
Nonetheless, we should be encouraged because the rotation law is simple. We need 
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to search for the dynamical origin of this simple law. In the near future we expect 
to know the Sun's internal differential rotat ion about ten t imes more accurately 
than we know it now because of projects like GONG as well as observations from 
space. 
P.R.G is part ly supported by AFOSR 89-0048. 
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