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ON SOME RESULTS IN MORSE THEORY 

GUDRUN KALMBACH 

I n t r o d u c t i o n . T h e /z-cobordism theorem in [8], the generalized Poincaré 
conjecture in higher dimensions in [20] and several other results in differential 
topology are proved by using the following theorems of Morse theory: 

(1) the elimination of critical points ; 
(2) the existence of nondegenerate functions for which the descending and 

ascending bowls have normal intersection; 
(3) the al terat ion of function values a t critical points. (For the details see 

below.) 
W e shall give short and elementary proofs of these theorems together with 

some stronger s ta tements than the ones given in [8-13] or [19]. 
T h e theorems are proved for noncompact manifolds ra ther than for compact 

manifolds since, by a trivial modification of the manifold (deleting the boundary 
or one point) the case of compact manifolds is included. 

From now on M i s a noncompact , C°°-differentiable, connected, w-dimension-
al manifold with a Riemannian s t ructure . 

A Morse function on M is a nondegenerate , proper, realvalued C°°-function 
on M. 

A Morse function / on M is called a bowl function if and only if it has the 
proper ty mentioned in (2) and fulfills: iî A, B are two descending bowls o f / 
then either A is contained in the closure TB of B in M or A Pi TB = 0. 

T H E O R E M 1. Let f be a non-negative bowl function on M with the set of critical 
points P(f). Then there exists a Riemannian metric on M such that for every 
constant c ^ 0 the union Nc = UPesEp of the descending bowls Ep associated 
with the critical points p £ S = P(f) (^f~l([0, c]) is a CW-complex. 

As a corollary we get t h a t each mth homology and homotopy class of M has 
a representat ive in some CW-complex Nc ÇZ M whose carrier is the union of 
finitely many cells of the w-dimensional skeleton of Nc. 

In § 3, we prove the existence of "enough" bowl functions on M. For a suit­
able Riemannian metric on M the following theorem holds. 

T H E O R E M 2. Let f be a Morse function on M. For any constant 8 > 0 there 
exists a bowl function g on M such that 

(i) / and g have the same set P{f) of critical points on AI (indices preserved); 
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(ii) for every q G P(f) there exists an open neighborhood V of q in M such that 
f and g coincide except possibly on a compact subset of V — {q}; 

(iii) \f(x) - g(x)\ < 8 for all x G M. 

This includes t ha t in s tudying topological properties of M we can use bowl 
functions instead of the frequently used Morse functions on M. 

W e prove in § 4 a s t ructure theorem for the closure TEP of the descending bowl 
Ep associated with a critical point p of a bowl function / on M. Let X be the 
index of / a t p and g be a critical point of / of index X — 1 with Eq C YEV. 
Let the neighborhood Vq of q in M and the local coordinates in Vq be suitably 
chosen. There exists a Riemannian s t ructure on M such t h a t for these pairs 
of critical points (p, q) of / the following theorem and corollary hold in every 
compact set N ÇZ M. 

T H E O R E M 3. TEP P\ Vq has r components which are linear half sub spaces of Vq. 
The components intersect pairwise in their common boundary Eq. 

COROLLARY 4 (see also [10]). Let e > 0 and r = 1 in Theorem 3. If p, q are 
the only critical points of f in A = TEV P\ {x G M\f(x) > f(q) — e} then there 
exists an \-dimensional submanifold N in M with A C interior N. 

With respect to the alteration of function values a t critical points, we prove 
in § 5: assume t h a t d is a c o n s t a n t , / is a bowl function on M, the point p G M 
is a critical point of / and W is a (small) open neighborhood of 
YEP C\ \x e M\f(x) ^ d] in M for d < f(p) or of TIP H {x G M\f(x) S d) 
for f(p) < d wrhere Ip is the ascending bowl a t p. 

T H E O R E M 5. There exists a bowl function g on M, homotopic (via bowl functions) 
to f such that g andf have the same critical points (and indices) on M, that g (p) = 
d and g differs from f only on W. 

For noncompact manifolds M the elimination of critical points of index n 
and of index 0 was formulated and proved in [3, § 4]. I t appears (without 
proof) also as a theorem in [14, p . 195]. The claim in [14] t h a t the proof follows 
from the compact case t reated in [9] seems erroneous. In § 7 the following 
theorem is proved. 

T H E O R E M 6. Let M be a connected, noncompact, smooth, n-dimensional mani­
fold and f be a bowl function on M. Then all critical points of f of index 0 and n 
can be eliminated except for one minimum point if f is bounded from below, or 
one maximum point if f is bounded from above. 

Similar as in Theorem 5, the construction of g is done such t h a t g and / 
differ only on small neighborhoods of TEP C\ {x G M\f(x) ^ dp) or YIP C\ 
{x G M\f(x) S dp} (dp are suitably chosen constants) for the critical points 
p of / of index n or 0. 

In § 8 a proof of the elimination theorem of [12] is given: let / be a Morse 
function on M and p, q be critical points of / of index X, X — 1 such t ha t Ep and 
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Iq intersect transversely in precisely one component. By § 5 we can assume that 

YEV C\ {x e M\f(x) > f(q)} = AQEP. 

THEOREM 7. There exists a Morse function F on M such that 
(i) the set of critical points of f is the set of critical points of F {indices pre­

served) except for p, q which are not critical points of F; 
(ii) F differs from f only on a small neighborhood of A in M. 

It should be noticed that the proof of this theorem given in [12] uses the 
results of [1; 2; 9-11] and is therefore very long. The short proof of a weaker 
version of the theorem is given in [8, pp. 48-66] ; it does not include a construc­
tion of F, — the theorem is formulated in terms of "gradientlike vectorfields of 
f". Our proof of the elimination theorem is short, it uses only some of the results 
of § 4-7. 

An application of Theorems 6 and 5 is the following normalform of a 2-
dimensional manifold M. (See also [6, p. 172].) There exists a non-negative 
bowl function / on M and numbers 0 < c\ < c2 < . . . < cn < . . . such that 
f_1([0, Ci]) is a closed disc and for n ^ 2 the set An = f~l([0, cn}) is obtained 
from An-i by attaching to each component of the boundary of An-i the lower 
boundary (Lb.) of disjoint copies of one of the following 2-dimensional mani­
folds with boundary: 

Ah = {(x,y,z) e R3|x2 + y = l , - U z ^ 1}, Lb.: z = - 1 
AI2 = Mi — D where D is an open disc in M\ and YD Ç int M\ 
Mz\ a torus T with two open discs D, E in T removed and with 

YD C\ YE = 0 
M±\ a Moebius strip S with an open disc D in 5 removed and with 

YD CI int 5 
Lb. of Mt: boundary of D for 2 g i ^ 4. 

The well-known characterization of compact 2-dimensional manifolds of 
[18, p. 141] is based on the "Normalformen" of M which are in a natural 
correspondence with our normalforms: we "cut through" M along all the 
1-dimensional closed descending bowls of / , thus getting the interior (open 
2-cell) of a "Normalform" N; the pairs of edges . . .a. . .a~l. . . or . . .a. . .a. . . 
of N (see [18, pp. 135-140]) correspond in the obvious fashion to the 1-dimen­
sional descending bowls of/. Note, that by [18, 6, p. 139] we can replace an M* 
and M4 attached to An by attaching three M4 to An. Thus, if / has only a finite 
number of critical points on M we get the classification of "Polyederflàchen" 
from [6, p. 149] by their orientability, genus and number of ends. The general 
classification theorem for open surfaces [6, p. 170] can be derived by using as 
the ends of M the sequences (Bt) i€N of components Bt of the sets Y (AI — An) 
which satisfy Bt is a proper subset of B3- for i > j . 

The original version of this paper together with the papers [4; 5] constitute 
the main part of my 1966 doctoral thesis written at the University of Gôttingen. 
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S. S. Cairns helped me in 1968 in preparing an intermediate version of this 
paper. S. Lubkin has reawakened my interest in the subject in 1972. It was 
pointed out to me by J. Milnor in 1973 that Theorems 3 and 1 of this paper 
are actually needed to make the proofs of [4, Proposition 4] and of [5, p. 466] 
sound (or at least more easily intelligible). The referee has provided me with 
a thorough list of critical remarks which have improved the manuscript con­
siderably. Finally, G. Bruns lias contributed helpful comments. I am very 
grateful for all this support. 

1. Notations. The notation introduced in this section is used throughout 
this paper. 

TN is the closure of the subset N of a topological space X. For a Morse 
function f on M and for a G R we define 

Ma= {p G M\f(p) ^a}, 
P(f) is the set of critical points of/ on M, 

Vp is an open neighborhood of p G P (/) with local coordinates x such that 
X n 

f(x) = f(P) — S xi + ]C xi where X is the index of/ at p. 

The sets Vv are disjoint for different critical points p of/. The Riemannian 
metric on M is given on Vv by YT%=i dxtdxi [14, p. 175]. 

<p(q) is the (maximal) trajectory of/ through q G M — P(J) and 
is locally given by d<p(t, q)/dt = grad/(<?(/, q)) and ^(0, q) = q. 

In Vp these trajectories <p(x) are given by 

(I) <p(t, x) = (e~2txi, . . . , e~2txx, e2tx\+u . . . , e2txn) 

for a < t < /3 where a < 0 < fi are constants. We set, for p G P(f), 

Ep = {q G M\q = p or q G Mm and p G I>(£)},—the 
descending bowl associated with p 

Iv = {q G ikf|g = £ or g G M - ikT/(p) and £ G I>(g)}, 

the ascending bowl associated with p. We have 

Ep C\ Vv = {x G F^xx+i = . . . = # „ = ()} 

and Zp C\ Vv = {x G Vp\xi = . . . = x\ = 0}. 

2. Alterations of bowls. Throughout this section / is a Morse function 
on M and p, q are critical points of/ with/(g) < f(p). 

2.1 Definition, fis an (£, g)-bowl function if and only if either Eq C\ TEP = 0 
or E ? Ç TEp and 7^ and £ p intersect transversely [8, p. 45]. 
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We prove below that by a small alteration of the function / we can construct 
a Morse function g on M which is an (p, g)-bowl function. This is the main 
result used in proving the existence of "enough" bowl functions. The function g 
is homotopic to / , and the homotopy is using only Morse functions. This re­
mark and the fact, that g can be chosen arbitrarily close to / will be useful in 
other contexts too. 

From now on we assume t h a t / is not an (p, g)-bowl function, in particular 
that Eq <2 TEV and Eq P TEV ^ 0. The case that Iq and Ep do not intersect 
transversely is proved in the same way. 

Since Eq £ Ev we can assume without loss of generality, that (xi, 0, . . . , 0) (I 
TEP for 0 < xi ^ c and some constant c. We use in the next lemma the par­
ticular choice of the following constants, sets and functions of (a)—(/). 

(a) /(<Z) < a s u c n that f~l{a) P Vq is an open, nonempty set in f~l(a); 
(b) 0 < d :g c with d < (a ~f(q))/2 and an open neighborhood V of 

(d ,0 , . . . , 0) in Eq such that VqC\ (V X Iq) P TEP = 0 a n d 0 ^ (V X Iq) P 
f~l(a) = W is open in / " 1 (a). That such a set F exists follows from (I) of sec­
tion 1 and the fact that (c, 0, . . . , 0) has an open neighborhood U in M with 

u P YEV = 0. 
The set Wis used in 2.2 as follows. We prove that the trajectories of /can be 

altered in Ma such that the new ascending bowl associated with q has its inter­
section wi th / - 1 (a) in W. Thus for the new descending bowl Ep* associated with 
p we have Eq H TE* = 0. 

(c) H(x) = Zt=2^2; 
(d) /(g) < b < b' < a' < a and 0 < e < e are such that 

(*) {* € Vq\f(x) = a, ff(«) < 6 ^ + 6 / < i i < ^ + e i £ ^ a n d 

(**) a' - 2(d + 2e) > J7 hold. 

The inequality (**) will be used to show that the gradient of the function g 
which we are constructing in 2.2 is not zero. 

(e) A = {x e Vq\f(x) = a,H(x) < e, -e < Xi < d + e} ; 
(f) B = {x e Vq\<p(x) C\A^Q,b< f(x) < a} ; 
(g) h(x) is the xi-coordinate of <p(x) Pi A for x G B. Then h is smooth on B 

and satisfies ggrad f(x) = 0 and grad &(x) ^ 0. We write here hv(x) for the 
derivative of the function h in the direction of the tangent vector v to M at x. 
For the alteration of the trajectories of/ which we want to do, the trajectories 
of h run in the right direction. Thus / and h will be put together in B to the 
function g, using the function G which we define now. The special choice of G 
is made such that it is easy to see that the derivative of g in the direction of 
either grad / or grad h in B is not zero, which implies then that grad g is not 
zero in B. 

(h) l(x) = H(<p(x) P A) for x Ç B\ 
(k) m: R —•> R is a smooth function, bounded by 0 and 1 such that m(t) = 1 

for t ^ 0 and m(i) = 0 for t ^ 1. For 0 < t < 1 we have m'(/) < 0. 
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1 -m((f(x) -h)/h< -h), for/(x) ^ V 
m{{f{x) - a')/a - a'), for/(x) è V 

1 - m(Qi(x) + e)/e - e'), for Xi ^ 0 
m((h(x) - d - e')/e - e'), for Xi ^ 0 

g3(x) = m((/(x) - e')/e - e') 

rM = i1 ~~ ̂ i(x)^(^)g3(x), forx e B 
L7{X) \ l , forx e Vq-B. 

The function G is smooth on Vq. 

2.2. LEMMA. Assume f is not an (p, q)-bowl junction. Then there exists a smooth 
function g on Vq such that 

( i) / (*) =g(x)forxe Vq - B; 
(ii) for the descending bowl Ep* of g associated with p, EqC\ YEP* = 0; 

(iii) grad g(x) ^ 0 and ggrad ,(x) ^ 0 for x £ B; 
(iv) g is an (p, q)-bowl function. 

Proof. Define g{x) = (1 — G(x))(h(x) + e) + G(x)f(x) where e = 
(a' + b')/2 + e. Then (i) holds by the definition of g. To show (iii), observe 
tha t / (x) — h(x) — e ^ 0 and Ggra<i /(x) ^ 0 for/(x) ^ 6' and that Ggrad /(x) 
^ Oand, using (d)(**),f(x) — h(x) — e ^ 0 for/(x) ^ a'. Hence ggrad f(x) > 
0 if G(x) ^ 0, 1 and ggrad ^(x) 7̂  0 and ggrad /(x) = 0 if G(x) = 0. This shows 
(iii). Using (d)(*) and (6) it is straightforward to see that (ii) holds. The pre­
ceding proof shows also (iv). 

3. Bowl functions on M. 

3.1 THEOREM. Let f be a Morse function on M and ô > 0 be a constant. Then 
there exists a bowl function g on M such that 

(i) P{f) = P(g) (indices preserved); 
(ii) \f(x) - g(x)\ < ô for x £ M; 

(iii) g differs from f only on Upçp(f)(Vv — Wp) where Wv is an open neighbor­
hood of p in M with TWP C Vv; 

(iv) g is homotopic to f. 

Proof. Let d £ R be a constant and a < d < b. We say a Morse function H 
on M has property (A) for (a, b) if and only if H has properties (i)-(iv) of 
g from above and H is an (p, q)-bowl function for all p, q £ P{f) with a < 
H(q) < H(p) < b. Assume now, h is a Morse function with property (A) for 
(a, b). If there exists a critical value of/ less than a then choose the constant 
a* such that for exactly one critical value c of / holds a* < c ^ a. Using, if 
necessary, 2.2 for the critical points q of h with h(q) = c, we can construct a 
Morse function h* on ikf with property (A) for (a*, b). The same construction 
can be done for — h* instead of h if there exists some critical value c of/ greater 
than b. The existence of g follows then by using an inductive argument. 

gi{x) 
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Theorem 2 of the introduct ion is an immediate consequence of 3.1. 
T h e following remark is not used later in this paper. I t shows t h a t the al tera­

tion of the function / of 2.2 to get the function g can be " t r an sp o r t ed " along 
the trajectories of / from Vq to Vp. 

3.2. Remark. Assume the Morse function / on M is no t an (p, g)-bowl 
function for p, a Ç P(f) w i t h / ( g ) < f(p), b u t / is an (r, q)- and (p, r)-bowl 
function for all r Ç P(f) w i t h / ( g ) < / ( r ) < f(p). Then there exists a Morse 
function g* on Vp and a Riemannian metric g on M which differs from the 
given Riemannian metric on M only on a compact subset C of Vv such t h a t 

(O/Cv) =«*(y) fory€ 7, - C; 
(ii) for the descending bowl Ep* (using the Riemannian metric g) of g* 

associated with p, EqC\ YEP* = 0; 
(iii) \f{y) — g*{y)\ < à for y (z Vp and some constant 8 > 0; 
(iv) g* has no critical point on C; 
(v) g* is an (£>, g)-bowl function. 

Proof. S i n c e / is an (r, q)- and (p, r)-bowl function for all r G P(f) with 
/ ( e ) < / ( r ) < / ( £ ) t h e r e e x i s t s a n ° P e n neighborhood N of T£^, in i f - ilff(q) 

with T E r Pi TV C\ Vq = 0. We show in (a) t ha t in 2.2 the al terat ion of/ to an 
(p, g)-bowrl function g can be modified such t h a t g differs from / only on À7. 
Using the diffeomorphism <pp_a of [7, p . 13] from {x G Vq\g(x) J* f(x)} = B 
onto D C Fp (a, /3 suitable cons tants ) , we get as a new set of trajectories x on 
D the images under ^ _ a of the trajectories of g in B. We have to pick (see (b)) 
another Riemannian metric g on D to show in (c) t h a t there exists a Morse 
function g* on D which has x a s its set of orthogonal trajectories and which 
fulfills also all the other requirements of the remark. 

(a) By Proposition 2 of [4, p . 542] there exist neighborhoods W and W of 
TEP in M - Maq) with W Q W Ç1 N and a separat ion function (see [4]) H 
of M - (W\J M'W) and W - M™. Some properties of H a re : i f ( x ) = 1 
near the boundary of W and H(x) = 0 for x (z W, the function H is smooth 
and ifgrad r(%) = 0 for x Ç 1>F Pi Fff. I t is easy to see t h a t the cons tants in (d) 
of section 2 can be chosen such t h a t TEP* of 2.2 lies in W. T h u s the Morse 
function F on M defined by F(x) = H(x)f(x) + (1 — H{x))g{x) for x Ç Vq 

and F(x) = f(x) otherwise, has the properties of g in 2.2 and has the same 
descending bowl Ep* associated with p as g. 

(b) Let x, respectively y, be the preferred coordinate system in Vq respec­
tively VP. Note , t h a t de t (dy(<pp-a(x))/dx) > 0 th roughout 

V= {xe Vq\F(x) ?*f(x)}. 

Let g be the Riemannian metric on M. Then there exists a new Riemannian 
metric g on Vv such t h a t for y G <p$-a(V) holds g (y)(v, w) = g(<p-p+a(y)) 
(d<p-p+av, dip-p+aw) and for y G Vv — V holds g(y)(v, w) = | ( ^ ) ( ^ , w) where 
F r is a neighborhood of T ^ _ a ( F ) in Vv not containing ?̂ and where dip-$+a is 
the m a p induced by <p-(3+a on the tangent bundle of <pp-a(V). T h e existence of g 
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is an easy consequence of the following facts. Let A (y) = (dx((p-p+a(y))/dy). 
Note , t ha t g(y) = T,ï=idy4yi and det A (y) > 0 for y e <pp-a(V). Let gik(y) 
be the (i, k)-entry of the matr ix A (y)Al(y). Then for y 6 V we get 

g(cp^+a(y))(dcp^+ad/dyi}d<p^+ad/dyk) = gik(y). 

(c) Set g*(y) = F(<p_p+a(y)) + 0 - a for y £ ^ - * ( F ) and set g*(;y) = f(y) 
otherwise. T h e equation d(pp-a grad F = grad g* on ^ _ a ( F ) follows from 

g(y)(d/dyu d^ -«g rac i /*') = 2(^-/5+«(y)) I Z ) &^ (*>-/*+« 6 0 ) / t y * ' d/dxJt 
\ j=i 

grad-F I 

= X) dF/dXj- dXjfo-p+a&ïï/dyt 

= dFo<p„3+a(y)/dyi = dg*(y)/dyt. 

Then the set x> the images under ^ _ a of the trajectories of F in V, is the set of 
trajectories of g* on ^ _ a ( F ) , since the vectors d <pp-a grad F = grad g* are the 
tangent vectors to the elements of x-

4. T h e local s t r u c t u r e of YEV. The next lemma is from [8, pp . 58-66]. We 
present a different proof here. A linear map / is called tangent to a diffeomor-
phism h a t 0 if and only if the Jacobian of / and of h a t 0 coincide. 
Let (dij)i^i,j^n be the Jacobian of /. Then / is called an elementary rotat ion 
if and only if there exist numbers rj, p, q with 1 ^ p, q S n and p ^ q such 
t ha t dij = ôij (Kronecker symbol) for {i, j] $£ {p, q}, t ha t app = cos rj = aqq 

and aQP = sin r) = — avq. For a definition of an intersection number see [8, 
p . 67]. For 1 ^ m < n and m + k = n the space Rm, respectively R*, is the 
submanifold Rm X 0, respectively 0 X R*, of Rn. 

4.1 LEMMA. Let h be an orientation preserving diffeomorphism from Rn into 
Rn with h(0) = 0 and h(Rm) H Rk = {0} such that the intersection of h(Rm) 
and Rk is transverse with the intersection number 1. Then there exists a diffeo­
morphism h* : Rn —> Rn such that 

(i) h*(x) = h(x) for x £ Rn — N where N is some neighborhood of 0; 
(ii) h*(x) = x in a neighborhood of 0; 

(iii) there exists an isotopy (ht)o^t^i between h and h* such thatht(R
m) P\ R* = 

{0} and the intersection is transverse for every t [8, p. 58]. 

Proof. We discuss two special cases first, in (a) t h a t the identi ty is tangent to 
h and in (b) t ha t h is an elementary rotat ion with — T < rj < ir. The general 
case is t reated in (c). Let h(x) = (hi(x), . . . , hn(x)). 

(a) Let m be the function of (k) section 2 and \mf(t)\ < c for 0 S t ^ 1. 
Define 

h*(x) = m(\x\2 — a/b — a)xj + (1 — m(\x\2 — a/b — a)hj(x) 
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where 0 < a = 6/2. We can choose a neighborhood F of 0 and a constant 
e > 0 such that the derivative of hj with respect to Xj is larger than 1 — e and 
with respect to xt for i ^ j lies between — e and e. We ask also that 
4c • \hj(x)/Xj — 1| < e. Then |^A/(x)/^Xj| < 2e for i ^ j and dh*(x)/dxj > 
1 — 2e which shows that for sufficiently small chosen 6, e and V, the Jacobian 
of A*, is not zero. Using the Taylor formula for h* it is straightforward to see 
that h* is one-to-one, i.e. a diffeomorphism. (iii) is an easy consequence of the 
definition of h*. 

(b) Put g(x) = 7] • (1 - m(\x\2 - a*/6* - a*) for 0 < a* < 6* and 

#(*) = I X) aij(x)xj) 

where a^-(x) = <50- for {i, j} $£ {̂>, g} and app(x) = cos (g(x)) = aqq(x) and 
aqp(x) = sin (g(x)) = — aPff(x). The map H is one-to-one since \H(x)\ = \x\. 
It is straightforward to check that the determinant of the Jacobian of H is 
always 1 and that (iii) holds. 

(c) Let / be the linear map tangent to h at 0. Using (a) for the map l~l o h 
we can find a map h! with the properties (i), (iii) of 4.1 and with h'(x) = l(x) 
in a neighborhood U of 0. The Jacobian A of I can be written as the product 
C • B of two matrices with det B = 1 and C = (c^) where Cn = c > 0 and 
c -̂ = ô^ otherwise. Since the map r{x) = B • x (matrix product) is a finite 
composition of elementary rotations we can use (b) to find a diffeomorphism/ 
with the properties (i), (iii) of 4.1 in U (/replaces h) and which coincides with 
s(x) = C • x in a neighborhood W of 0. Finally, for 5 replacing h, we can find 
a function F with the properties of the Lemma. If we put h* equal to F in W, 
equal to / in U — W and equal to h' in Kn — U then /&* has the properties 
required. 

4.2 Definition. Let p, q be critical points of a Morse function/ on M of index 
X, X — 1 such that 

(i) fig.) < f(P) and Eq C I\E„ and 
(ii) there exists a neighborhood W of £^ in if/(p)+e — Mf^q) where e > 0 

such that WC\P(f) = {p\. 
Note that in this case there exist finitely many trajectories xi» • • • > Xr of / in 
Ev such that the x% are exactly the trajectories of/ which have p and q as limit 
points. We then call the pair (p, q) a preferred pair of critical points of type 
(Xi)i=i,...,r (or of type r). 

4.3 Definition. Let A be a linear ^-dimensional subspace of Rn and Lt be 
halflines with the endpoint in A for 1 ^ i ^ r. Asume P t is the closed half-
space in Rn spanned by A and Lt and Pt C\ Pj = 4̂ for i ^ j . Then 5 = 
UTi=iPi, is a ((fe + 1)-dimensional) book with r pages having spine A. 

4.4 THEOREM. Letf be a bowl function on M and N C M compact. There exists 
a neighborhood Wv of p Ç P (/) with T Wv CI Vv and a Riemannian metric on M 
which differs from the original Riemannian metric only on Up^PU) CINVP ~~ Wv 
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such that with respect to the new Riemannian metric on M the following holds: 
for every preferred pair of critical points (p, q) {where p, q Ç N) of type r the 
intersection TEP C\ Wq is a book with r pages having the spine EqC\ Wq. 

Proof. Assume t h a t (p, q) is of type (xùi=i T and ( I I ) holds; 
( I I ) we constructed a new Riemannian metric in a neighborhood Nt of a 

point XQ G Xi (i fixed) in Vq such t h a t 
(i) dist (TNi9q) > 0; 

(ii) Xi remains a trajectory of/; 
(iii) there is a neighborhood A t of Txt in TEP ( taken in the new Riemannian 

metric) and a neighborhood Uq of q in M such t ha t A t C\ Uq is a closed X-
dimensional linear halfsubspace of Uq, (X is the index a t p). 
Then the theorem follows by using disjoint sets Nt and, if necessary, the diffeo-
morphism from Mf(p)~e C\ W to Mf(q)+€ C\ W induced by / , together with 
some inductive a rgument similar to the one used in 3.1. Here e > 0, and the 
neighborhood W of Ep — Mfw has the properties of W in 4.2. The proof of ( I I ) 
is in three par ts . In (a) we define an isotopy ht on A = f~l(f{q) + e) C\ Nt 

with the analogue to the properties of ht in 4 .1 . The isotopy ht is used in (b) 
to define on Nt a new set of trajectories \p with the following properties: 

(iv) the elements of \j/ and the trajectories o f / coincide as sets close to the 
boundary of Nt (and on xi), thus \p can be extended to a set of trajectories on M; 

(v) using \f/, the new descending bowl associated with p is, close to xu a 
linear subspace of some open neighborhood Uq of q in M. T o get the trajectories 
\p to be the orthogonal trajectories o f / w e change in (c) the Riemannian metric 
on Nf. We are using the diffeomorphisms <^_a of [7, p. 13]. 

(a) In A (respectively (pf(P)-e_f(q)_€(Nt) f^f~l(f{p) — e) we choose the 
intersection with xi a s the origin and the coordinates u (respectively v) as the 
translat ion induced by the preferred coordinate system in Vq (respectively Vp). 
P u t h(v) = p_ /(P)+e+/(0)+€(fl). The map h is a diffeomorphism of A onto A if 
we change the coordinate system u on A to either v = u or (vt = ut for i ^ X 
and v\ = —u\) or (vt = ut for i ^ X, X + 1, v\ = —u\, v\+i = —u\+i) what ­
ever is necessary to make h also orientation preserving and h(Ep) and IqC\ A 
intersect transversely with the intersection number 1. Take ht as the isotopy 
of 4 .1 . 

(b) Define in Nt the curves c(w) for w = h0(v) G Nt H / - ^ / ^ ) + e) = N* 
by c(t, w) = <pa_f(Q)-€(ht(v)) where a = f(q) + e — t • b for 0 ^ t ^ 1 and 
some small constant b > 0. Then w d Ep C\ TV* if and only if c ( l , w) G Nt C\ 
{x G f~l{f(q) + e — b)\x\ = . . . = xn-i = 0, xn < 0} = N'. Here we assume 
t h a t x is the preferred coordinate system in Vq and x% is the negative xw-axis 
in Vq. We extend the curves c(w) by the trajectories o f / through c(0, w) 
respectively c(l,w) in the direction of increasing respectively decreasing values 
of/. For points of M which do not lie on one of these curves we take the t ra­
jectories of/, thus get t ing a set c of disjoint curves on M — P(f). These curves 
may fail to be smooth on N* P\ Nf. A lemma of Munkres [15, p . 26] applies 
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in this case and proves the existence of a smooth set of curves \p which coincides 
with c outside of a small neighborhood of iV* P N'. 

(c) We choose a parametrization of the trajectories of yp such that the vector-
field v(x) = (vi(x), . . . , vn(x)) of tangents of these trajectories on Vq coincide 
with grad / outside of Nf. Define the new Riemannian metric 

n 

g*(x) = XI gtj(x)dxidxj on Nt 

bygziOO = dij (Kronecker symbol) if i,j ^ n, by gtn(x) = gni(x) = — l/vn(x) 
(vi(x) + yi(2Xi) for 1 ^ i ^ n — 1 with yt = 1 if i < X and yt = — 1 if X ^ i 
and by 

1 n— 1 

gn»(*0 = TT2* (2tf„- "»W + Z) ^OOOiOO + Tt2Xi)). 

We can assume that |z>*(x)| and \xt\ are small in comparison with | ^ (x) | and 
\xn\ for i = 1, . . . , (n — 1). Then it is easy to show that g* is a Riemannian 
metric on Vq. Note, that g*(x) = YTi=idXidxt outside of Nt and that ^ is the 
set of orthogonal trajectories of / with respect to the Riemannian metric g* 
on Nt. 

Theorem 3 of the introduction follows immediately from 4.4. The proof of 
the corollary to Theorem 3: using the notation of 4.4(b) recall, that TEP Pi Iq 

respectively TEq was given in a neighborhood Uq of q by 

{x G UQ\x = (0, . . . , 0, xn), xn ^ 0} 

respectively {x G Uq\x\ = . . . = xn-i = 0, xn S 0}. We define with some suit­
able constants a > 0 and fi > 0 the set iV by 

N = {TEV- M*™-*) U | x f Vq\xx = . . . = x,_! = 0, 

0 <x„ <a,/(x) >/(g) - ft. 

Note, that the proof of 4.4 can be modified for a bowl function/ on AI such 
that in Theorem 4.4 not all requirements of 4.2, but only 4.2(i) is needed as an 
assumption for the pair of critical points (p, q), to show that the intersection 
TEP r\ Wq is the union of a finite number of closed linear submanifolds of Wq 

which pairwise intersect in Eq P\ Wq. In particular the indices at p and q may 
differ by more than 1. We use this fact below in 4.5, a correction to the proof of 
Proposition 4 of [4, p. 543]; this Proposition 4 itself is now used in the 

Proof of Theorem 1 of the introduction: L e t / be a non-negative bowl func­
tion on M satisfying the modified version of 4.4 and a > 0 be a noncritical 
value of/. We want to show that the union Ka CI M of the descending bowls Ep 

associated with p Ç Ma Pi P(f) is a CW-complex. Clearly Ka with the induced 
topology is a Hausdorff space and is the union of disjoint (open) cells. Assume 
p, q Ç Ma are distinct critical points of / of index X, r and Eq Ç TEP. Since 
7ff P r£p 9e 0 and 7ff and TEP intersect transversely we have X + (n — r) — 

https://doi.org/10.4153/CJM-1975-011-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-011-0


MORSE THEORY 99 

1 ^ fly i.e., X > r. Hence TEV — Ep lies in the (X — 1)-dimensional skeleton 
of Ka. It remains to show that there exists an attaching map from the closed 
X-dimensional unit ball onto YEV. We prove this by proving that for a suffi­
ciently small constant e > 0 the cell A = T(EP — MfiP)~2€) is attached to 
Kf{p)~€. Without loss of general i ty , /^) is the only critical value of/ between 
f(P) — 3e and f(p) + e. Let m be the function of (k) section 2 and g(x) = 
m((f(x) - KP) + 2e)/e) for x G Mf^~\ If rt for 0 g t S 1 is the deforma­
tion retraction of Mf(p)~€ onto Knp)~€ from [4, Proposition 4] then, 

, N /*, for x G TEP - M'<*>-e 

X V,(*)(*), for x 6 M'o>- H r£„ 

is a map attaching A to Kf{p)~€. Using [23, p. 129] we have as an easy conse­
quence of Theorem 1 the corollary to Theorem 1. 

The preceding proof of Theorem 1 and 4.5 is added to the original version of 
this paper due to questions of J. Milnor and the referee of this paper. 

4.5 Correction to the proof of Proposition 4 of [4, p. 543]: We complete the 
proof of the statement of [4, p. 543, line 9-11]: x(p) n a s exactly one limit point 
p' G Kc. By 3.1 and the note to 4.4 we can assume that the function/ is a bowl 
function which satisfies: if Eq C YEr (q, r £ Mc) then TEr Pi Wq is the union 
of a finite number of closed linear submanifolds of Wq which pairwise intersect 
in EQ C\ Wq. This construction can be done such that also the level submani­
folds hik — const, of the function hik of Proposition 4 are linear submanifolds 
of WQ intersecting Iq transversely. Thus in the notation of [4], (A) if u G 
(Vtv' - (WJ U £ , , ) ) r\ Iih_x then x{u) ç Iih_x holds. Here Iik_„ Eiv are 
the sets Iq, Er and Viv'', Wiv

r are neighborhoods of Eiv in M. But (A) implies 
that for v G Wq the trajectory x(v) does not have a limit point in both, Er and 
Eq. Thus x(*0 has exactly one limit point in Kc. 

5. The alteration of critical values. Theorem 5 of the introduction is an 
easy consequence of the following Lemma. 

5.1 LEMMA. Let f be a Morse function on M and p Ç P(f) such that for some 
constant d < f(p) the set B = TEP — Md contains no critical point of f other 
than p. Then there exists a neighborhood N of B in M and a Morse function F on M 
such that 

(i) F coincides with f in M — N; 
(ii) F(p) =d; 

(iii) p is the only critical point of F in N; 
(iv) / and F are homotopic (via Morse functions). 

Proof. We define in (a) the auxiliary function G which is used in (b) to define 
F. We also use in (b) the fact that by Proposition 1 of [4, p. 541] there exists 
a differentiate function h on N satisfying h(x) = 0 for x G B and h(x) > 0 
for x G N — B. For the gradient of h holds grad h(x) ^ 0 for x G N — B 
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and grad h(x) = 0 for x G B. T h e derivat ive fegrad f(x) of h in the direction of 
grad / is not negative. Each trajectory \//(x) of h through x £ N — B has 
exactly one limit point x' Ç B. T h e function m is taken from (k) of section 2. 
Assume t h a t 0 < a < f(p) - d and P(f) C\ (TEP - Md~za) = {p}. 

(a) Define g*(x) = id - a) + a • (f(x) - d + a)/(f(p) - d + a) and 
G(x) = m ( ( / ( x ) - J + 2 a ) / a ) ( f ( x ) - g*(x)) + g*(x) for x t Ev - Md~'\ 
Then G(£) = d. W e have G(x) < f(x) for all x G E„ - Md~a and G(x) > / ( x ) 
for x £ Ep with d — 2a ^ f(x) < d — a. T h e function G satisfies G(x) = 
/ ( x ) for x (z Ep with d — 3a ^ / ( x ) ^ d — 2a and G and / have the same level 
manifolds. Moreover, Ggrad /(x) > 0 for x ^ £ p with d — Sa ^ f(x) <f(p). 

(b) Let e > 0 be a cons tant with A = \x G Jkf|fe(jc) ^ 2e} C iV. Define 
F(x) = / ( x ) - m(h(x)/e) • (/(*') - G(x ' ) ) for x G N with ft(z) ^ 2e and 
F(x) — f(x) otherwise. Here x' is the limit point in B of the t rajectory \p(x) 
mentioned above. Then F(p) = d. T h e point p is the only critical point of F 
in A since FgT&a h(x) 7e 0 if h(x) ^ 2e and x d Ev a n d / ( x ) ?* d — a. U h(x) ^ 
2e and x $ JSP, bu t f(x) = d — a then ,Fgrad f(x) > 0. T h e existence of a 
homotopy between / and F follows from the definition of F. 

6. F u n c t i o n s o n s u b m a n i f o l d s of M. Th i s section contains the auxiliary 
Lemma 6.1 which is used in the proof of Theorem 6. 

6.1 L E M M A . If (p, q) is a preferred pair of critical points of f of type (x) and 
the index at p is n then there exists a Morse function f on M and neighborhoods Z 
respectively Zv of F% respectively TEP — Mf(Q) such that f and f have the same 
level manifolds on M — Z , that g r a d / ' ( x ) ^ 0 for x £ Z and f coincides with f 
on M — Zv. 

Proof. In our first s tep (a) of the proof we delete a neighborhood L of q in 
Eq to show t h a t on M — L there exists a smooth function G with the same levels 
as / such tha t G(x) ^ f(q) - a for x G TEV - (L U ilf / ( c )~3a) and for some 
cons tan t a > 0. G a n d / coincide on Mf(Q)~3a. T h e set L is deleted since G would 
be discontinuous on L and for the purpose G serves later, G does not have to be 
defined on L. In (b) we define a function F on Z wi thout critical points on Z 
which is used in (/) to replace the function / on a neighborhood U of x con­
tained in Z. T h e function G r e p l a c e s / on YEV — (Z \J Mnq)~'sa). T o pu t the 
functions G and F smoothly and wi thout critical points on Z — U together 
we use the function H, go a n d / 0 constructed in (c), (d) and (e). Finally, in ( / ) 
we construct the funct ion/ 7 with the properties listed in 6.1. T h e function m is 
t aken from (k) section 2. T h e local coordinates in Vq respectively Vp are x 
respectively y such t h a t x ^ Vq

 = {(0, . . . , 0, xn)\xn < 0} and x ^ Vp = 
{(jii 0, . . . , 0) |^ i > 0} . W e can choose the cons tants d, e £ R such t h a t 

f(y) ~ yi - d S 0 for y e Vv with yi > 0 and / ( x ) + xn + e - d ^ 0 for 
x (z Vq with xn < 0. T h e special choice of d, e is used in (b) to show t h a t the 
gradient of F on Z is not zero. 
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(a) Take a > 0 such tha t 

L = \x G V( 

n-l 

2_j xt ^ 3a, xn = 0 
*=1 

is closed in 7 , . P u t £(*) = (/(g) - 2a) + a • (/(z) - / ( g ) + 2a)/(f(p) -
f(q) + 2a) and define G(z) = g(z) + m((f(z) - f(q) + Sa)/a) • (/(z) - g(z)) 
for z G TEP - (L \J Mfw-*a) and G(z) = f(z) otherwise. Then G has the 
properties listed above. 

(b) P u t h'(y) = yi for y G Vp and h'(x) = xn + e for x G F^. Let 
0 < a' < 6' and c' < a7' < 0 be small constants . Define the function g* on Z 
by g*Cy) = m{{h'{y) - a')/V - a ') for y G Fp , for ^ Vq by g*(x) = 1 -
•m((h'(x) - e - c')/d' - c') and g*(z) = 0 for z G Z - (F„ U F 9 ) . Then 
F'(z) = g*(z) • h'{z) + (1 - £*(*)) • ( - / ( z ) + J ) is a smooth, bounded 
function on Z. Let 77 > 0 be such tha t \F'(z) — Ff (u)\ < rj for all z, u G Z . 
Define F(z) = a • F' (z)/t\ for s G Z. We list some properties of F: if g*(z) = 0 
then FgT&A f(z) ^ 0. If g*(z) 9^ 0 then Fgr&d h'(z) > 0, using the special choice of 
the constants d, e from above. In Z — (Vp W Fff) we have F(z) = 
a • ( - / ( z ) + d)/v and for 2 G {y G F^bi ^ 0} U {x G F^x» è 0}, we have 
F(z) = a -A7(2)A. 

(c) For a suitable neighborhood Z " of Tx in M with T Z " Ç Z we have t h a t 
the orthogonal trajectory \p(z) of F through z G Z " has its intersection with 
boundary Z in Vp W Fff. T h u s for z G Z " and xf = \p(z) C\ {x G Fç|xw = 0} 
we can define H(z) = H(x') where H (x) = YTiZi^i2^rx = (x i , . . . ,x„_i ,0) G 
Vq. Then H is smooth and HgvSb(1 F(z) = 0 for z G Z. Define Z ' = 
{z G Z\H(z) ^ 4a}. 

(d) Let a*, b*, c*, a7*, be constants with 0 < a* < /;* and c* < d* < 0 such 
t h a t a*2 = 3a and b* — a* = a = a7* — c*. T h e proper ty a*2 = 3a is used in 
(f) to show on a subset E' of Vv VJ Fff defined below, t ha t on Ef the derivat ive 
of the function / ' in the direction of grad H is negative. P u t gi(z) = 1 — 
m((hf(z) - c*)/a) for z G F „ a n d g i ( z ) = m((h'(z) - e - a*)/a) for z G 7ff. 
In Z ' , set g2(z) = 1 - m((H(z) - a)/a) and gz(z) = m((H(z) - 3 a ) / a ) . 
Define go(z) = gi(z)g2(z)gz(z) in Z' and go(z) = 0 in M — Z\ Then 
go grad F (z) = 0 for z ^ Z' — A' since gi(z) = 1 and Hgrad F(z) = 0. Here 
A' = {x G Fç|xw ^ 0} U {y G F ^ i ^ 0}. Other properties of g0 are: go is 
bounded by 0 and 1 and is zero on (M — Z') U Tx and 1 on 
{̂  G Z r |2a ^ i7(w) ^ 3a, u G ^4'}. The function g0 is smooth and g0 grad F ( ^ ) ^ 
Oin Vv respectively go g rad F(z) ^ 0 in Fff. 

(e) We need the following constants , functions and sets: d* < a\ < a2 < 0 
and 0 < bi < b2 < a*; define G'(z) = m((h'(z) - e - h)/b2 - fei) in F , 
and G ;(z) = 1 - m((h'(z) - ai)/a2 - fli) in 7P . For z G C - (Vp U Vq) 
pu t G^z) = 1. Here C = {z G ^ ^ 2 ( 2 ) < 1}. Finally, pu t G r(z) = 0 for 
z £ M - C and c' = mîz^z'F{z). Let ^ = {z G Z^oCz) = 1}. Define 

fo(z) = G'(z) • (F(z) + / ( g ) - a - c') + (1 - G'(z))G(z) 
for z G -M - A. 
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If G'(2) ^ 0 then a*2 = 3a implies that / 0 g r a d F(z) > 0. This holds for s 6 Z' -
A and H(z) g 3a. For z Ç C - {z € C\G'{z) < 1} holds /0(z) = F(z) + 
/(g) — a — c', on i f — Z' the functions/0 and G coincide and grad/0(z) 5̂  0 
holds for z € Z' - A. 

(f) Put.fi = [z € -M"|0 < g0(z) < 1}. We also use the sets 

D' = {z € Fp U F5|0 < g l ( z ) < 1} U ({a t Z'\H{z) g 3a} - .4), 

D" = {z g Z'|tf(z) â 3aj - ({y G Vp\yi £ 0} W {* € F5|x„ £; 0}), and 

£ ' = { z £ F f U F3 |gl(z) = 1, H(z) > 3aj 

H ({y € V,\yi £ 0} W {x 6 F5|x„ à 0}). 

Then E Q D'VJ D" \J E'. Define 

/ '(*) = (1 - So(*))/oOO + go(s) ( - # ( * ) + / ( ? ) + 3a). 

For z Ç Z>" holds f'gTaja F{z) = Ggra(i F(z) < 0 and for z £ Df we have 
/'grad F(S) > 0. Since a*2 = 3a we get /'grad H(S) < 0 if s Ç £ ' . If z Ç 4̂ and 
go(z) = 0 or 1 then grad H(z) ^ 0 implies that grad f'(z) ^ 0. The other 
properties of/' listed in 6.1 follow7 from the definition of/'. 

7. Elimination of critical points of index n and 0. 

Proof of Theorem 6 of the introduction: In 7.1 below wre show that for every 
critical point p of / of index n which is not a maximum point we have a pre­
ferred pair (p, q) of critical points of/ (see Definition 4.2). By 6.1 we can 
eliminate p and q as critical points. This shows the part of Theorem 6 for 
the critical points of/ of index n if only finitely many such points exist on M. 
If infinitely many critical points of/ of index n exist then we have to alter the 
function values of/ at critical points of index n and n — 1 such that for every 
point x £ M only finitely many alterations of/ by 6.1 reach x. To do this, wTe 
alter the function values of/ as follows: there exists a sequence 

. . . < C—m < C—(jn—\) < . . . < Co < Ci < . . . < ^ ra - l < CTO < . . . 

of real numbers such that / has at most one critical point p of index n on 
f~l(Ci) and for every such critical point of index n holds f(p) = ct for some i. 
In 7.2 below we show that for every critical point p of index n with f(p) = ct 

there exists a preferred pair of critical points {p, q) with cz_2 <f(q). Using 
these preferred pairs of critical points wre can eliminate by 6.1 inductively all 
superficial critical points of index n and only finitely many such alterations of 
/ reach a given compact subset of M. Using this construction for —/ instead 
of / we can also eliminate all superficial points of index 0. 

7.1 Remark. L e t / be a bowl function on M and p be a critical point of/ of 
index n which is not a maximum point. Then there exists q Ç P(J) such that 
(p, q) is a preferred pair of critical points of/. 
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Proof. We show in (a) t ha t there exists a critical point q G TEP such t h a t 
TEP does not contain an w-dimensional neighborhood of q. We use this fact 
in (b) to show 7.1. 

(a) If YEV contains for every q G P(j) C\ TEP an ^-dimensional neighbor­
hood then TEV is an ^-dimensional manifold. Since p is not a maximum point 
we have TEP 7^ M, contradict ing M connected. 

(b) Take the point q G P(f) Pi TEP of (a) with a maximal function value. 
If Er C TEP for r e P(f) with f(q) < f(r) then TEr C\ Eq = 0 since the 
index of / a t r is less or equal to n — 1, the point r is an interior point of TEP 

and the index of / a t q has to be (n — 1) because Iq P / _ 1 ( / ( ? ) + t) for e > 0 
has to be disconnected. Hence Ep and 7e intersect in exactly one trajectory of/. 

7.2 Remark. The assumptions are as in the proof of Theorem 6. Then for 
every critical point p of index n w\t\if(p) = ct there exists a preferred pair of 
critical points (p, q) with cf_2 < / ( g ) . 

Proof. For every constant c the s e t / _ 1 ( c ) meets with a t most a finite number 
of sets YEP in disconnected components o f / _ 1 (^ ) where p is a critical point of/ 
of index w. Hence for a t most a finite number of such points p the critical point 
q of the preferred pair (p, q) of critical points of 7.1 satisfies/(g) < c. There­
fore, to get the result of 7.2 we have to use a t most a finite number of al tera­
tions o f / accord ing to § 5 which m e e t / _ 1 ( c ) . 

8. T h e e l i m i n a t i o n t h e o r e m . A short proof of the elimination theorem 
(Theorem 7) is completed in this section. I t uses 8.1 and 8.2. The proof of 
Theorem 7 itself is the original one given by M. Morse [10, p. 270, 271, 304-307, 
312—316] and is repeated in this section for the convenience of the reader. T h e 
length of the proof of Theorem 7 given by M. Morse is due to the fact t h a t 
M. Morse needs all the results of [1; 2] and [9-11] to fill in the pa r t of the proof 
of Theorem 7 in which we are using 8.1 and 8.2. 

8.1 Let (p, q) be a preferred pair of critical points of the Morse function / 
on M of type 1 and X be the index of / a t p. Let N be the X-dimensional sub-
manifold of M given by the Corollary 4 of the introduction. Then there exists 
a smooth function / * on N such tha t 

(i) / * has no critical points on N; 
(ii) / * and / have the same levels outside of a neighborhood of Ev C\ Iq; 

( i i i ) /*(x) <f(x) for x e A where {x G TEp\f(x) ^ f(q)} C A and A is 
a compact subset of N; 

( i v ) / * ( x ) ^ / ( x ) forx G iVand /* (x ) = f(x) for all x G TV near the boundary 
of N . 

Proof. From Theorem 6 we have the existence of a function / ' on N with all 
properties of/* asked in 8.1 except pe rhaps / ' (x ) S f(x) for all x G N. Let the 
constants a, b*, e and the function hr be taken as in Lemma 6.1. Choose the 
cons tant e' such t h a t / ( x ) = / / ( x ) ior f (x) ^ e'. Since the minimum value 

https://doi.org/10.4153/CJM-1975-011-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-011-0


104 GUDRUN KALMBACH 

k(t) of f on the level f'(x) = t for/(g) — 4a ^ t ^ e' is a strictly monotonie 
increasing function there exists a smooth strictly monotonie increasing func­
tion b(t) on f{q) - \a <t < ë with i( /) < k(t) and with i(/) = / for t ^ 
/(g) - 4a or ^ e'. Let &* < c\ < c2 with c2 — Ci = a. Then 8.1 holds for 
the function 

f*(x) = m((hf (x) - e - a)/a) • b(f (x)) + (1 - m((*'(*) - e - a)/a)f(x). 

8.2 Assumptions as in 8.1. There exists a smooth function h on a neighbor­
hood W7 of N such that 

(i) h(x) = 0 for x G iV and &(*) > 0 for x G P^ - AT; 
(ii) ĝrad f(x) ^ 0, grad fe(x) ^ 0 for x £ W — N and grad h(x) = 0 for 

x G iV; 
(iii) each trajectory \p(x) of /z- for x G PI7 — iV has exactly one limit point x' 

mN. 

Proof. By [4, p. 541] there exists a function hp on a suitable neighborhood 
Wp oî A = Ep - Mf(Q)-*(e > 0) with the properties of 8.2 for (A, Wv) re­
placing (N, W) and such that hp grad f(x) = 0 for x G PP̂  — Fp. Let A*(x) = 
^JlZxxl in Fç. There exists a function Â on Vq such that A* and h have the 
same levels in V q and S(x) ^ hp(x) on 

5 ' = {x G Vq\e' ^ hq(x) ^ 2e', h*(x) ^ ei} 

for some ei > 0 and e' > 0 where hq(x) = fe*(x) + ^ 2 - Define/^(x) = /^p(x) + 
m((hq(x) — e ,)/e /)(^(^) — K(x)) m ^ a r | d K*) = K(x) m Wp — Vq. We 
have then /zgrad f(x) > 0 if x £ B' — N since /zp grad f(x) = 0. The other proper­
ties of 8.2 hold trivially. 

Proof of Theorem 7. This proof is now exactly the proof of Morse given in [12, 
p. 313] but uses only 8.1 and 8.2. For the convenience of the reader we repeat 
this proof: Let rj > 0. If x G N then let \f/(x) be the trajectory of h through x 
and TxP(x) H N = {*'}. Define F(x) = / (x) for x G M - W or x G W with 
ft(jc) è 2^; for x Ç W with &(*) < 2î7 let F(x) = /(x) - m(h(x)/v) (/(*') -
/*(x ' ) ) . Then F is smooth and F(x) = / (x) for x G PF with T) f^ h(x) S 2rj. 
Since 7<\x) = f*(x) for x £ N we have grad F{x) ^ 0 for x G AT. Let x G H7 

and 0 < &(#) < y\. Then ^grad ^(x) = /g r a d n(x) - hgrSLÛ h{x)m'\h(x)/rj) • I/77 • 
(/(*') - / * ( * ' ) ) • Now, /*(*') g / ( * ' ) implies Fgrad ,(x) è 0 and /*(* ' ) < 
/ (x ' ) implies .Fgrad h(x) > 0. Hence F has no critical points in W. The other 
properties of F are easily checked. 
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