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INVARIANT QUADRATIC FORMS ON FINITE DIMENSIONAL

LIE ALGEBRAS

KARL H. HOFMANN AND VERENA S. KEITH

Trace forms have been well studied as invariant quadratic forms

on finite dimensional Lie algebras; the best known of these

forms is the Cartan-Killing form. All those forms, however,

have the ideal LL,Ll nH (with the radical i? ) in the

orthogonal L and thus are frequently degenerate. In this

note we discuss a general construction of Lie algebras equipped

with non-degenerate quadratic forms which cannot be obtained by

trace forms, and we propose a general structure theorem for Lie

algebras supporting a non-degenerate invariant quadratic form.

These results complement and extend recent developments of the

theory of invariant quadratic forms on Lie algebras by Hilgert

and Hofmann [2], Keith [4], and Medina and Revoy C7].

0. Introduction

A bilinear form q : L x L >• F on a Lie algebra L over a field F

of characteristic 0 is said to be invariant if and only if

q(lx,yl,z) = q{.x,Ly,z\) for all x,y,z e L and to be a quadratic form if

and only if it is synmetric, that is satisfies q(x,y) = q{y,x) . If

TT : L • gl(V) is a representation of a Lie algebra L on a finite
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22 Karl H. Rofmann and Verena S. Keith-

dimensional F-vector space V , then q(x,y) = tr-n(x) IT(y) is a well-

known invariant quadratic form, called the trace form (associated with

IT ) . If, in particular, V is the underlying vector space of L and it

is the adjoint representation, then q is called the Cartan-Killing form

of L . The orthogonal L = {xeL : q(L*{x}) = {o}} with respect to any

trace form will contain [L,£] n R , where R denotes the radical of L

(for this and other background information see for example Bourbaki [1]) ;

in fact the characteristic ideal lL,Ll n R is the intersection of the

orthogonals of all trace forms. Whenever [£,L] n R ^ 0 , therefore, each

trace form must be degenerate. The trivial example of an abelian Lie

algebra, however, shows that there may very well be non-degenerate

invariant quadratic forms which are not trace forms.

Non-degenerate invariant quadratic forms, curiously, have only

recently been made the object of systematic studies. The general theory

was, in fact, developed independently by Medina and Revoy [7] and in the

dissertation of V.S. Keith L41. The purpose of this note is to

contribute to the theory of Lie algebras with invariant quadratic forms

by the formulation of a certain construction method and a general

structure theorem, which complements a theorem of Medina and Revoy [7].

At first sight, it is not at all clear whether Lie algebras with

invariant quadratic forms exist in abundance outside the classically

studied domains of semisrmple Lie algebras (where the Cartan-Killing form

will dol and the compact real Lie algebras (which are characterized by

the fact that they carry invariant positive definite quadratic forms).

It was, however, shown in Keith [4] and Medina and Revoy [7] that through

appropriate extension processes. Lie algebras with non-degenerate

invariant quadratic forms could be built from simpler building blocks and

that, in this fashion, solvable algebras could be obtained. It was noted

by Guts and Levichev [3], Medina and Revoy LSI, Keith [4,pp.69,70] that

the so-called oscillator algebra, a four-dimensional real Lie algebra

arising in the quantum mechanical description of a harmonic oscillator,

carries an invariant non-degenerate quadratic form of Lorentz type, which

then led to the discovery of a whole countable series of solvable Lie

algebras which support invariant Lorentzian forms (and are irreducible in

a suitable sense!; see also Hilgert and Hofmann [2] in this context.
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Quadratic forms on Lie algebras 23

Medina and Revoy show in [7] that all Lie algebras can be obtained by an

algorithm proceeding through a repeated extension process which they call

"double extension" [7,p.73] and which Keith calls bi-extension 14,p.65].

It is, however not easy to see what particular Lie algebras the algorithm

will lead to after several steps. Therefore, it is relevant to have

available explicit construction processes which will lead to certain

identifiable types of algebras exhibiting the complexity that Lie algebras

with invariant bilinear forms can have despite the restraining influence

exerted by the presence of a non-degenerate invariant quadratic form on

the ideal structure of the algebra, as was shown by Keith [4] and Medina

and Revoy [7]. We therefore propose a basically simple construction which,

nevertheless, will produce for example nilpotent Lie algebras of

arbitrarily high class of nilpotency with non-degenerate bilinear forms

and mixed Lie algebras (that is Lie algebras which are neither solvable nor

semisimple) of considerable degree of complexity.

Indeed let LL,q\ be a Lie algebra with, an invariant quadratic form.

We consider now a finite dimensional commutative and associative F-algebra

(AtP) together with a quadratic form p which is invariant in the sense

that p(xy,z} = p(jc,yz\ for all x,y,z e A . On the F-tensor-product

A ®p L i which is none other than a ground ring extension of L , we have a

Lie algebra structure given by the bracket [a 8 x , b ® y~\ = ab <& \_x y~\

and an invariant quadratic form p 8 q given by

(p 8 q] la ® x , b 8 y\ = p(a,b)q(x,y) . We then have the following

PROPOSITION A. For a finite dimensional associative, cormutative

algebra (A,p) with invariant quadratic form and a finite dimensional Lie

algebra (L,q) with invariant quadratic form, the tensor product over the

ground field (A ® L , p 8 q) is a Lie algebra with an invariant

quadratic form. If both p and q are non-degenerate, then p ® q is

non-degenerate. If A is nilpotent, then A 8 L is nilpotent

(regardless of L ) . If A has an identity and L is not solvable, then

A 8 L is a mixed Lie algebra, provided A is not semisimple.

We shall give examples of commutative associative nilpotent algebras

of arbitrary nilpotent length with non-degenerate invariant quadratic

forms with the aid of semigroup algebras. Thus we will get, upon taking

(L,q) simple with the Cartan-Killing form, the following
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24 Karl H. Hofmann and Verena S. Keith.

COROLLARY B. Given any natural number n , there exist niVpotent

Lie algebras of niVpotenay class n with a non-degenerate invariant

quadratic form.

EXAMPLE. Let S be a simple algebra with its Cartan-Killing form

Q . On S we define [(£..,. . . ,X ) , Q/,,. . . ,y )] = (z.,...,2 ) with

vk-1 rZi. = > • , VX..U-,. .1 , and

If we take 4 to have an identity and L to be a semisimple Lie

algebra, we shall be able to construct mixed Lie algebras with invariant

non—degenerate forms:

COROLLARY C. Given a natural number n and a semisimple Lie

algebra S , there is a Lie algebra L with a niVpotent radical R of

length n such that L/R = S and LL,R~\ = R such that L supports a

non-degenerate invariant quadratic form which is degenerate on no proper

ideal.

Upon taking A to be the algebra of dual numbers, that is the two

dimensional algebra spanned by J. and e with e = 0 we can introduce

on A an invariant quadratic form p for each pair of scalars

r , s e F by setting p tu+ve,u'+V'el = r(uv'+vu'} + suu' ; this form

is non-degenerate if and only if r f 0 . Then for any Lie algebra

(L,q\ with an invariant quadratic form, G4 ® L,p ® q) is a Lie

algebra with invariant quadratic form by Proposition A, and its form is

non-degenerate if and only if r / 0 and q is non-degenerate. The

algebra A ® L is isomorphic to the semidirect product \L\ » L with

\L\ denoting the adjoint L-module defined on the underlying vector space

of L ; the Lie bracket is simply [ Ca,xl, Gb,y] ] = C[a,J/]+[x,Z>] ,[x,j/]J .

The invariant form p ® q corresponds to the form q on ]L\ * L

given by qrsL<M,xl, Q>,y\ \ = rLq(a,yl + q(x,b\\ + sqix,y) •

DEFINITION D. For a Lie algebra L we will call ]L) » L the

inflation I(L\ of L . If Q is an invariant bilinear form on L and

P is an invariant quadratic form on L then we define an invariant

quadratic form q on J(£l by qLLa,x\, (J>,y)) = Q(a,y) + Q(b,x\ + P(x,y)
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and we call (-T(L) rq) the inflation of L with respect to the forms P

and Q . We will also say q is of type g__ .

This example was given by Keith [4,p.30] and by Medina and Revoy [7,

p.87] with the co-adjoint module on the dual L* instead of iLl • (If

q is non-degenerate on L , then \L\ and L* are isomorphic L-modules

anyhow!) The tangent bundle of any Lie group is a Lie group whose Lie

algebra is the inflation of the Lie algebra of the group. What is relevant

for us regarding inflations is that they occur prominently in the structure

of mixed algebras with invariant quadratic forms.

For simple algebras, Medina and Revoy established the following

result by an appropriate interpretation of Schur's Lemma:

PROPOSITION E. (Medina and Revoy [6,pp.72 and 73].)

Suppose that CS^ql is a simple Lie algebra over a field of

characteristic 0 and q any invariant quadratic form, then there is a

finite field extension CG:Fl such that S is obtained from a G-algebra

Sg by restriction of scalars, and from the Cartan-Killing form k^ of

S~ one obtains q = f o fc with an F-linear form f: G >• F .

DEFINITION F. We call a quadratic form q on a simple Lie algebra

obtained in this fashion a modified Killing form.

A modified Killing form is either zero or non-degenerate. The proof

of Medina and Revoy actually shows that a similar statement holds for any

invariant bilinear form (with an appropriate field extension). This

enables us to derive

COROLLARY G. An invariant quadratic form on the inflation ICS) of

a simple Lie algebra is necessarily of type q-p~ with modified Killing

forms P and Q of S .

From Proposition E one deduces readily that every semisimple Lie

algebra is an orthogonal direct sum of simple ones on each of which the

form induces a scalar multiple of a modified Killing form. rn a similar

vein, Corollary G implies that an inflation of a semisimple Lie algebra is

an orthogonal direct sum of inflations of simple Lie algebras so that on

each summand the form induces a form of type qp- with modified Killing

forms P,Q .
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With these pieces of information we can now appreciate the structure

theorem for mixed Lie algebras with a non-degenerate quadratic form.

Since every such algebra splits into an orthogonal direct sum of summands

neither of which contains an ideal on which the form is non-degenerate

(Medina and Revoy [7,p.71]) it suffices to consider algebras (Z,q) in

which q]CJxJ) is degenerate for each proper ideal I ; we shall call

such pairs (L,q\ irreducible.

THEOREM H. Let (L,q) be an irreducible pair of a finite

dimensional Lie algebra L over a field of characteristic 0 and a non-

degenerate invariant quadratic form. Let R be the radical of L and S

any Levi complement for E in L . Let FT = {xeL : q(Rx{x}) = {0}}

denote the orthogonal of R . Then the following conclusions hold,

provided L is not semisimple:

Cll R is contained in the centre of R and as an L-module

under the adjoint action is isomorphic to the quotient module L/R .

C2) The subalgebra A = S + R^ is isomorphic to the inflation of

S j and the restriction q\(A><A) is non-degenerate on A 3 so that A

is an orthogonal direct sum of inflations (I(S.),q.) of the simple
3 3

factors S. with form q • = qp n with modified Killing forms P • andJ 3 tM' 3
d V

Qj o n S . .

The ideal theory of Lie algebras with, non-degenerate invariant

quadratic forms tells us that q will induce on R/FT a non-degenerate

quadratic form, so that the theory applies to R/FT and shows that it is

a central bi-extension of the nilpotent algebra LR,Rl/LR,Rl Csee

Section 1 below for the concept of a bi-extension). The situation is

illustrated in Figure 1.

Theorem H overlaps and complements Theorem 6.17, p.88 of Keith [4]

and Theorem 5.1 on p.79 of Medina and Revoy [7],

The semisimple case is clear: A semisimple Lie algebra with non-

degenerate quadratic form is an orthogonal direct sum of simple algebras

with modified Killing forms.

The examples resulting from Corollary C show that a substantial

improvement of Theorem H is not to be expected.
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Figure 1.

The remainder of the paper is organized as follows: Section 1

provides the necessary background material from the general theory for

which we refer to Keith [4] and Medina and Revoy [7]. Section 2 presents

the proofs of the results described in this introduction.

1. The general theory of Lie algebras with invariant quadratic forms

Let L be a finite dimensional Lie algebra over a field F of

characteristic 0 . If M is an L-module (see [7]) , then a bilinear form

q : M x M • F is called invariant if and only if

q(.x.m,n) + q{m,x.n) = 0 for all x e L and m , n e M . Whatever we say

in such a situation applies in particular to the case of the adjoint module

M = \L\ of L if q is an invariant bilinear form on L . The dual

module M* is defined on the vector space dual of M by

<x.0i,m> = - <u>,x.rri> . We note 14,p. 18]

1.1. REMARK. An L-module M is isomorphic to its dual module if and

only if it supports an invariant non-degenerate bilinear form.

1.2. DEFINITION. If M is an L-module with an invariant bilinear form

q , and X e M , we set X1 = {meM : q(xx{m}) = {0}} . if N is a

submoduleof M we write L.N for the submodule of linear combinations of

elements x.m with x e L and meM, and N, for the submodule

{meM-. L.m g N} .
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2 8 Karl H. Hofmann and Verena S. Keith

From the invariance of q it is clear that a is a submodule,

too. There are no particular difficulties in proving the following

proposition [4,p.18 ff.]:

1.3. PROPOSITION. For any L-module M with an invariant non-degenerate

bilinear form the function N ** N is a containment reversing lattice

anti-automorphism of the lattice of submodules of M which is involutive

(that is satisfies N±1=N) . It maps L.N to N and, more generally,

the descending series of modules a (defined inductively by

Pr = L.a~ ,k = 1, 2,. .. with N =N) to the ascending series of modules

Nk (defined inductively by ^ / ^ _ x =
 f/l//^_ ]/" £ > k = 1,2,... with

N = {0}) . For each submodule N , the dual module N* is naturally
0 ±

isomorphic to M/N .

If we let M = \L\ , we obtain the following Corollary Csee [4,p.32]

and [6],p.69):

1.4. COROLLARY. In any Lie algebra with an invariant non-degenerate

quadratic form, the function J ** J is an involutive lattice anti-

automorphism of the lattice of ideals of L , mapping the commutator

algebra LL,Ll to the centre Z(L) and, more generally, the descending

central series to the ascending central series.

By induction, one readily calculates the following.

1.5. COMPLEMENT. Under the circumstances of 2.4, the function J ** J1

maps the commutator series L = [L ,L ] ,L = L to the

ascending series of ideals defined recursively by K (L) = 0 ,

Through these results, the presence of an invariant non-degenerate

bilinear form on a Lie algebra forces the lattice of ideals to exhibit

strong symmetry. This observation frequently allows us to determine that

a given Lie algebra is incapable of supporting a non-degenerate invariant

bilinear form. Such is the case for example for the three-dimensional

nilpotent Heisenberg algebra. Lie algebras of small dimension are usually

inspected quickly for the required symmetry of their ideal lattice (see

[4],[6]).
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The following simple observation is s t i l l often useful. 14,p.79]:

1.6. LEMMA, a) If H and K are subalgebras of a Lie algebra with an

invariant bilinear form and if [ff,#] = {o} , then [S,#] s ]C and

lK,K] g H1 .

b) If, in addition, H is perfect, that is satisfies

lH,Hl =H , then H £ K1 .

1.7. LEMMA, b) Let J be an ideal in a Lie algebra with a non-

degenerate invariant quadratic form. Then LJ,tJ ] = 0 , and J is

commutative if and only if J g LL,Jl . In particular, J is

commutative if J £ eT" .

If the restriction of a non-degenerate invariant quadratic form to an

ideal J is non-degenerate, then the algebra is the orthogonal direct sum
x

of the ideals J and J . The general case that this restriction is

degenerate is described in the following summary whose assertions are

readily established:

1.8. PROPOSITION. Let J be an ideal in a Lie algebra with a non-

degenerate invariant bilinear form q . On the factor algebra

L = (J+j)/(JnJ ) the prescription qCx+I,y+I) = q(x,y) with I = J n u

defines unambiguously a non-degenerate invariant quadratic form. The

ideal I is central in J + J and as an L-module is isomorphic to

(L/CJ+J1))* (see Figure 2).
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This calls for a definition which one finds in [4,p.65] and in

[6,p.73 f f . ] .

1.9. DEFINITION. A Lie algebra (L,q) with an invariant quadratic form

is called a bi-extension of a Lie algebra (M,p) with invariant quadratic

form p if and only if L contains an ideal J with J £ J such

that there is an isomorphism / : M >• J/J yielding

p(m,n) = q(f(m),/(«)) .

If q is non-degenerate, then p must be non-degenerate and J is

central in J by 2.8. We say that (L,q) is a central bi-extension of

(M,p) if J is central even in L .

Explicit constructions of bi-extensions in terms of functions

and functional equations were given by Keith in [4,p.56 ff] and by Medina

and Revoy [7,p.73 f f . ] . The la t ter proved the following result which shows

that Lie algebras with invariant non-degenerate forms can be successively

constructed via bi-extensions:

1.10. THEOREM (Medina and Revoy).

The class of Lie algebras supporting a non-degenerate quadratic form

is the smallest class containing all abelian and all simple algebras and

which is closed under the formation of direct products and bi-extensions

[7.,p.8O,Thni.5.2].

Section 2. Proofs and supplements.

If A is a commutative and associative algebra over the field F

and L a Lie algebra over F , then A ®p L with the multiplication

given in the introduction is simply the ground ring extension of L Csee

[7]) . The assertions of Proposition A on the tensor product p ® q of

two invariant forms on A and L , respectively are straightforward. We

define recursively A = A and A = AA , also L = L and

rj.-\ ffr-il
L = LL,L 1 ,n= 1,2,... Then the following is straightforward:

2 . 1 . LEMMA. {A s L)lkl = Alkl ® L C f e ] , k = 0 , 1 , 2 , . . .

2 . 2 . COROLLARY. If at least one of A and L is nilpotent, then A ® L

is nilpotent.

https://doi.org/10.1017/S0004972700002835 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002835


Quadratic forms on Lie algebras 31

2.3. COROLLARY. If L = lL,L\ , then (A 8 L)lkl = 4 C k ] ® L and if

A = {0} for the first time, then A 8 L is nilpotent of class n .

If A has an identity and L a Levi complement S for its radical,

then I B S is a semisimple subalgebra of A 8 L . If A has a radical

N , then N and thus N 8 L is nilpotent, whence A 8 £ is a mixed Lie

algebra. This completes the proof of Proposition A of the introduction.

Now we have to construct a nilpotent commutative and associative

algebra of given nilpotent length n . Let 5 be a multiplicatively

written semigroup with zero z . The semigroup algebra F[5] is the

vector space freely generated by the elements of 5 and subject to the

multiplication obtained by extending that of S linearly. We note that

F.z is an ideal and set FQ [5] = Fis]/F.z . We may consider -f̂ tS] as

the vector space freely generated by iS\{3} with a multiplication

inducing that of S when z and 0 are identified. We will call

F [SI the reduced semigroup algebra. If S is a nilpotent semigroup,

that is a = {0} for some n , then ^C5] is a nilpotent algebra,

which is also commutative if S is commutative. If S is finite, then

FQ [S] is finite-dimensional; we note that the matrix of semigroup

elements (st) , ~. r •, is also called the (reduced) multiplication

table of the semigroup.

2.4. LEMMA. Let S be a finite semigroup with zero z and

f: FQ\-
Z] • F anU function. Extend f linearly to a function

f: F [5] >- F . Then the bilinear form p defined on F LSI by

p(x3y) = f(xy) is invariant. If the matrix
(f(st))s,t e S\{z}

is non-singular, then p is non-degenerate. The form p is quadratic

if S is commutative.

Proof. The invariance of p is trivial because of

p(xy,z) = fixyz) = p(x,yz) . If S is commutative, then p is clearly

symmetric. Now suppose that p(x,y) = 0 for all x e F [5] . Then, in

particular f(sy) = 0 for all s e S\{z} . If we set
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y = Mr,.t : teS\{z}\ with r^ e F , then (v+>+ c\t \ i-s t h e solution

of a system of homogeneous linear equations with coefficient matrix

(fist)) , _. , i . If this coefficient matrix is non-singular, then the

solution must be zero and we conclude y = 0 . Thus p is non-degenerate

in this case. Q

The simplest nilpotent semigroup is the semigroup JV, = {l,..

with the multiplication x ° y = min{s+t,k+l} . Then s = k + 1 is the

zero of the semigroup and F C-Wj,] is a ̂ -dimensional nilpotent
0 K

commutative algebra with nilpotent length k .

2 . 5 . LEMMA. If S = Hn and f: {!,...,n] >F is the constant

function with value 1 y then the quadratic form p constructed in

Lemma 2.4 is non-degenerate on F [IV J .

Proof. We note f(s ° t) = 1 for s + t < n + 1 , else 0 . Hence

the matrix C/Cs ° t)) ,_ is clearly non-singular. The
S I ts~±. t • • • r n

assertion then follows from Lemma 2.4. •

Obviously we could have taken other functions f instead, for

example the one taking the value 1 on n + 1 , the value 0 elsewhere.

In view of Proposition A and Lemma 2.5, we finish the proof of Corollary B

readily by taking L = F0(ffl ) ® S with any simple Lie algebra, for

example Sl(2,F) and by considering p 8 k with the Cartan-Killing form

on S as quadratic form. The example in Corollary B of the Introduction

is just an isomorphic rendering of this example here.

If we consider the semigroup XI , = {0,1,...,k+l) with

X ° y = min{a:+2/,fc+l} , then F CJV •, ] is a commutative algebra A of

dimension k + 1 with identity and radical F LX-J.1 . Again by the
O K

process of Lemmas 2.4 and 2.5.we find invariant non-degenerate quadratic

forms p on A , and if we let S again be a simple Lie algebra, then

p © kg is a non-degenerate quadratic form on L = A 0 S . The radical i?

of L is Fj-Uj^ 8 S , a nilpotent algebra of class k . The subalgebra

1 ® S is a Levi complement. The relation [£,/?] = R is readily verified.

Thus Corollary C of the Introduction is proved.
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Now we consider the inflation I(S) = \S\ x S of a simple Lie

algebra S and let q be an invariant quadratic form on US) .

2.6. LEMMA. There are modified Killing forms P3 Q on S (see Definition

F in the Introduction) such that q is of type q^Q (see Definition D in

the Introduction).

Proof. The only ideals of I(.S) are {0} , I(S) and R = S x {0} .

If LX = L , then q = 0 and the assertion holds with P = Q = 0. If

L = R i then by 1.8, q induces on S — US)/R a non-degenerate quadratic

form which by Medina's and Revoy's Proposition must be a modified Killing

form k on S . Hence the assertion is true with P = k and Q = 0 .

Finally assume that L = {0} , that is that q is non-degenerate. Then

R is an ideal whose codimension dim US)/R is dim R* = dim S by the

last statement of 1.3. But R itself is the only ideal with this

dimension, and so R = R . This implies that there are bilinear maps

P.Q-.S x 5 • F such that q( (u,x) , (v,y)) = Q(u,y) + Q(V,x) + P(x,y)

with a symmetric P in view of the symmetry of q . Since

q(.lLu,0l,(Q,x)lA0,y)) = Q(Zu,xl,y) and q( (u,0) , [ (0,x) , (0 ,y) ])

= Q(U,Ly,xl\ , the invariance of q shows the invariance of Q . By the

extension of the Proposition of Medina and Revoy in the Introduction to

invariant bilinear forms on simple algebras, we conclude that Q must be

a modified Killing form on 5 . Likewise P must be a modified Killing

form on 5 . Q

2.7. LEMMA. Let I(L) be an inflation of a semisimple algebra L .

Then I(L) is a direct sum of inflations I(S •) of the simple factors of
3

S. . Moreover, if q is an invariant non-degenerate quadratic form on
0

I(S) j then this sum is orthogonal.

Proof. Let L = S1 e ... © S be the unique direct sum

decomposition of L into simple factors. Then the adjoint module \L\

is the direct sum of the submodules \S .\ , and it follows readily from
3

the definition of the inflation, that IUA is the direct sum of the

inflations US.) (up to a natural isomorphism). Furthermore each of the
3

summands US .) is perfect as is every partial sum of them; hence
3
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Lemma 1.6 applies to show t h a t the d i rec t sum decomposition i s orthogonal

with respec t to any non-degenerate invariant quadratic form. Q

2.8 LEMMA. Let L be a Lie algebra in whiah each ideal J ^ 0 satisfies

J n J / {0} vrith respect to a given invariant non-degenerate quadratic

form. Then the radical R satisfies R1 c R .

Moreover, R is central in R .

Proof. The factor algebra {R+R )/R i s semisimple and isomorphic to

ir/CifniT") , hence R n iT" i s the radical of R1 and we find a Levi

complement H of R n R1 in i?1 so tha t R1 = (RnR1) + H and thus

R + R = R + H . In order to prove the Lemma we must show H = {0} . Now

IR,B~\ = [/?,[#,#]] (since H i s perfect) c [D?,ff],#] (by the Jacobi

iden t i t y ) c [[i?,/?1], fl"1] c [ i ? ^ 1 ] = {0} by Lemma 1.7. Thus the sum R ® H

i s d i r e c t , and contains H as a charac te r i s t i c idea l , namely, the

i n t e r s e c t i o n of a commutator s e r i e s . Since R + H = R + R i s an ideal

of L , then H i s an ideal of L . Now we enlarge H to a Levi

complement T = H + S for R i . n L . Then # cent ra l izes 5 and R ,

hence K = R + S . Since H i s perfect . Lemma 1.6 now shows tha t K and

H a re orthogonal tha t i s tha t H n a = {0} . Our hypothesis now

implies t h a t H = {0} .

From Lemma 1.8 applied with J = H we know [R,R ] = 0 . Q

2.9. LEMMA. Under the circumstances of Lemma 2.8, let S be a Levi

complement for R in L . Then A = K + S is isomorphic to the

inflation I(S) , and the restriction q\(A*-A) is non-degenerate.

Proof. By Lemma 1.8, the £-module R*~ i s isomorphic to the L-module

(_L/R) * . Since L/R i s semisimple and thus supports a non-degenerate

inva r i an t quadratic form, the L-modules (L/R)* and L/R are isomorphic

by Remark 1.1. Rest r ic t ion of the operators from L to S shows tha t as

S-modules, L/R and R1 are isomorphic. But the S-module L/R i s

isomorphic to the S-module 151 with the adjoint act ion. Thus R

i s isomorphic to | 5 | under the adjoint act ion. But th i s means precise ly

tha t if + S i s an i n f l a t i o n .
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By Lemma 2.7, then R + S is a direct sum of inflations

T(S..) + ... + I(S ) . By Lemma 1.6, these summands are

orthogonal to each other. Thus q\(A*A) is degenerate if and only if

q\ {I(S-) x I(S-)) is orthogonal for at least one j . If that were the

case, then by Lemma 2.6 we would find a non-zero vector x in the radical

of I(S •) , thus in particular in R , which would be orthogonal to all
d

of 1(5.) hence to all of J(Sn) + ... + I(S ) = R
L + S . But since

J X. 71

X e R it would also be orthogonal to R , hence to R + S = L which is

impossible since q is non-degenerate. D

Theorem H of the Introduction is now proved completely.

References

[7] N. Bourbaki, Groupes et alg&bres de Lie, Chap. 1,(Hermann, Paris,

1960) .

[2] J. Hilgert and K.H. Hoffmann, "Lorentzian cones in Lie

algebras", Monatshefte fUr Mathematik (to appear) (Preprint

Nr. 855 Oktober 1984, FB Mathematik, Technische Hochschule

Darmstadt, 24 pp.)

[3] A.K. Guts and A.V. Levichev, "On the foundations of relativity

theory", Soviet Math. Dokl. 30 (1984), 253-257.

[4] V.S. Keith, "On invariant bilinear forms on finite dimensional Lie

algebras", Dissertation, Tulane University, New Orleans, 1984,

93 pp., University Microfilm International, P.O. Box 1764,

Ann Arbor, Michigan 48106.

[5] J.L. Koszul, "Homologie et cohomologie des algebres de Lie",

Bull. Soc. Math. France 78 (.1950), 65-127.

[6] A. Medina, "Groupes de Lie munis de pseudome'triques de Riemann

biinvariantes", SSminaire de GSometrie Diff., Exp. No. 6

M.R. 84c:53063 (Montpellier, 1981-82).

[7] A. Medina et Ph. Revoy, "Algebre de Lie et produit scalaire

invariant", Siminaire de GSometrie Diff., (Montpellier,

J.983-84) .

https://doi.org/10.1017/S0004972700002835 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002835


36 Karl H.Hofmann and Verena S. Keith

[S] A. Medina e t Ph. Revoy, "Sur une gdometrie Lorentzienne du

groupe oszillateur", SSminaire de G&ometrie Diff.,

(Montpellier, 1982-83).

[9] A. Medina e t Ph. Revoy, "Caracterisation des groupes de Lie

ayant une pseudometrique biinvariante. Applications, Travaux

en cours", Seminaire Sud-Rhodanien de Geometrie III, (Hermann,

Paris 1984).

70H J- Milnor , "Curvatures of left invariant metrics on Lie groups",

Advances in Math. 21 (1976), 283-329.

Eachbereich Mathematik,

Technische Hochschule Darmstadt,

Schlossgartenstr. 7,

D-6100 Darmstadt, Germany (FRG).

Center for Naval Analyses,

P.O. Box 16268,

Alexandria, VA 22302.

a n d

Department of Mathematics,

Tulane University,

New Orleans, La. 70118.

Added in proof. (November 27, 1985) : A.A. Elashvili, Academy of
Sciences of the Georgian SSR, Tbilisi, kindly informed us of the
following sources relevant for the discussion in this ar t ic le:

A.A. As t r akhan t sev , Functional Analysis and its Appl. 19
(1985), 65-66.

A.A. E l a s h v i l i , "Frobenius Lie algebras II", Trans. Tbilisi Math.

Inst. 77 (1985), 127-137.

https://doi.org/10.1017/S0004972700002835 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002835

