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GRAMIAN ANALYSIS OF MULTIVARIATE FRAME
MULTIRESOLUTION ANALYSES

JAE KUN LIM

We perform a Gramian analysis of a frame multiresolution analysis to give a condition
for it to admit a minimal wavelet set and to show that the frame bounds of the natural
generator for the wavelet space of a degenerate frame multiresolution analysis shrink.

1. INTRODUCTION

The concept of multiresolution analyses was introduced by Mallat and Meyer [14,15]
in order to understand and construct wavelet orthonormal (or Riesz) bases; and Benedetto
and Li [1] generalised it to that of frame multiresolution analyses with an intention to
apply it to an analysis of narrow band signals. We refer [7, 8] for the definitions and
the properties of a Riesz basis and a frame of a Hilbert space. The close connexion
between multiresolution analyses and the theory of (multi-integer) shift-invariant spaces
of Z-2(Rd) [5, 6, 9, 10] was pointed out by several authors (see [3, 11, 12, 13], for
example). Especially, de Boor, DeVore and Ron [3] presented a natural generator for
the wavelet space when the integer translates of a scaling function form a Riesz basis
for the initial space of a multiresolution analysis (see the next section for the relevant
definitions). When we consider, however, a frame multiresolution analysis in which the
integer translates of a scaling function form a frame for the initial space, their generator
may not be adequate. For the frame multiresolution analysis does not admit a minimal
wavelet set if it is degenerate in a sense which will be explained in Section 3.

In this paper, we find a condition for a frame multiresolution analysis to admit a
minimal wavelet set (Theorem 5), thereby generalising the results in [2, 13], and present
a natural candidate for a generator of the wavelet space of a given frame multiresolution
analysis. We also analyse the generator by applying the Gramian analysis of [3, 16] to
show that the frame bounds of the generator shrink (Corollary 7).

The rest of the paper is organised as follows. Preliminary discussions are given in
the next section. The statements and the proofs of the main results are presented in
Section 3.
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2. PRELIMINARIES

First, let us introduce a multivariate generalisation of the frame multiresolution
analysis in [1].

DEFINITION 1: ({V*}jfc6z,y>) is said to be a frame multiresolution analysis of
L2{Rd) if each Vk is a closed subspace of L2(Rd) and <p G Vo such that:

(1) V^cVk+u k€Z;

(2) TJV*

(3) D(Vk) = Vk+u fceZ;

(4) {Taip : a G Zd} is a frame for Vo,

where D : L2(Rd) —> L2(Rd) is the unitary dyadic dilation operator defined via
Df(x) := 2d/2f(2x), and Ty : L2(Kd) ->• L2{Rd) the unitary translation operator de-
fined v i a Tyf{x) : = f ( x - y ) , y € R d .

The function <p is called a scaling function of the frame multiresolution analysis.
Let WQ := Vi QVQ. If there exists a wavelet set {tpi,ip2,--- >^n} C Wo such that

{Taipj : ct G Zd, 1 ^ j < n} is a frame for Wo with frame bounds A and B, then it is easy
to see that {DkTaif)j : k e Z,a e Zd,l ^ j ^ n} is a, frame for L2(Kd) with the same
frame bounds A and B simply because L2(Rd) = ($Dk(W0) by Conditions (2) and (3)
of Definition 1. fceZ

In this paper, we apply the Gramian analysis developed in [3, 16] to investigate the
inter-relationship between the spaces Vo, WQ and Vi. Our analysis is based on the theory
of shift-invariant spaces developed in [3, 4, 5, 6, 9, 10, 16] which we briefly review. A
closed subspace S C L2(Rd) is said to be shift-invariant if Taf € 5 whenever / € S and
a € Zd. If $ C L2(Rd), then 5 := S($) := span{Ta<? : a € Z,tp 6 $} is clearly shift-
invariant. In this case, $ is said to be a generator of 5. The length of S is defined to be
m i n { # $ : 5 = «S($), $ C L2(Rd)}, where # denotes the cardinality. We use the following
form of the Fourier transform: for / G L1(Ed)nL2(Rd), f(t) := fRi f{x)e-2iritx dx, where
• denotes the standard inner product on Kd; and it is extended to be a unitary operator
on L2(Rd) via the Plancherel theorem. For / G L2(Rd),x G Rd, let fllx := (T(x-a))aeZd,
which is in P(Zd) almost every x G Td := [-1/2, l/2]d. For f,g G L2(Rd),x G Td, let

9 (*- o)^(x - a),

and let ip(x) := [(p, (p){x)ll2. It is shown in [5, 6, 9, 10] that

(1) 5 | | X : = {?\\x : f e S } = WPSS{$\\* • <P €

S\\x is called the fibre space at x. The following is [4, Theorem 2.9]. We use the convention
that g{x)/h{x) - 0 for x £ supp(/i) := {x G Rd : ft(a;) ^ 0}.
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THEOREM 2 . ([3, 4 , 5]) Let S :- S({<p}), and let Pv be the orthogonal pro-

jection onto S fonpe L 2 (R d ) . Then,

{p*f)"* ~ WW^V{X)

for almost every x € Td.

The spectrum o(S) of 5 is defined to be {x 6 Td : S\\x ^ {0}}. Note that the
spectrum is defined modulo sets of Lebesgue measure zero. In what follows, all sub-
sets of Rd are considered modulo Lebesgue measure zero sets with occasional excep-
tions which are clear from the contexts. For a finite $ C L2(Rd) and x € V, let
G«(z) := ([ tp,ip](x)) . t , a non-negative definite matrix, which we call the Gramian of
5($) at x. The following is [16, Theorem 2.3.6].

THEOREM 3 . ([16]) Let A$(x) be t ie smallest non-zero eigenvalue of G*(x) and
A$(x) be the largest eigenvalue ofG9(x) for x £ T*. Then, {Ta(p : a € Zd, <p € <&} is a
frame for <S($) with frame bounds A and B if and only if A ^ Aj(i) ^ A$(x) ^ B for
almost every x € a (5 ($ ) ) .

Notice that (1) implies that CT(S($)) = {x e T* : G»(i) / 0} and that
|| = rankG$(x) for almost every x € T*. Notice also that the rank of

x) is independent of the generator $, whereas the eigenvalues of G$(x) are not.

3. GRAMIAN ANALYSIS

Suppose that a frame multiresolution analysis ({Vfc}/tezi f) is given. Then, obviously
). Moreover, we have, by (1),

(2) a(V0)=supp (£(•))•

Let A and B be the frame bounds of the integer translates of ip. Since Vo C V\ = i?(Vo)
and since {DTatp : a € Zd} is a frame for Vi, there exists m € L2(Td) [5] such that

(3) !p(x) = m ( f ) ^ ( f ) almost every x € Rd.

This m is not unique, since {DTaip : a € Zd} is only assumed to be a frame, not

necessarily a Riesz basis. Notice that each a e Z d can be written uniquely as a = Id -I- /J

for some a ' € Z d and some

/? € P := {(ex> £2, • • • , ed) : et = 0 or 1,1 ^ i ^ d).

We see that {DTa<p : a € Zd} = {TaDT0<p : a 6 Zd,,0 6 F } by noticing that

= T(i/2)yD for y e Rd. This shows that Vi = 5(11), where

II := {DT(,<p : j 3 £ P } .
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Note that the integer translates of IT form a frame for V\. Let Pv be the orthogonal
projection onto S({cp}) = Vo, and let

Then / — P^ is the orthogonal projection onto Wo := V\ QV0. Wo is shift-invariant by [5,
Corollary 3.4]. Since Pv commutes with each integer translation operator [5], it is easy
to see that {Ta£e : a € Zd, j3 € P} is also a frame for Wo with the same frame bounds A
and B, hence a wavelet set. In particular, Wo = <5(E). Theorem 3 implies that

(4) A < Xt{x) ^ A2(a:) s$ B almost every x 6 a{W0),

where Xt(x) and A=(z) denote the smallest non-zero eigenvalue and the largest eigenvalue
of Gs(x), respectively. We sharpen these inequalities in Corollary 7. Following [1, 2, 13],
we say that the frame multiresolution analysis admits a minimal wavelet set if there is a
wavelet set consisting of 2d — 1 elements whose integer translates form a frame for WQ.
When d = 1, the existence problem of a minimal wavelet set is addressed in [2, 13].
Theorem 5 generalises the results in [2, 13].

We now perform a finer Gramian analysis. First, we calculate Gn(x). Notice that
(DTa<p)A(x) = 2-d'2e-*iaxip{x/2). Hence, for x e T",a,/3 € P,

762*

We observe that, for a £ P,

(5) e
10, otherwise.

The following lemma is a slight variation of [3, Lemma 2.33]. Let Gl denote the transpose

of a matrix or a vector G.
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LEMMA 4 . For \i e P and x € T1, oM :- (e~'" ' ' ( I - ' i ) )£6p is an eigenvector of

Gn(x) with respect to the eigenvalue ip{(x - M)/2)

•PROOF: The a-th element of Gnix)^ is

r — u\ 2

by (5). D

For x el4, define a 2d x 2d unitary matrix E(x) := 2-dl2{e-"ia{-x-^)aMP and a

diagonal matrix D{x) := diag(^((a; — y)/2) j . Then, the spectral theorem implies

that

(6) Gu(x) = E(x)D(x)E(xY,

where * denotes the adjoint of a matrix. Hence, (1) implies that

(7) dimWi,,) = rankGn(x) = # { ^ ( ^ ) 2 # 0 : y

We also have

(8)

Note that (3) and the periodisation technique imply that

)(9) >fi(x)2 =

By [5, Corollary 3.4] we have Vo||i © WQ\\X — Vj||i for almost every x S "F*. In particular,

(10) dim(V0||»)+dim(W^||S) = dim(Vi||s)

for almost every x 6 Td. These facts lead us to:

THEOREM 5 . The frame multiresolution analysis admits a minimal wavelet set if
and only if

(11) E:= ix £ V1 : ^ (^y^) ^ ° ' m ( ^ y ^ ) = 0 for each a (E P\

is of Lebesgue measure zero.
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P R O O F : (7), (9) and (10) imply that E consists of those x € V at which dim(V;i||I)
= 2d, dim(Vr

0||I) = 0 and dim(W0||s) = 2d. Hence if E has a positive measure, then the
length of Wo should be 2d by [5, Theorem 3.5]. This proves the necessity. On the other
hand, if E is of zero Lebesgue measure, then (10) implies that dim(Wo||x) < 2d —1 almost
everywhere. Then, again by [5, Theorem 3.5], the length of Wo is less than or equal to
2d — 1. A slight modification of [6, Theorem 3.3] shows that Wo has a generator, with
2d — 1 elements, such that the integer translates of the elements of the generator form a
frame for Wo. 0

An argument similar to the one in the proof of [13, Lemma 3.4] shows that E is
independent of the 1-periodic function m. We say that a frame multiresolution analysis
is degenerate if E has a positive measure. Examples of degenerate and non-degenerate
frame multiresolution analyses are found in [1, 2, 13]. In [3], de Boor et al. noted that
Vi = 5 ( 0 ) , where 6 := {Ta/2<p : a € P}, if supp(£) = Rd. Note that tp € 6 . It is seen
easily ([3]) that

W,ro = S{(I - Pv)Tal2y : a e P\ {(0,0,... ,0)}}

if the integer translates of the scaling function form a Riesz basis of Vo. This generator is
minimal since it consists of 2d — 1 elements. Using this generator of Wo, de Boor, DeVore
and Ron constructed interesting new wavelet sets, and recovered some of the previous
constructions of wavelet sets. If, however, the frame multiresolution analysis considered
is degenerate, then the generator of de Boor et al. is inadequate simply because one more
element is required to be a generator for the degenerate frame multiresolution analysis.
Since E is a generator of Wo whether the frame multiresolution analysis is degenerate
or not, it can be used as a starting point of a construction of a frame wavelet set.
Recall that once a generator of a shift-invariant space is found, the other generators are
essentially given by 1-periodic function-valued matrices and the Gramian of the generator
[5, Corollary 3.23]. We give a more detailed analysis of E.

We calculate the Gramian Gs(x) of Wo at x £ Td with respect to E.

Gs(x)aJ) = {{DTaip - PvDTa<p)\ (DTw - PVDT^} (x) .

= Gn(x)a,e - [(DTa<p)\ (PvDT^r](x)

- [(PvDTa<p)\ (DT^f] (x) + [(PvDTa<p)\ {P^DT^T} (x)

= Gn{x)aJ) - [{DTa<p)\ {PvDTpV)h}{x).

The last equality follows since

[f,(Pp9r](x) = [(/V)A,?](s) = [{Pvf)
A,(Pvg)A](x)

for any f,g € L2{Rd),x G T* by Theorem 2. Temporarily, let

G(x) :=
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Then Gs(x) = Gn{x) - G{x).

G(x)aJ, = [(DTa<p) ,

= - ^ [(DTa<p)\ 0\ (x) [<p, ] (x)

(E «"«-'»"(¥

where we used the periodisation technique in the last equality, and (3) in the penultimate
equality. Define a 2d-dimensional column vector

Then,

(p{x)2G(x)a^ = (at/l-element of E(x)M{x)) • (^""-element ofT3{x)Af(x)).

Hence

G(x) = x)) x (E(x)M(x)Y

This shows that

Gs(x) = Gn(x) - G(x)

= E(x)(D{x) - ~

Hence Gz{x) is unitarily equivalent to D(x) — l/ip(x)2M(x)M(x)*. In particular, the
eigenvalues of the two matrices coincide.
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Let An(x) be the smallest non-zero eigenvalue of Gn(x), and An(x) the largest eigen-
value of Gn(x). Then, Theorem 3 implies that

(12) A ^ An(z) ^ An (a;) ^ B almost every x e a(V0).

, thenWe now characterise the eigenvalues of Gs(x). If ip(x) - 0, that is, if x £
G=(x) = Gn(x). Hence, we concentrate the x € cr(V0).

THEOREM 6 . For x € a{V0), the following hold:

(1) 0 is an eigenvalue of Gs(x);

(2) Suppose that £((x - a ) /2 ) 2 ^ 0, a € P. Then, $((x - a ) /2 ) 2 is an
eigenvalue ofG-={x) if and only if

(13)

where 7O:= P : £((x - /3)/2)2 = <̂ ((x - a)/2)2}.

(3) Let X € R \ ( | ^ ( ( x - 7) /2)2 : 7 G p | U {0}). Tien, A is an eigenvalue of

G=(x) if and oniy if it satisfies the following equation:

(14)

PROOF: For notational convenience, let us define c := (f(x)2, D :— D(x), M
:= M(x), m7 := m((x - 7)/2) and a^ := £((x - j)/2)2,j E P . Then, GH(x) is
unitarily equivalent to D — 1/cMM*. We also let Ep, /? E P , to denote the /3-th standard
orthonormal vector of C2<i.

(1) This can be seen by (10) if we recall that rankG=(x) = dim(Wo||x)- Or this
can be seen directly as follows. Define Y := (rnQ)J,6f.. Y ^ 0 by (9). Then, DY = M
and (Y, M) = c by (3). Hence, (D - l/cMM*)Y = DY - ({Y, M)/c)M = 0. This shows
that 0 is an eigenvalue of G=(x).

(2) Suppose that aa is a non-zero eigenvalue of Gs(x). Then, there exists a non-
zero vector X such that (D - l/cMM*)X = aaX. Hence (D - aaI)X = {{X,M)/c)M.
If (X, M) 7̂  0, then (13) follows by comparing /3-th row of the previous equation for
each ft E Ia- If, on the contrary, {X, M) = 0, then the previous equation shows that
X is an eigenvector of D with respect to the eigenvalue oQ. Hence we may assume that
X = £ Ep. Then 0 = (X, M) = aa

Pel*
X) "ty, which implies (13). Suppose now that (13)

https://doi.org/10.1017/S0004972700040132 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040132


[9] Gramian analysis 299

holds. A direct calculation shows that X := £ Ep is an eigenvector of D — \/cMM*
with respect to the eigenvalue aa. "6/Q

(3) Suppose that (14) holds for A ^ 0 and A ^ aa,a G P. Let X := [aarnal{aa

- X))l
a€p. Then, (D - XI)X = M and {X, M) = c. This shows that (D - l/cMM')X

= XX. Since x G cr(Vo), X is a non-zero vector by (9). Hence A is an eigenvalue
of Gs{x). Suppose, on the other hand, that A is an eigenvalue of D — 1/cMM* with
an eigenvector X. Then, X = ((X,M)/c)dia.g(l/(aa — X))aepM. Since X is a non-
zero vector, (X, M) •£ 0. Left-multiplying cM* on both sides of the equation yields
c(X, M) = (X, M) £ a2 |ma|

2/(aa - A). Hence, £ a2 |mtt|
2 = c = £ aa|ma|

2 by (9). D
a£P aeP aeP

COROLLARY 7 . For almost every x G a(W0),

A ^ \+(x) < Xt(x) < As(i) < An(x) ^ B.

P R O O F : Suppose that x G <r(W0) \ a{V0). Then, x G CT(VI) by (10). Since x G
a(Vj) \ a(V0), Gs(x) = Gn(x). Hence the inequalities hold trivially for this x. Suppose
that x € a(W0) H a(V0). It is enough to show that if A is a non-zero eigenvalue of G=(x)
different from aa for each a G P, then X^(x) ^ A ^ A(i) . By Theorem 6, (14) holds for
such A. Let Q :— {a G P : aa > 0}. Then, (14) can be written as

(15)

The left-hand side of (15) is not 0 by (9) since x G cr(V0). Theorem 3 and Lemma 4 imply
that A < X^(x) ^ aa < An(x) ^ B for a G Q. If A < A£(z), then aQ/(oa - A) > 1 for
a e Q. This shows that (15) is impossible to hold. If A > An(x), then aa/(aa — A) < 0
for a G Q. Again, (15) is impossible to hold. D
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