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1. Introduction. Let Tn denote a tournament of order n,
let G(T ) denote the automorphism group of T , let ,G, denote
n n

the order of the group G, and let g(n) denote the maximum of
|G(T )| taken over all tournaments Tn of order n. Goldberg and
n

Moon conjectured [2] that g(n) < \/—3n-1 for all n> 1 with equality
holding if and only if n is a power of 3. In an addendum to [2] it
was pointed out that their conjecture is equivalent to the conjecture
that if G is any odd order subgroup of Sn, the symmetric group

of degree n, then IG' < \/_3n-1 with equality possible if and only
if n is a power of 3. The latter conjecture was proved in [1] by
John D. Dixon who made use of the Feit- Thompson theorem in his
proof. In this paper we avoid use of the Feit-Thompson result and
give a combinatorial proof of the Goldberg-Moon conjecture.

2. Preliminary results. If in a tournament T there is an arc
n

from a vertex u to a vertex v we say u dominates v and use the
notation (u,v)e T . Let ®u) ={ve T :(uv)Ee Tn} and
n n

Iv) ={ueT :(uv)eT }. If A is a subset of the vertex set of
n n

Tn, then <A> denotes the subtournament of T with vertex set A.
n

Let A be a finite set of n elements. Arbitrarily label the
elements of A with integers chosen from 1,..., r, 1< r <n,
such that each integer between 41 and r inclusive is used as the
label for at least one element of A. Pick subsets A 90,

1<p<r, 1<g< np, such that the following hold:

n
r P
(i) U U A = A and the A are mutually disjoint;
p=t q=1 P, P.q
(ii) each element of A is labelled p;
E)
(iii) Ai,q is a singleton for q =1, 2,..., n1;
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n

p-1
(iv) |A [<2] U U A, |+1 for each p,q satisfying
P9 - . i 1,)
i=1 j=A
2<p<r and 1_<_q5np.
A collection G = {AP q :1<p<r, 1<q< n} satisfying
’ - - - B
conditions (i) - (iv) will be called a partition of A with r Iabels
r
and ¥ n partition sets.
- p=t P T

LEMMA. Let A be a finite set with n elements, n > 2,
and Iet k be the unique positive integer such that

k-1
1+3+...43 <n<1+3+...+3 Then for any partition
G of A with k-r labels, 0 < r < k-1, one of the following is true:

(1) G has at least k+ r + 1 partition sets if

k-1
n>1+3+...+3

(2) @ has at least k+ r + 2 partition sets if

-1 k-1
n>1+3+... ¢+ 3k + 3 .

Proof. Since the result is true for n = 2 we assume n > 3.

k-1
Let I be a partition of A with k labels. If n>1+3+ ... + 3 ,

condition (iv) implies  has at least k + 1 partition sets, and if

k- k-1
n>1+3+...+3 1 + 3 , condition (iv) implies G has at least

k + 2 partition sets. Thus (1) and (2) hold for r = 0. Iet G be a

partition of A with k-r labels, 1 < r < k-1, and s partition

sets. It suffices to show that there exists a partition G' of A with
. with k~r+1 labels and s-1 partition sets.

If there exists an i, 1 < i < k-r, such that n, > 3,
Stz 1 2

we may assume without loss of generality that

A, | <]A, J|<...<]A, |. The sets A' of G' are defined
i,1' — i,2'— - Lo, P

as follows: A! = A for p =1, ..., i-1 and q =1, ..., n .
P,4 P,q p

Al = A f =1,..., -2, A! = A A _, and

i,q  “i,q+z 071 BB Ay TR VAL

AI;‘H,q:Ap,q for p=i+1,...,k-r and q ='1,...,np. Label the

elements of AI'D q with p for p=1,..., k-r+1 and q =1,..., np.

It is easy to verify (' is a partition of A with k-r+1 Ilabels and
s-1 partition sets.

If there is no i, 1 <i < k-r, such that ni > 3, then there
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exist i and j, 1 < i<j < k-r, such that ni =n, = 2. For if there
- - J

were not there would be at most k-r+1 partition sets and by condition
(iv) there would be at most

1434 435 < 1+3+...+3 <n

elements of A. Pickthe smallest i and j for which n, =n, = 2

with i< j. Without loss of generality we may assume
lAi, 1, < lAi,ZI < lAj,Zl < lAj, 1|. Define the sets of G' as follows.

Pick an element of Aj,Z and define A'L 1 to be this singleton.
Distribute the remaining elements of Aj 2 in the following way in
lexicographic order with respect to the ir’ldices of Ap q: for

p<j, p # i, from the elements of Aj,Z remaining ai"ter the previous

step (the first step is the definition of A'1 1) pick a subset X such that

P
3 A ) =2 ! +1
(3) | p,1 U x| 'ltfi Ak,:tl
and define A;)+1’1 =AP;'1 U X. If p=1i pick X such that
i
4 A A =2 '
(4) [iAU i’?_UXI ]UAk’1]+1

k=1

and define A!
i+1

not enough elements of A, 2
J>

(3) or (4), then use all the remaining elements and the process terminates.

In any case, the process terminates before or with A, 1 where we
Js

define A! to be A, together with all elements of A,
j+1,1 j.1 j,2

after the previous stages. If the process terminates with A 1 where
)

= A, 1 U A, 2 U X. If at some stage there are
i, i,

remaining to achieve equality in

remaining

p<i, then let A;+1, " = Ai, 1 J Ai,Z' If Ap,q is any set that receives

no element of A, _, define A! = A . Label any element of
j.2 pt+i,q P,q

Al with p for p =1,...,k-r+1.
G' certainly satisfies conditions (i), (ii), and (iii). Condition (iv)
is satisfied by Al'a q for p # j+1. 1If the process terminates before

’

reaching A, ,, thatis, if A! =A. ,, th Al L.
mne i, 1 j+1,1 j» 1 en j+1,1 satisfies
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condition {iv). Assume A, ) contributes elements to A!H R Then
J’ J H
j 4
) U A =143+, 4370
p:1 p!
Because of the choice of i and j and condition (iv)
-1
IAP,1|§ 3277 for p=4,...,i-1
|A [<3i_1 for q =1, 2
i’q -
- -2
o | <3® 1123777 for p=isd,...,
p,q —
. np
J . . .
-1 -1 -2
Then |U U A [<1+3+...+3 7 42:37 42.37°%
p:'l q:1 ’ i ii2 .
Therefore, by (5) A!_H 1 contains at most 2-3J + 2*3J <3J
J s
]
= 2, U A! I + 1 elements. Thus (' is a partition of A with
p,1
p=1
k-r+1 labels and s-1 partition sets. The proof of the lemma is
complete.

3. Main result. It is easy to verify that g(1) =1, g(2) =1,
and g(3) = 3. We are now in a position to prove the following:

THEOREM. If g(n) is the maximum value of IG(T )I taken over
= o/ Bfen over

all tournaments T of order n, then g(n) < '\/—31%1, n=1,2,...,
n =

k
with equality holding if and only if n = 3 for some non-negative

irite ger k.

Proof. We proceed by induction after observing the result is
true for n = 1,2, and 3. Let T be a tournament of order n > 4.
n Z

Pickavertex ueT andlet D ={ve Tn : a(u) =v for some
n
@€ G(T )}. Let T, =<D) and T 4 =<Tn-D>. If d<n, then

by the induction hypothesis we have

n-2
IG(Tn)l < {G(Td)[ |G(Tn_d)l < N3O
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If Td =T , then it is clear n must be odd. Letting
n

G ={a2eG(T ) : afu) =u} and writing n =2m + 1 we have

u n

]G(Tn)l = (2m + '1)|Gu| by [3, Theorem 3.2, p.5]. Any Ye G maps
J(u) onto itself and G(u) onto itself, Thus, we can view Gu as a

subgroup of the direct product of G( <(7(u)>) and G(<,9(u)>).
Therefore, ,Gu, < ,He | ,G(<G(u)>)| where He is viewed as the

group of automorphisms of T Ieaving u and each vertex of O(u)
n
fixed and, |G | < |H! l'G(<J(U.)>)l where H'e is viewed as the
u' — e

group of automorphisms of Tn leaving u and each vertex of J(u) fixed.

For v1, v, € J(u) let v.1 ~ VY, if Vi =v, or if th and v,

have the same score in <J(u>>and dominate exactly the same vertices
of ®(u). TItis clear that ~ is an equivalence relation in J(u).

Moreover, for any two distinct vertices v,, v_ € J(v) there exists

1 2

2 only if vyt Vo Hence, by the

induction hypothesis, if s is the number of equivalence classes in

an o € H such that a(vi) =v
e

S(w), then [H_| < 3T

Let 31 < s,2 <...<s Dbe the distinct scores that occur in
r

<J(u)>. If we assign the label i to the vertices with score s,, then
i

we claim that the equivalence classes relative to ~ form a partition
of J(u) with r labels. Conditions (i) and (ii) obviously are satisfied.
If t is the number of vertices in some equivalence class C whose vertices
are labelled i, then there is some vertex v € C which is dominated
t
by at least q = [/2] other vertices of C, say vy VZ, ey vq,
where [] denotes the greatest integer function. Clearly

Vyr Vor cees Vq ¢ J(v) and any vertex of (X(u) dominated by v is

in C(v) along with u itself. Thus, the score of v, in
i

<J(v)>, i=1,...,q, is strictly Iess than its score in <J(u)> .
Since <_9(u)> and <,_9(v)> are isomorphic, there are at least q vertices
of J(u) with score strictly Iless than s,. Therefore, conditions (iii) and

i

(iv) are satisfied.

For any two vertices w W, € J(u), let W, AW if

1’ 2

w, =W, or if vy and w, have the same score in <O’(u)> and are

dominated by exactly the same vertices of J(u). Again, ,H' ] < \/-3m-s
el =

where s is the number of equivalence classes relative to a » If
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s >s_>...>s are the distinct scores in <({(u)> and vertices with
1 2 r

with score s, are given the label i, then the equivalence classes
1

relative to & form a partition of (J(u) with r labels.

. ips . 2k
Let k be the unique positive integer such that N37T < 2m + 1

2k+2 k-1 2k
< N3 "% Which implies 1+ 3 +... +3 < m if 2m+ 1 >3

- - 2k
and 1+3+...+3k1+3k1<mif 2m + 1> 3 1 Let q be

the least number of distinct scores occuring in <C‘;’(u)> or Jdu)>.
Without loss of generality suppose q is the number of distinct scores
in <J(u)> . If 9> k+ 1, then by the induction hypothesis |G(Tn)[ =

2k+2 -k-1 -k-1
+ \/—3m k \Bm

(2m+1) | Gul < (2m+'1)lG(<,g(u)>| | G(C ) > ] < N3
2 -

= \3 RSN 1. If g =k-r for 0 <r <k-1, then using the

equivalence classes relative to ™~ with the lemma and the induction

~k-r-1 2k 2k+1
hypothesis, we obtain ,He’ < BT i B <2mil <AB

2k+1 m-k-r-1 m-k+r

which implies |G(T )| = (2m+1)] Gu, < A3 A3 N3
n =
2 -1 2k+1 2k+2
< N3 = BT Similarly, if 3T <2m+ 1< B, the
. . 2k+2 m-k-r-2 m-k-r
lemma implies |[G(T )| = 2m+1)| G | < 3 N3 \3
n u' —
2 -
< N: m _ '\Bn '1.

From the above it is immediate that if n is not a power of 3,
-1 -1
then g(n) < r\/_3n . Formula (6) of [2] shows that g(n) > \/3n
-1
if n is a power of 3 and thus g(n) = r\/ﬁ—%n if n is a power of 3.

This completes the proof of the theorem.

4. Conclusion. As pointed out in [3], the following result
is a consequence of the preceding theorem.

COROLLARY. For each n =1, 2, ... if Gn denotes a subgroup

of Sn of maximum odd order, then |G | < '\/—3n-1 with equality if and
20 nl =

k
only if n =3 for some integer k.
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