A COMBINATORIAL PROOF OF A CONJECTURE OF GOLDBERG AND MOON

Brian Alspach

(received April 17, 1967)

- 1. Introduction. Let T_n denote a tournament of order n, let $G(T_n)$ denote the automorphism group of T_n , let |G| denote the order of the group G, and let g(n) denote the maximum of $|G(T_n)|$ taken over all tournaments T_n of order n. Goldberg and Moon conjectured [2] that $g(n) \leq \sqrt{3}^{n-1}$ for all $n \geq 1$ with equality holding if and only if n is a power of 3. In an addendum to [2] it was pointed out that their conjecture is equivalent to the conjecture that if G is any odd order subgroup of S_n , the symmetric group of degree n, then $|G| \leq \sqrt{3}^{n-1}$ with equality possible if and only if n is a power of 3. The latter conjecture was proved in [1] by John D. Dixon who made use of the Feit-Thompson theorem in his proof. In this paper we avoid use of the Feit-Thompson result and give a combinatorial proof of the Goldberg-Moon conjecture.
- 2. Preliminary results. If in a tournament T_n there is an arc from a vertex u to a vertex v we say u dominates v and use the notation $(u,v)\in T_n$. Let $\mathcal{O}(u)=\{v\in T_n:(u,v)\in T_n\}$ and $\mathcal{J}(v)=\{u\in T_n:(u,v)\in T_n\}$. If A is a subset of the vertex set of T_n , then $\langle A\rangle$ denotes the subtournament of T_n with vertex set A.

Let A be a finite set of n elements. Arbitrarily label the elements of A with integers chosen from 1,..., r, $1 \le r \le n$, such that each integer between 1 and r inclusive is used as the label for at least one element of A. Pick subsets A p,q $\neq \emptyset$, $1 \le p \le r$, $1 \le q \le n$, such that the following hold:

(i)
$$\bigcup_{p=1}^{n} \bigcup_{q=1}^{n} A_{p,q} = A$$
 and the $A_{p,q}$ are mutually disjoint;

- (ii) each element of A is labelled p;
- (iii) $A_{1,q}$ is a singleton for $q = 1, 2, ..., n_1$;

Canad. Math. Bull. vol. 11, no. 5, 1968

(iv)
$$|A_{p,q}| \le 2 \begin{vmatrix} p-1 & n_i \\ \cup & \bigcup \\ i=1 & j=1 \end{vmatrix} + 1$$
 for each p,q satisfying $2 \le p \le r$ and $1 \le q \le n_p$.

A collection G = $\{A_{p,q} : 1 \le p \le r, 1 \le q \le n_p\}$ satisfying conditions (i) - (iv) will be called a <u>partition of A with r labels</u>

and $\sum_{p=1}^{n} n_p$ partition sets.

LEMMA. Let A be a finite set with n elements, $n \ge 2$, and let k be the unique positive integer such that $1+3+\ldots+3^{k-1} < n \le 1+3+\ldots+3^k.$ Then for any partition 0 of A with k-r labels, $0 \le r \le k-1$, one of the following is true:

- (1) G has at least k+r+1 partition sets if $n>1+3+\ldots+3^{k-1}$
- (2) a <u>has at least</u> k + r + 2 <u>partition sets if</u> $n > 1 + 3 + ... + 3^{k-1} + 3^{k-1}$.

<u>Proof.</u> Since the result is true for n=2 we assume $n\geq 3$. Let G be a partition of A with k labels. If $n>1+3+\ldots+3^{k-1}$ condition (iv) implies G has at least k+1 partition sets, and if $n>1+3+\ldots+3^{k-1}+3^{k-1}$, condition (iv) implies G has at least k+2 partition sets. Thus (1) and (2) hold for r=0. Let G be a partition of A with k-r labels, $1\leq r\leq k-1$, and s partition sets. It suffices to show that there exists a partition G of A with with k-r+1 labels and s-1 partition sets.

If there exists an i, $1 \le i \le k-r$, such that $n_i \ge 3$, we may assume without loss of generality that $|A_{i,1}| \le |A_{i,2}| \le \cdots \le |A_{i,n_i}|$. The sets $A'_{p,q}$ of G' are defined as follows: $A'_{p,q} = A$ for $p = 1, \ldots, i-1$ and $q = 1, \ldots, n$. Phase $A'_{i,q} = A_{i,q+2}$ for $q = 1, \ldots, n_{i-2}$, $A'_{i+1,1} = A_{i,1} \cup A_{i,2}$, and $A'_{p+1,q} = A_{p,q}$ for $p = i+1,\ldots,k-r$ and $q = 1,\ldots,n_p$. Label the elements of $A'_{p,q}$ with p for $p = 1,\ldots,k-r+1$ and $q = 1,\ldots,n_p$. It is easy to verify G' is a partition of A with k-r+1 labels and s-1 partition sets.

If there is no i, $1 \le i \le k$ -r, such that $n_i \ge 3$, then there

exist i and j, $1 \le i < j \le k-r$, such that $n_i = n_j = 2$. For if there were not there would be at most k-r+1 partition sets and by condition (iv) there would be at most

$$1 + 3 + \dots + 3^{k-r} \le 1 + 3 + \dots + 3^{k-1} < n$$

elements of A. Pick the smallest i and j for which $n_i = n_j = 2$ with i < j. Without loss of generality we may assume $|A_{i,1}| \le |A_{i,2}| \le |A_{j,2}| \le |A_{j,1}|$. Define the sets of G' as follows. Pick an element of $A_{j,2}$ and define $A'_{j,1}$ to be this singleton. Distribute the remaining elements of $A_{j,2}$ in the following way in lexicographic order with respect to the indices of $A_{j,2}$ for p < j, $p \ne i$, from the elements of $A_{j,2}$ remaining after the previous step (the first step is the definition of $A'_{j,1}$) pick a subset X such that

(3)
$$|A_{p,1} \cup X| = 2 | \bigcup_{k=1}^{p} A_{k,1}! + 1$$

and define $A'_{p+1,1} = A_{p,1} \cup X$. If p = i pick X such that

(4)
$$|A_{i,1} \cup A_{i,2} \cup X| = 2 | \bigcup_{k=1}^{i} A_{k,1}^{i} | + 1$$

and define $A_{i+1}^! = A_{i,1} \cup A_{i,2} \cup X$. If at some stage there are not enough elements of $A_{j,2}$ remaining to achieve equality in (3) or (4), then use all the remaining elements and the process terminates. In any case, the process terminates before or with $A_{j,1}$ where we define $A_{j+1,1}^!$ to be $A_{j,1}$ together with all elements of $A_{j,2}$ remaining after the previous stages. If the process terminates with $A_{p,1}$ where p < i, then let $A_{i+1,1}^! = A_{i,1} \cup A_{i,2}$. If $A_{p,q}$ is any set that receives no element of $A_{j,2}$, define $A_{p+1,q}^! = A_{p,q}$. Label any element of $A_{p,q}^!$ with $P_{p,q}^!$ where

G' certainly satisfies conditions (i), (ii), and (iii). Condition (iv) is satisfied by A' for $p \neq j+1$. If the process terminates before reaching A' that is, if A' = A, then A' +1, 1 satisfies

condition (iv). Assume $A_{j,2}$ contributes elements to $A_{j+1,1}$. Then

(5)
$$\left| \bigcup_{p=1}^{j} A_{p,1}^{\dagger} \right| = 1 + 3 + \dots + 3^{j-1}.$$

Because of the choice of i and j and condition (iv)

$$|A_{p,1}| \le 3^{p-1}$$
 for $p = 1, ..., i-1$
 $|A_{i,q}| \le 3^{i-1}$ for $q = 1, 2$
 $|A_{p,q}| \le 3^{p-1} + 2 \cdot 3^{p-2}$ for $p = i+1, ..., j$.

Then $\begin{vmatrix} j & n \\ 0 & 0 \\ p=1 & q=1 \end{vmatrix} \le 1+3+\ldots+3^{j-1}+2\cdot 3^{j-1}+2\cdot 3^{j-2}$. Therefore, by (5) A' contains at most $2\cdot 3^{j-1}+2\cdot 3^{j-2}<3^j$ = $2\begin{vmatrix} 0 & A' \\ p=1 & p, 1 \end{vmatrix}+1$ elements. Thus G' is a partition of A with k-r+1 labels and s-1 partition sets. The proof of the lemma is complete.

3. Main result. It is easy to verify that g(1) = 1, g(2) = 1, and g(3) = 3. We are now in a position to prove the following:

THEOREM. If g(n) is the maximum value of $|G(T_n)|$ taken over all tournaments T_n of order n, then $g(n) \leq \sqrt{3}^{n-1}$, $n = 1, 2, \ldots$, with equality holding if and only if $n = 3^k$ for some non-negative integer k.

<u>Proof.</u> We proceed by induction after observing the result is true for n = 1, 2, and 3. Let T_n be a tournament of order $n \ge 4$. Pick a vertex $u \in T_n$ and let $D = \{v \in T_n : \alpha(u) = v \text{ for some } \alpha \in G(T_n)\}$. Let $T_d = \langle D \rangle$ and $T_{n-d} = \langle T_n - D \rangle$. If d < n, then by the induction hypothesis we have

$$|G(T_n)| \le |G(T_d)| |G(T_{n-d})| \le \sqrt{3}^{n-2}$$

If $T_d = T_n$, then it is clear n must be odd. Letting $G_u = \{\alpha \in G(T_n) : \alpha(u) = u\}$ and writing n = 2m + 1 we have $|G(T_n)| = (2m + 1)|G_u|$ by [3, Theorem 3.2, p.5]. Any $\gamma \in G_u$ maps $\mathfrak{J}(u)$ onto itself and G(u) onto itself. Thus, we can view G_u as a subgroup of the direct product of $G(\langle G(u) \rangle)$ and $G(\langle \mathfrak{J}(u) \rangle)$. Therefore, $|G_u| \leq |H_e| |G(\langle G(u) \rangle)|$ where H_e is viewed as the group of automorphisms of T_n leaving u and each vertex of G(u) fixed and, $|G_u| \leq |H_e| |G(\langle \mathfrak{J}(u) \rangle)|$ where H_e is viewed as the group of automorphisms of T_n leaving u and each vertex of G(u) fixed.

For v_1 , $v_2 \in \mathfrak{J}(u)$ let $v_1 \sim v_2$ if $v_1 = v_2$ or if v_1 and v_2 have the same score in $\mathfrak{J}(u)$ and dominate exactly the same vertices of $\mathfrak{C}(u)$. It is clear that \sim is an equivalence relation in $\mathfrak{J}(u)$. Moreover, for any two distinct vertices v_1 , $v_2 \in \mathfrak{J}(v)$ there exists an $\alpha \in H_e$ such that $\alpha(v_1) = v_2$ only if $v_1 \sim v_2$. Hence, by the induction hypothesis, if s is the number of equivalence classes in $\mathfrak{J}(u)$, then $|H_e| \leq \sqrt{3}^{m-s}$.

Let $s_1 < s_2 < \dots < s_r$ be the distinct scores that occur in $(\mathfrak{g}(u))$. If we assign the label i to the vertices with score s_i , then we claim that the equivalence classes relative to \sim form a partition of $\mathfrak{g}(u)$ with r labels. Conditions (i) and (ii) obviously are satisfied. If t is the number of vertices in some equivalence class C whose vertices are labelled i, then there is some vertex $v \in C$ which is dominated by at least $q = \begin{bmatrix} t \\ 2 \end{bmatrix}$ other vertices of C, say v_1, v_2, \dots, v_q , where [] denotes the greatest integer function. Clearly $v_1, v_2, \dots, v_q \in \mathfrak{g}(v)$ and any vertex of $\mathfrak{G}(u)$ dominated by v is in $\mathfrak{G}(v)$ along with u itself. Thus, the score of v_i in $\mathfrak{g}(v)$, $v_i = 1, \dots, v_q$, is strictly less than its score in $\mathfrak{g}(u)$. Since $\mathfrak{g}(u)$ and $\mathfrak{g}(v)$ are isomorphic, there are at least v_i vertices of $\mathfrak{g}(u)$ with score strictly less than v_i . Therefore, conditions (iii) and (iv) are satisfied.

For any two vertices w_1 , $w_2 \in \mathcal{O}(u)$, let $w_1 \approx w_2$ if $w_1 = w_2$ or if w_1 and w_2 have the same score in $\mathcal{O}(u)$ and are dominated by exactly the same vertices of $\mathfrak{J}(u)$. Again, $|H_e^t| \leq \sqrt{3}^{m-s}$ where s is the number of equivalence classes relative to \mathfrak{F} . If

 $s_1 > s_2 > \dots > s_r$ are the distinct scores in $\langle (\ (u) \rangle$ and vertices with with score s_i are given the label i, then the equivalence classes relative to \approx form a partition of C(u) with r labels.

Let k be the unique positive integer such that $\sqrt{3}^{2k} < 2m + 1 \le \sqrt{3}^{2k+2}$ which implies $1+3+\ldots+3^{k-1} < m$ if $2m+1>\sqrt{3}^{2k}$ and $1+3+\ldots+3^{k-1}+3^{k-1} < m$ if $2m+1>\sqrt{3}^{2k+1}$ Let q be the least number of distinct scores occurring in $\langle \Im(u) \rangle$ or $\langle \Im(u) \rangle$. Without loss of generality suppose q is the number of distinct scores in $\langle \Im(u) \rangle$. If $q \ge k+1$, then by the induction hypothesis $|G(T_n)| = (2m+1)|G_u| \le (2m+1)|G(\langle \Im(u) \rangle)|G(\langle \Im(u) \rangle)| \le \sqrt{3}^{2k+2}\sqrt{3}^{m-k-1}\sqrt{3}^{m-k-1}$ which implies $|G(T_n)| = \sqrt{3}^{m-k-r-1}$ if $\sqrt{3}^{2k} < 2m+1 < \sqrt{3}^{2k+1}$ which implies $|G(T_n)| = (2m+1)|G_u| \le \sqrt{3}^{m-k-r-1}$ if $\sqrt{3}^{2k} < 2m+1 < \sqrt{3}^{2k+1}$ which implies $|G(T_n)| = (2m+1)|G_u| \le \sqrt{3}^{2k+1}$ $\sqrt{3}^{m-k-r-1}$ $\sqrt{3}^{m-k$

From the above it is immediate that if n is not a power of 3, then $g(n) < \sqrt{3}^{n-1}$. Formula (6) of [2] shows that $g(n) \ge \sqrt{3}^{n-1}$ if n is a power of 3 and thus $g(n) = \sqrt{3}^{n-1}$ if n is a power of 3. This completes the proof of the theorem.

4. Conclusion. As pointed out in [3], the following result is a consequence of the preceding theorem.

COROLLARY. For each n = 1, 2, ... if G_n denotes a subgroup of S_n of maximum odd order, then $|G_n| \le \sqrt{3}^{n-1}$ with equality if and only if $n = 3^k$ for some integer k.

REFERENCES

- 1. John D. Dixon, The maximum order of the group of a tournament. Canad. Math. Bull. 10 (1967) 503-505.
- 2. M. Goldberg and J. W. Moon, On the maximum order of the group of a tournament. Canad. Math. Bull. 9 (1966) 563-569.
- 3. H. Wielandt, Finite permutation groups. (Transl. R. Bercov). (Academic Press, New York, 1964).

Simon Fraser University