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Summary

It is known that under neutral mutation at a known mutation rate a sample of nucleotide
sequences, within which there is assumed to be no recombination, allows estimation of the effective
size of an isolated population. This paper investigates the case of very long sequences, where each
pair of sequences allows a precise estimate of the divergence time of those two gene copies. The
average divergence time of all pairs of copies estimates twice the effective population number and
an estimate can also be derived from the number of segregating sites. One can alternatively
estimate the genealogy of the copies. This paper shows how a maximum likelihood estimate of the
effective population number can be derived from such a genealogical tree. The pairwise and the
segregating sites estimates are shown to be much less efficient than this maximum likelihood
estimate, and this is verified by computer simulation. The result implies that there is much to gain
by explicitly taking the tree structure of these genealogies into account.

1. Introduction

The famous paper of Cann, Stoneking & Wilson
(1987) has focused attention on the potential of
sequence samples from populations to illuminate
population parameters such as effective population
sizes and migration rates.

We can observe the numbers of substitution by
which sequences differ. Under the neutral mutation
model these differences are expected to accumulate at
a rate of u per site per generation. We can estimate
how long ago, in terms of mutational events, the
sequences diverged. Under genetic drift, the actual
divergence times of the sequences are related to the
effect population size N,. If x4 is known, we can
convert the mutational scale into a time scale and
estimate N,. If x4 is not known, the best we can do
is to estimate N,u. In this paper I will discuss
the problem in terms of the estimation of 4N, u.
This is equivalent to estimation of N, if x is
known.

Nei & Tajima (1981) have suggested the use of the
average number of differences per site between two
sequences, which they call the nucleotide diversity, for
estimation of 4N, u. Tajima (1983) and Nei (1987)
give a formula for the variance of the estimate. A
slightly different approach is used by Avise, Ball &
Arnold (1988 ; see also Avise, 1989 and Ball, Neigel &
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Avise, 1990). They take pairs of sequences and make
an estimate of divergence time from each. They avoid
using all pairs of sequences in order to make the
individual estimates more independent. In an isolated
randomly mating population, we expect the divergence
time for a randomly chosen pair of gene copies to be
exponentially distributed with mean 2N,. They fit the
observed distribution of pairwise estimates to an
exponential distribution in order to estimate this
quantity.

Watterson (1975) has presented results on the
number of segregating sites at a locus under the
neutral ‘infinite sites’ model, which can also be used
as the basis for an estimate the N, or 4N, . It is
important to realize when reading the literature on
infinite sites models that the 4 which is described there
is the mutation rate per locus; throughout this paper
it will be the mutation rate per site.

Neither of these estimates makes the most efficient
use of such data. In this paper I will discuss maximum
likelihood estimation, which I will show is con-
siderably more efficient. Its efficiency is demonstrated
both theoretically and by computer simulation. The
present paper discusses only the extreme case of an
infinitely long nucleotide sequence ; the more practical
matter of dealing efficiently with sequences of finite
length requires computationally intensive techniques
that will be covered elsewhere. For the moment the
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objective is simply to show the weakness of the
pairwise and segregating sites approaches.

2. A maximum likelihood method

In hopes that it will make efficient use of the data, let
us make a maximum likelihood estimate of 4N, # in
the case of long sequences. We assume that the
sequences allow us to estimate their genealogy without
error, and that there is a single such genealogy, i.e. no
recombination has occurred within the sequences
during the relevant period of time. The genealogy is
assumed to be produced by Kingman’s ‘coalescent’
process: we assume that to be a good enough
approximation to the genealogy produced by random
genetic drift in a finite population. This will be true if
N, is not small.

The results of Kingman (1982 a4, ) on the coalescent
and those of Harding (1971) on random trees establish
that under the coalescent the prior distribution on the
genealogy assigns equal probability to all possible
bifurcating trees with interior nodes ordered in time.
The # tips are assumed to be contemporaneous. Each
interior node has a time, and if two trees differ in the
order of these times they are considered to be different.
Kingman’s coalescent also places a prior on the times.
Starting from the » tips, which occur at time 0 (the
present) the time back to the most recent coalescent
event is exponentially distributed with expectation
4N,/[n(n—1)]). This is an approximation, which is
excellent for large N, when n < N,, as is usually the
case.

Tavaré (1984) has reviewed the logic of this
approximation. Strictly speaking, it requires that as
we take larger and larger values of N, we observe the
process on a time scale whose units are N, generations.
If we scale time in expected mutations per site (as we
would if we did not know ), the mean of the scaled
time u, would be 4N, u/[n(n—1)]. We will in effect
invoke the diffusion approximation, by assuming that
N,— oo and u—0 in such a way that their product
remains constant. Thus 4, x will equal some constant
0, and we are approximating the genealogy of the
actual population which has finite values of N, and
by Kingman’s coalescent process.

Prior to the most recent coalescence, there were
n—1 tips, and the interval of scaled time #,_, back to
the previous coalescent event is independently ex-
ponentially distributed with mean 4N, u/[(n—1)
(n—2)]. In general, if § = 4N, u then, scaling time in
expected mutations per site,

u, ~ exp (0/[k(k—1)]), M

with k=n,n—1,...,2.

The topology of the genealogical tree has no
information about 6. We have already seen that all
topologies with time-ordered nodes are equiprobable,
so that their distribution does not depend on 6. All
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information about @ is contained in the scaled
coalescence times and the intervals u, between them.

Assume that we have collected a sample of n long
sequences from a random-mating population whose
sequences are diverging under neutral mutation. The
sequences are sufficiently long that we can infer
precisely the genealogical tree connecting those
sequences, and from it the scaled time intervals u,.
Thus we will consider the u, to have been observed.

The kth of these has the exponential density function

k(k—l)exp[_k(k—l)u]

S = 9

7 7

so that the full set of 1,5 has a joint density function,
the likelihood

L= ﬁfk(uk)

? k(k_l)exp[—k(k—1)uk]. 3)

-1
v 0 6

Taking logarithms, the log-likelihood is

InL=YInk+>In(k—1)—(n—1)In6

k=2 k=2

o S k=1, (@
0 pma
To find the maximum likelihood estimate for 6 we
differentiate with respect to it. The first two terms,
which are logarithms of factorials, do not contain 6
and disappear, so that

dinL n—-1 12

20 = —T+b§l§2k(k—1)uk. (5)

Equating this to zero and solving for 6, we get as the
maximum likelihood estimate

Skk—=Du,
= —
— (6)
This is a simple average of the k(k—1)u,, whose
variance is easily obtained. Since the variance of the
exponential variate u, is the square of its mean,

n

Var () = _t 3 k*(k—1)? Var (i)

(n—1)* 5
= =Ty R = 1 O/l — 1)
6
-, )

so that the squared coefficient of variation of @ is
simply
Var (é) 1

6° n—1’

®)
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Although the estimate in equation (6) is the
maximum likelihood estimate, it could also be derived
by many other methods. It is the minimum variance
unbiased estimate, the method of moments estimate,
and the weighted least squares estimate as well.

Note that the quantities k(k — 1) », are independent
and all exponentially distributed with the same
expectation 6. This suggests that it would be straight-
forward, given the u,, to construct various goodness-
of-fit tests that could detect whether there is a trend in
the u,, a trend that would indicate that the effective
population sizes had changed through time.

3. The pairwise method

An attractive alternative to maximum likelihood
would be to use pairs of sequences to estimate
divergence time, and to average these estimates over
all pairs of tips. Any two randomly chosen sequences
have a time of divergence which is exponentially
distributed with mean 2N,, so that if the divergence
time is stated in mutations per site it has mean 2N, u
which is /2. If we have long sequences, as we assume
here, we can estimate 6 by taking the mean of all these
pairwise divergence times and then estimating 8 by
doubling that. Since the estimate is a mean of random
variables, each of which has expectation 4, it obviously
makes an unbiased estimate of #. This method is
analogous to the mean codon difference method of
Nei & Tajima (1981) but is not identical to it: theirs is
a pairwise method using mean codon difference,
whereas the present method makes pairwise estimates
of divergence time and then averages them. Pairwise
methods are attractive because they do not involve
estimating the tree topology and have an aura of
robustness.

The aura is, I hope to show, misleading. To show
this, we must compute the variance of the estimate.
Each pair of sequences has a most recent common
ancestor who occurred at the time of one of the
coalescences. If ¢, is the time (scaled in mutations per

AV N/
\ /Y

\/ / 1K

u

]

- 2

Fig. 1. A genealogical tree, showing the relationship
between the u, and the 1. Both are measured in
generations back from the present.
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site) from the present back until the coalescent event
that reduced & lineages to k—1, then by our earlier
definition of the u,,

n
e = Uyt FUy ot Fu = DU ®
ik
Fig. 1 shows the relationship between the ¢, and the
u,. Suppose that we define m, to be the number of
pairs of sequences that have as their most recent
common ancestor the coalescence that occurs when &
lineages are reduced to k—1. Since every one of the
n(n—1)/2 pairs of sequences has one or another
coalescence as their most recent common ancestor, it
must be true that

3 m, = n(n—1)2, (10)

and we can express the pairwise estimate of 8 in terms
of the m, as

4% m;t,
A _i=2
P an—1)" an

The ¢, are random variables, but are not inde-
pendent. We can use (9) to express them in terms of
the u,, which are independent, obtaining

4> m, 2 u,
= (=2 =i 12
which on rearranging summation and changing their
limits becomes

n i
4> u, 2m
) o i=2  j=2
6, ————J——n(n_l) . (13)

This is a weighted sum of the u, but not necessarily
a weighted average. Let
i
Ci=¥Xm (14)
j=2

Substituting this into (13),

42 u,C,
_ i=2
0 = n(n—1) " (15)

For each tree topology with ordered internal nodes,
we can calculate the m,, and from those using (14) the
C,. For that tree topology, we can use (15) to compute
the expectation and variance of §,, using the fact that
the u, are independently exponentially distributed
according to (1). The expectation and variance given
the C, are
4 i 7

n(n—l),Ek(k—l)C"

E6,1C) = (16)

GRH 59
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Table 1. Theoretical variance of the maximum
likelihood estimate of 0, when 8 = 4, of the pairwise
method, using equations (7) and (18), and of
Watterson’s method, from equation (23). The
efficiencies of the pairwise method, from equation
(19) and of Watterson’s method, from equation (24),
are also shown.

n Var(ML) Var(P) Eff(P) Var(W) Eff(W)
2 160000 160000 1-00000 16-0000 1-00000
3 8-0000 8-8889 090000 8-8889 0-90000
4 5-3333 6-8148 0-78261 64793 082313
5 4-0000 5-8667 0-68182 52480 0-76220
6 3-2000 53333 0-60000 4-4917 0-71243
7 2:6667 49947  0-53390 39754 0-67080
8 2:2857 4-7619  0-48000 3.5980 0-63528
9 2-:0000 4-5926 043548 3-3085 0-604 51
10 1-7778 4-4642  0-39823 3-0784 0-57751
15 11429 4-1143 027778 2-3850 047918
20 0-8421 39579 021277 2:0259 041567
25 0-6667 3-8696 0-17228 1-8001 0-37034
30 0-5517 38130 0-14469 1-6424 0-33593
35 0-4706 37737 012470 1-5245 0-30868
40 0-4103 37447  0-10956 1-4323 0-28643
45 0-3636 37226 009768 1-:3577 0-26784
50 0-3265 37050 0-08813 12957 0-25201
60 0-2712 36791 007371 1-1980 0-22637
70 0-2319 36608 0-06334 1-1236 0-20637
80 0-2025 36473 005553 1-0646 0-19024
90 0-1798 36368 0-04943 1-0163 017688
100 0-1616 36285 004454 09759 0-16561
150 0-1074 36038 002980 0-8405 0-12776
200 0-0804 35916 0-02239 0-7607 0-10569
300 0-0535 3-5795  0-01495 0-:6661 0-08033
400 0-0401 3-5734 001122 0-6093 0-06582
500 0-0321 3-5698  0-00898 0-5700 0-05625
and
n 2
Var[6,|C] = 16 > 0 C: a7n

Rn—172 2 k=17 %

The expectation (16) will not be the same from one
ordered tree topology to another. The mean of these
means will be 8, but each ordered tree topology will
have a slightly different mean. For each ordered tree
topology the estimate is biased, but the mean bias is
Zero.

To complete the calculation from this formula of
the variance of the pairwise estimate of 8, we would
need to sum over all ordered tree topologies, obtaining
the C; for each, using formulas (16) and (17), and
adding the mean of (17) to the variance of the means
(16). Alternatively we would need a theory of the C, so
that the summation over ordered tree topologies
would not be necessary.

However, development of such a theory is not
necessary, as Tajima (1983) has developed expressions
for the mean and variance of the mean number of
nucleotide differences between pairs of sequences in a
sample from a single population without recom-
bination. We use the modification of Tajima’s expres-
sions in equations (10.9) and (10.10) of Nei (1987)
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Variance

Sample size (n)

Fig. 2. The variances of the estimates of 8 from the
simulation from n = 3 to n = 500 when computed by the
coalescent maximum likelihood method (Q) the pairwise
method ([J), and Watterson’s method (+). The
continuous curves are the corresponding theoretical

values from equations (7), (18), (23). The value for n = 500
is based on many fewer simulations than the other values.

which takes the number of sites sampled into account.
As the number of sites (Nei’s m,) becomes infinite we
have, in our notion,

2(n® +n+3)6°
In(n—1)

So that from (7) we can compute as the efficiency of
the pairwise method
Var() = 9n
Var(f,) 2n*+n+3)

Variances of the maximum likelihood and pairwise
estimators and the efficiency of the pairwise estimator,
computed from (7), (18) and (19) are presented in
Table 1. These are also shown as solid curves in Figs
2 and 3. Tt will immediately be apparent that the
efficiency of the pairwise method rapidly becomes
small, falling below 0-22 at 20 sequences, 0-11 at 40
sequences, and 0-045 at 100 sequences. The variances
are computed for § = 4 but as they are proportional
to 6% they can be directly computed from this table for
any value of @ by appropriately multiplying these
values.

Note that the variance of the pairwise estimate does
not fall to zero, approaching instead 26%/9 as n— co.
The reason for this behaviour is that the pairwise
estimate takes most of its information from the times
of the earliest few coalescences. It can be shown that
of all pairs of species, a fraction (n+1)/(3n—3) of
them are expected to be separated by the bottom fork
of the genealogical tree. This fraction is always greater
than §. This means that over } of all the information in
the pairwise estimate comes from the time of this one
fork!

Var(4,) = (18)

(19)
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Fig. 3. Theoretical and empirical values of the efficiency
of the pairwise and segregating sites estimates of # from
n =2 to n = 500. The lower curve shows the theoretical
value, computed from equation (19), and the upper curve
the theoretical efficiency of Watterson’s method, from
(24). Squares show the empirical values obtained by
taking the ratio of the empirical variances among
replicates of the coalescent and pairwise estimates, and
pluses the empirical values for Watterson’s method.

That this is so is the consequence of a remarkable
fact. If we consider the two lineages that result from
this earliest fork, and wait until a total of » lineages
exist, the distribution of the number of descendants of
the left lineage is uniform on 1,2,...,n—1. This
follows immediately from theorem 1 of Harding
(1971). It can also be obtained by realising that the
process of splitting of the left and right lineages is
modelled by Polya’s Urn Model. Let us represent the
two original lineages by balls of different colours.
Splitting a random lineage corresponds to choosing a
random ball, and adding to the urn another of that
colour. Expression (2.3) in Feller (1968) then estab-
lishes that when we reach » balls the fraction that are
of a given colour is uniformly distributed. From this
uniform distribution the expected fraction of pairs of
balls that are of different colours is easily calculated as
being (n+1)/(3n—3). Maddison & Slatkin (1991) and
Slowinski & Guyer (1989) have also used this result in
their work on random trees. A reviewer has pointed
out to me that it also can be obtained directly from
formula (2.3) of Saunders, Tavaré & Watterson (1984)
by considering the case i=n, j=2,and /|, =/,=2.
Their formula is then calculating the probability that
among a population of N organisms reproducing
according to the asexual or haploid version of Moran
(1958), when sample of size n has been traced back to
two ancestors, a subsample of a pair of organisms will
still have two distinct parents. This result is interesting
as in this case the formula holds even when the
population size is finite.

In contrast to the pairwise estimate, the maximum
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likelihood estimate uses information from all co-
alescence events. As n increases, it has more and more
coalescences to work from and hence the estimate
becomes more and more accurate.

Ball et al. (1990) has presented simulation results
for their technique of averaging divergence times for a
subset of all pairs of sequences, chosen to that each
sequence is only used once. Their results for an
average divergence time of 50 pairs of sequences
drawn from a simulated population of 100 sequences
shows the expected lack of bias of the estimator, as
well as substantial departures from independence of
the 50 quantities, as expected from the argument given
here.

4. Watterson’s method

Watterson (1975) obtained the distributions of the
number of segregating sites for a sample of # sequences
from a random-mating population under an infinite-
sites model of mutation. The infinite-sites model is the
limit of the present model as the mutation rate
becomes small, and the number of sites large.
Although Watterson does not discuss the estimation
of 8 directly, Nei (1987, p. 255) pointed out that an
estimate can be based on the expectation Watterson
computed for the number of segregating sites in the
sample, that is, the number of sites at which there is
more than one base present. Watterson’s derivation
uses the assumption that there are finitely-many sites,
but assumes that the mutation rate per site x is
allowed to get small and the population size large at
the same rate, so that their product Ng remains
constant. Watterson shows that if K, is the number of
sites showing genetic variation among a sample of n
randomly chosen copies, that the expectation and
variance of K, are to good approximation if n < N:

EK) =505 1 20)
and
Var(K,) = E(K,) + (s6)* illl,z (21)

We will in addition assume that there are a very large
number of sites in the gene, so that although finite, s¢
is large. In this case, the term E(K,) makes an
unimportant contribution to the right-hand side of
(21). An unbiased estimator of § is (Nei, 1987, p. 255),
from (20),

(22)

and from (21) we can work out the variance of this
estimate and compute its coefficient of variation to be

Var(d) T/

= 23
R E=RVhE 9
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The estimate is unbiased, and as n— oo its coefficient of
variation decreases to zero, so that it makes a
consistent estimate.

If the number of sites is not so large, then (23) is
increased by the amount 1/(s¢ Zi (1/1)), so that (23) is
in effect a lower bound on the coefficient of variation
of Watterson’s estimate. We are interested in the cases
where the sequences are very long and hence the
number of segregating sites is large. Thus we are
investigating Watterson’s method in the cases most
favourable to it.

The efficiency of Watterson’s estimate must be,
taking the ratio of (8) and (23), no more than

S/ 24
(n—1)X /e
The variance [from (21)] and the efficiency [from (24)]
of Watterson’s estimate are shown in the rightmost
two columns of Table 1. Actually the variance shown
is the lower bound, using only the second term of the
right-hand side of (21). This is asymptotically valid, as
mentioned above, for large values of #. The value
shown is the bound for 6 =4: as with the other
variances in the table, the value will be proportional
to #% and this can be used to compute this lower
bound for all values of &, and hence compute the
variance approximately for all large values of 6.

The variance does decrease to zero with increasing
n, but not as quickly as does the maximum likelihood
estimator. Efficiency drops with larger », and although
not as low as that for the pairwise estimator, it is 0-42
for 20 sequences, 029 for 40, and 0-17 for 100
sequences.

5. Simulation results

One might well wonder whether the formula (18) can
be applied to the pair-wise estimation method as
defined here. Tajima (1983) and Nei (1987) derived it
as the variance of the average pairwise codon
difference between sequences. This is not the same as
the average scaled divergence time separating the
sequences, which is the quantity of interest here.
However for an infinitely long sequence, the
Tajima—Nei variance formula is proportional to 6°.
When sequences are infinitely long and 4 is small the
divergence time will be proportional to the codon
difference between sequences. Equation (18) will be
correct in that limit. For a set of sequences the joint
distribution of estimated divergence times will be the
same as it is when @ is small, but scaled proportional
to 6. Equation (18) should then continue to apply to
the mean of the scaled divergence time estimates.
This argument is sufficiently indirect that it is
helpful to check it by computer simulation. A large
computer simulation has been used both to compute
the expected power of the pairwise method, and to
check that the variances are correct. Two programs
were written in MIPS Pascal on a Digital DECstation
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3100 and a DECstation 5000. The first program is
given the number of sequences to be sampled, and the
number of replicates, as well as a random number
seed. It simulates the coalescent, starting with a
number of lineages equal to the desired number of
sequences, drawing pairs of lineages and the sampling
the times of their immediate common ancestor from
the distribution (1). This technique of simulating the
coalescent by working backwards was pioneered by
Hudson (1983). The true genealogical tree is recorded,
including the ordered tree topology as well as the
actual times of the interior nodes.

From the time-ordered tree topology we can
compute the quantities m, which are used in (14), (16)
and (17). This gives us the expectation and variance of
the estimate of @ for that ordered tree topology. The
overall expectation of the estimate of & will be the
average of (16) over all tree topologies. The variance
of the estimate will be the average of the within-
topology variances (17), plus the variance of the
expectations (16), averaging over all ordered tree
topologies. Lacking a theory of the statistical be-
haviour of the C; we cannot compute the expectation
and variance of the estimate of 6 in the pairwise
method.

The approach taken here has been to compute these
approximately by sampling a large number of ordered
tree topologies. The second computer program takes
each one and computes (16) and (17). These then can
be used to compute the approximate expectation and
variance of the estimate of € under the pairwise
method. Table 2 shows the results. Its penultimate
column shows the variance of the pairwise estimate in
the same case, as determined by this combination of
simulation and theory. The computed expectations of
the estimate of & are not shown; they were always
quite close to 8 and support the conclusion that the
pairwise method, like the maximum likelihood
method, is unbiased. The variances of the pairwise
estimate computed from the simulation are quite close
to the values obtained from the Tajima—Nei formula.

The computer programs that simulate the coalescent
record not only the ordered tree topology, but the true
ages of the interior nodes as well. This makes it
possible in each case, using (6), (11) and (22), to
compute what the maximum likelihood, the pairwise,
and the segregating sites estimates of § would be for
that tree, given that long enough sequences were
available to estimate the genealogical tree exactly. So
for each simulated tree we get three estimates of 8. The
means of these estimates were in accord with the
unbiasedness of the estimates and are not shown here.
The first six columns of Table 2 show the empirical
variances of the three estimates, and the ratios of
variances, which are estimates of the efficiency of the
pairwise and the segregating sites methods, computed
directly from the simulations without using equations
(8), (16), (17) or (24). Figs 2 and 3 show the variances
and efficiencies from both tables. The lines connect the
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Table 2. Empirical variances of the coalescent, pairwise, and Watterson estimates of 0 in the computer
simulations, plus the empirical efficiency of the pairwise and Watterson method obtained by taking the ratio of
the coalescent variance to those for these other two. The seventh column shows the value of the variance of the
pairwise method obtained by simulation, computing within- and between tree topology variances by sampling
ordered tree topologies for this value of 6 and using equations (16) and (17), for different values of n. The
eighth is the number of ordered tree topologies sampled in the simulation.

n Var(ML) Var(P) Eff (p) Var(W) Eff(W) Var'(P)  Replicates
2 160510 160510 1:00000 160510  1-00000 16:0000 1000000
3 7-9562 8-8401 0-90001 8-8401 0-90001 89709 1000000
4 5-3259 6-8132  0-78170 64732 0-82277 6-7988 1000000
5 3-9900 5-8340  0-68391 5-2227 076397 5-8855 1000000
6 31971 53470 0-59793 45022 071012 53343 1000000
7 2:6553 49679 053449 39524 067181 49923 1000000
8 2:2895 47656 048042 36010 063579 47590 1000000
9 2-0020 4-5827 043686 32978 060707 45990 1000000
10 1-7770 44475 039954 30746 057796 4-4661 1000000
15 1-1433 41089 027824 2:3835  0-47966 41124 1000000
20 0-8446 39564 021346 2-:0267 041671 39557 1000000
25 0-6648 38759 017153 1-8042 036848 38694 1000000
30 0-5524 3-8092 014501 1-6427  0-33625 3-8144 1000000
35 0-4704 37637 012499 1-5194  0-30963 37717 1000000
40 0-4098 37458 010940 14330  0-28596 37440 1000000
45 0-3636 37244 009762 1-3579  0-26775 37229 1000000
50 0-3257 36870  0-08833 12933  0-25183 3:7036 1000000
60 0-2707 3-6853  0-07345 1-2014  0-22530 36782 500000
70 0-2314 3-6809  0-06287 11275 020526 36627 500000
80 0-2019 3-6484  0-05534 10631 0-18993 36498 500000
90 0-1794 36164  0-04960 10116 017731 3-6354 500000
100 0-1614 3-6249  0-044 51 09723 016594 36281 500000
150 0-1073 3-5991 0-02983 0-8383 012805 3-6063 500000
200 0-0803 36124 002222 07626  0-10526 3:5922 500000
300 0-0536 3-5718  0-01500 0-6677  0-08022 3-5794 200000
400 0-0400 3-5772 001119 06132 006527 3:5729 200000
500 0-0325 3-8180  0-00852 0-5953  0-05462 3-5725 10000

theoretical variances and efficiencies from Table 1,
and the points are the empirical variances and
efficiencies from the simulation results in Table 2.
Again, the results show excellent agreement of the
theory with the simulations.

6. Relation to infinite-sites models

The present approach may be first seem unrelated to
the papers by Strobeck (1983), Ethier & Griffiths
(1987), and Griffiths (1989) which calculate probabili-
ties of different kinds of samples that might be taken
from a population undergoing an infinite-sites model
of mutation, in the absence of recombination. Stro-
beck (1983) used a diffusion approximation to derive
recurrence relations among the probabilities of the
different possible kinds of observed samples for two
or three sequences. Ethier & Griffiths (1987) gave a
general recursion formula for these probabilities for
any number of sequences. Strobeck (1983) shows how
to use these formulas to make maximum likelihood
estimates of §. Griffiths (1989) describes a computer
program that can calculate these probabilities. The
probability of the observed sample is of course the
likelihood, and by varying € one can compute the
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likelihood curve and the maximum likelihood es-
timate.

The effect of having infinitely long sequences, as
assumed here, is most easily seen by considering
Strobeck’s equations, for the case where two sequences
are observed. As we use x for the mutation rate at a
single site, suppose that U is the mutation rate for the
whole locus, and that Q = 4N, U. This is the quantity
that these authors call d in their equations. Strobeck’s
equation (2) for the case of two different sequences
shows, for n=2 and m, =m, =1, that the dis-
tribution of the number of mutations by which two
sequences differ is geometric, with mean Q. The
variance of this distribution will be Q?+Q. The
maximum likelihood estimate of Q turns out to be
simply the observed number of mutations by which
the sequences differ, so that the mean and variance of
the estimate are also Q and Q%*+Q. The squared
coefficient of variation is then 1+1/Q.

This exceeds the value calculated in this paper by
1/Q. The extra variation is due to the inaccuracy of
estimating the tree (which in this case is simply the
divergence time of the two sequences). As the number
of sites is taken larger and larger for a given value of
8, Q- o so that 1+1/Q—-1. Thus the extra
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variability of the estimate due to the finiteness of Q
disappears, and we are left only with the variability
due to the randomness of the true genealogy, the
randomness accounted for in this paper. I expect that
the same behaviour will occur when more sequences
are considered, and that this could be verified by a
detailed consideration of the equations in Strobeck
(1983) and Griffiths (1989). If so, there would be no
conflict between their results and mine.

7. Limitations

The proofs above rely on a number of assumptions
that are questionable.

() No recombination

It is assumed that the sequences have a genealogy
which is a branching tree, and this can only happen
when there is no recombination in the region in any of
the lineages leading back to the common ancestor
sequence. Recombination would result in a single
sequence (the recombinant) having contributions from
two or more ancestors. With a single recombination,
the front and rear ends of the sequences would have
different, but similar, genealogical trees. Treating such
cases is a major challenge for the future. For
mitochondrial DNA sequences, strict maternal in-
heritance guarantees that this problem does not arise.

(i) Infinitely long sequences

The analysis here was enormously facilitated by the
assumption that we have infinitely long sequences so
that they allow us to estimate the details of the
genealogy without error. The statistical error in this
study is thus only the error that comes from having a
finite number of sequences. If instead we had sequences
of finite length, as we always would, the maximum
likelihood method becomes much more difficult
computationally. I hope to present in a separate paper
a computationally intensive procedure that can make
a maximum likelihood estimate of effective population
size from samples of finite-length sequences. In that
case there is additional statistical error from the
imprecision of estimation of both the topology of the
genealogy and the divergence times. It would inflate
the error of all of the estimates. It is not obvious which
one would be affected most, but it is at least possible
that, as both the numerator and the denominator of
the efficiencies are affected, the efficiency of pairwise
and segregating sites methods would not be as low
when the sequence lengths were small. However when
sequences are long, the variances and efficiencies must
approach the values given here.

(iii) Lack of geographical subdivision

It has been assumed that there is only one population,
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mating at random. If there are a number of local
populations exchanging migrants, the notion of
effective population size becomes complicated. Sewall
Wright’s (1940) ‘neighbourhood size’ and the total
size of the whole species need to be considered. When
two lineages are in the same local population, it will be
possible for them to coalesce in the previous gen-
eration, while when they are in different local
populations they cannot. Slatkin (1987), Takahata
(1988) and Takahata & Slatkin (1990) have investi-
gated this for two populations exchanging migrants.
The distribution of the time to coalescence of two
lineages collected from the same local population is no
longer exponential and is not easy to obtain. Slatkin
& Maddison (1989) have proposed an estimate of
migration rate between the populations for the case
of infinitely long sequences. For the case where the
sequences are not very divergent their estimate is
probably close to being a maximum likelihood
estimate.

It should be obvious that much remains to be done;
it may be doubted whether the methods of analysis
will ever catch up with the collection of data.
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