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ON SOME RESULTS IN MORSE THEORY

GUDRUN KALMBACH

Introduction. The k-cobordism theorem in [8], the generalized Poincaré
conjecture in higher dimensions in [20] and several other results in differential
topology are proved by using the following theorems of Morse theory:

(1) the elimination of critical points;

(2) the existence of nondegenerate functions for which the descending and
ascending bowls have normal intersection;

(3) the alteration of function values at critical points. (For the details see
below.)

We shall give short and elementary proofs of these theorems together with
some stronger statements than the ones given in [8-13] or [19].

The theorems are proved for noncompact manifolds rather than for compact
manifolds since, by a trivial modification of the manifold (deleting the boundary
or one point) the case of compact manifolds is included.

From now on M is a noncompact, C®-differentiable, connected, z-dimension-
al manifold with a Riemannian structure.

A Morse function on M is a nondegenerate, proper, realvalued C*-function
on M.

A Morse function f on M is called a bowl function if and only if it has the
property mentioned in (2) and fulfills: if 4, B are two descending bowls of f
then either 4 is contained in the closure TB of Bin M or A M I'B = @.

THEOREM 1. Let f be a non-negative bowl function on M with the sel of critical
points P(f). Then there exists a Riemannian metric on M such that for every
constant ¢ = 0 the union N, = U,yesE, of the descending bowls E, associated
with the critical points p € S = P(f) N f~1([0, c]) is a CW-complex.

As a corollary we get that each mth homology and homotopy class of 17 has
a representative in some CW-complex N, & M whose carrier is the union of
finitely many cells of the m-dimensional skeleton of V..

In § 3, we prove the existence of “‘enough’ bowl functions on M. For a suit-
able Riemannian metric on M the following theorem holds.

THEOREM 2. Let f be a Morse function on M. For any constant § > 0 there
exists a bowl function g on M such that
(1) f and g have the same set P(f) of critical points on M (indices preserved);
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(i1) for every q € P(f) there exists an open neighborhood V of q in M such that
f and g coincide except possibly on a compact subset of V — {q};
(i) [f(x) — g(x)| < & for all x € M.

This includes that in studying topological properties of M we can use bowl]
functions instead of the frequently used Morse functions on .

We prove in § 4 a structure theorem for the closure I'E, of the descending bowl
E, associated with a critical point p of a bowl function f on M. Let X\ be the
index of f at p and ¢ be a critical point of f of index A — 1 with E, C TE,.
Let the neighborhood V, of ¢ in M and the local coordinates in V, be suitably
chosen. There exists a Riemannian structure on M such that for these pairs
of critical points (p, ¢) of f the following theorem and corollary hold in every
compact set N & M.

THEOREM 3. TE, N\ V, has r components which are linear halfsubspaces of V,.
The components intersect pairwise in their common boundary E,.

COROLLARY 4 (see also [10]). Let € > 0 and r = 1 in Theorem 3. If p, q are
the only critical points of fin A = TE, M {x € M|f(x) > f(q) — €} then there
exists an N-dimensional submanifold N in M with A C interior N.

With respect to the alteration of function values at critical points, we prove
in § 5: assume that d is a constant, f is a bowl function on M, the point p € M
is a critical point of f and W is a (small) open neighborhood of
TE, N\ {x € M|f(x) 2 d} in M for d < f(p) or of TI, N {x € M|f(x) < d}
for f(p) < d where I, is the ascending bowl at p.

THEOREM 5. There exists a bowl function g on M, homotopic (via bowl functions)
to f such that g and f have the same critical points (and indices) on M, that g(p) =
d and g differs from f only on W.

For noncompact manifolds M the elimination of critical points of index #
and of index 0 was formulated and proved in [3, § 4]. It appears (without
proof) also as a theorem in [14, p. 195]. The claim in [14] that the proof follows
from the compact case treated in [9] seems erroneous. In § 7 the following
theorem is proved.

THEOREM 6. Let M be a connected, noncompact, smooth, n-dimensional mani-
fold and f be a bowl function on M. Then all critical points of f of index 0 and n
can be eliminated except for one minimum point if f is bounded from below, or
one maximum pownt if f 1s bounded from above.

Similar as in Theorem 5, the construction of g is done such that g and f
differ only on small neighborhoods of TE, N {x € M|f(x) = d,} or TI,N
{x € M|f(x) = d,} (d, are suitably chosen constants) for the critical points
p of f of index % or 0.

In § 8 a proof of the elimination theorem of [12] is given: let f be a Morse
function on M and p, g be critical points of f of index \, N —1 such that E, and
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I, intersect transversely in precisely one component. By § 5 we can assume that
TE, N {x € Mlf@) > f(g)} = 4 C E,

THEOREM 7. There exists a Morse function F on M such that

(1) the set of critical points of f is the set of critical points of F (indices pre-
served) except for p, q which are not critical points of F;

(it) F differs from f only on a small neighborhood of A in M.

It should be noticed that the proof of this theorem given in [12] uses the
results of [1; 2; 9-11] and is therefore very long. The short proof of a weaker
version of the theorem is given in [8, pp. 48—66]; it does not include a construc-
tion of F, — the theorem is formulated in terms of ‘‘gradientlike vectorfields of
1. Our proof of the elimination theorem is short, it uses only some of the results
of § 4-7.

An application of Theorems 6 and 5 is the following normalform of a 2-
dimensional manifold M. (See also [6, p. 172].) There exists a non-negative
bowl function f on M and numbers 0 < ¢1 < ¢2 < ... < ¢, < ...such that
1710, ¢1]) is a closed disc and for n = 2 the set 4, = f~1([0, ¢,]) is obtained
from A,_; by attaching to each component of the boundary of 4,_; the lower
boundary (1.h.) of disjoint copies of one of the following 2-dimensional mani-
folds with boundary:

My ={(x,v,2) ER¥}x2 432 =1, —1 =<z =< 1},lbiz = —1

My, = My — D where D is an open disc in M; and T'D C int M,

M3z a torus 7" with two open discs D, E in 1" removed and with
ITDNNTE =60

My a Moebius strip .S with an open disc D in S removed and with
I'D CintS

I.b. of M;: boundary of D for 2 <1 < 4.

Il

The well-known characterization of compact 2-dimensional manifolds of
[18, p. 141] is based on the ‘‘Normalformen’ of M which are in a natural
correspondence with our normalforms: we ‘“‘cut through” M along all the
1-dimensional closed descending bowls of f, thus getting the interior (open
2-cell) of a “Normalform’ N; the pairs of edges . . .a.. .a™'...0r .. .a...qa...
of N (see [18, pp. 135—-140]) correspond in the obvious fashion to the 1-dimen-
sional descending bowls of f. Note, that by [18, 6, p. 139] we can replace an M3
and J/, attached to 4, by attaching three M, to 4,. Thus, if f has only a finite
number of critical points on M we get the classification of ‘‘Polyederflichen”
from [6, p. 149] by their orientability, genus and number of ends. The general
classification theorem for open surfaces [6, p. 170] can be derived by using as
the ends of M the sequences (B;) ;en of components B, of the sets T'(M — 4,)
which satisfy B, is a proper subset of B; for ¢ > j.

The original version of this paper together with the papers [4; 5] constitute
the main part of my 1966 doctoral thesis written at the University of Gottingen.
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S. S. Cairns helped me in 1968 in preparing an intermediate version of this
paper. S. Lubkin has reawakened my interest in the subject in 1972. It was
pointed out to me by J. Milnor in 1973 that Theorems 3 and 1 of this paper
are actually needed to make the proofs of [4, Proposition 4] and of [5, p. 466]
sound (or at least more easily intelligible). The referee has provided me with
a thorough list of critical remarks which have improved the manuscript con-
siderably. Finally, G. Bruns has contributed helpful comments. I am very
grateful for all this support.

1. Notations. The notation introduced in this section is used throughout
this paper.

T'N is the closure of the subset NV of a topological space X. For a Morse
function f on M and for ¢ € R we define

M= {p € M|f(p) < a,
P(f) is the set of critical points of f on M,
Vyisanopen neighborhood of » € P(f) with local coordinates x such that

A n
fx) = f(p) — Z x4+ >, x; where \is the index of f at p.

P ws]

The sets V, are disjoint for different critical points p of f. The Riemannian
metric on M is given on V,, by > i dxdx, [14, p. 175].

¢(q) is the (maximal) trajectory of f through ¢ € M — P(f) and
is locally given by de (¢, q)/dt = grad f(¢(t, q)) and ¢(0, q) = q.
In TV, these trajectories ¢(x) are given by
(1) o(t, x) = (e 2%, ..., e, %y, . - ., €2X,)

for @« < ¢t < B where @ < 0 < § are constants. We set, for p € P(f),

E,=1{q€ Mlg=porg¢c M/®andp ¢ Te(q)},—the
descending bowl associated with p
I, ={qge€ Mlg=porqgec M— M®andp ¢ Te(g)},

the ascending bowl associated with p. We have
E,,f\ sz {xE V,,]le = ... =x,,=0}
and [, NV, = {x € Vplxs = ... =x = 0}.

2. Alterations of bowls. Throughout this section f is a Morse function
on M and p, g are critical points of f with f(g) < f(p).

2.1 Definition. f is an (p, g)-bowl function if and only if either E, N\ TE, = @
or E, C TE, and I, and E, intersect transversely [8, p. 45].

https://doi.org/10.4153/CJM-1975-011-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-011-0

92 GUDRUN KALMBACH

We prove below that by a small alteration of the function f we can construct
a Morse function g on M which is an (p, ¢)-bowl function. This is the main
result used in proving the existence of ‘‘enough’ bowl functions. The function g
is homotopic to f, and the homotopy is using only Morse functions. This re-
mark and the fact, that g can be chosen arbitrarily close to f will be useful in
other contexts too.

From now on we assume that f is not an (p, ¢)-bowl function, in particular
that E, € TE, and E, N\ TE, # @. The case that I, and E, do not intersect
transversely is proved in the same way.

Since E, € E, we can assume without loss of generality, that (x,0,...,0) ¢
TE, for 0 < x; = ¢ and some constant ¢. We use in the next lemma the par-
ticular choice of the following constants, sets and functions of (a)—(/).

(a) f(¢) < a such that f~*(a) N\ V, is an open, nonempty set in f~'(a);

(b) 0 <d =c¢ with d < (¢ — f(¢))/2 and an open neighborhood 1" of
(d,0,...,0)inE;suchthat V, N\ (VX I,) YTE, = §and® #= (V X I,) N
f~Y(a) = Wisopen in f~!(a). That such a set V exists follows from (I) of sec-
tion 1 and the fact that (¢, 0, . . ., 0) has an open neighborhood U in M with
UNTE, =0.

The set W is used in 2.2 as follows. We prove that the trajectories of f can be
altered in M*“ such that the new ascending bowl associated with ¢ has its inter-
section with f~*(a) in W. Thus for the new descending bowl E,* associated with
p we have £, N\ TE,* = 0.

(c) H(x) = Z);=2 x2;

(d) flg) <b <V <ad <aand 0 < ¢ < e are such that

(*) xeV|flx) =a,Hx) < ed+ € <x1<d-+ ¢ € Wand
(**) o' — 2(d + 2¢) > b’ hold.

The inequality (**) will be used to show that the gradient of the function g
which we are constructing in 2.2 is not zero.

() A ={x € Vjfx) =a,H(x) < ¢ —e<x1<d—+ ¢

() B={x¢€ Vijex)NA4A#0,0b<flx)<al;

(g) h(x) is the x;1-coordinate of ¢(x) M A4 for x € B. Then % is smooth on B
and satisfies ggraq s(x) = 0 and grad k(x) ## 0. We write here %,(x) for the
derivative of the function % in the direction of the tangent vector v to .M at x.
For the alteration of the trajectories of f which we want to do, the trajectories
of k run in the right direction. Thus f and % will be put together in B to the
function g, using the function G which we define now. The special choice of G
is made such that it is easy to see that the derivative of g in the direction of
either grad f or grad & in B is not zero, which implies then that grad g is not
zero in B.

(h) I(x) = H(e(x) M 4) for x € B;

(k) m: R — R is a smooth function, bounded by 0 and 1 such that m(¢) = 1
fort = 0and m(t) = 0fort = 1. For 0 < ¢t < 1 we have m/(¢) < 0.
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_J1 = m((f(x) — b)/b" —b), forf(x) =V
0 gilx) = {m((f(x) —)ja —a'), for f(x) = b

Yl —m((h(x) + €)/e — €), forx; =0
() = {m((h(x) —d—¢))e—¢), forx; =0

g(x) = m((l(x) — €)/e =€)

_ 41 — gi(x)ga(x)gs(x), forx € B
) = {1, forx € V, — B.

The function G is smooth on V.

2.2. LEMMA. Assume f is not an (p, q)-bowl function. Then there exists a smooth
function g on V, such that
(i) f(x) = g(x) forx € V, — B;
(i1) for the descending bowl E,* of g associated with p, E, M TE,* = @;
(iii) grad g(x) # 0 and ggraa s(x) = 0 for x € B;
(iv) g is an (p, q)-bowl function.

Proof. Define gkx) = (1 — G(x))(h(x) + e) + G(x)f(x) where e =
(¢’ +0")/2 + e Then (i) holds by the definition of g. To show (iii), observe
that f(x) — h(x) — e = 0 and Ggpaa s(x) = 0 for f(x) = b’ and that Ggraq (%)
= 0 and, using (&) (**),f(x) — h(x) — e = Ofor f(x) = a’. Hence ggraq s(x) >
0if G(x) # 0,1 and ggrea n(x¥) # 0 and ggraa s(x) = 0if G(x) = 0. This shows
(iii). Using (d) (*) and (b) it is straightforward to see that (ii) holds. The pre-
ceding proof shows also (iv).

3. Bowl functions on M.

3.1 THEOREM. Let f be a Morse function on M and § > 0 be a constant. Then
there exists a bowl function g on M such that
(i) P(f) = P(g) (indices preserved);
(ii) |f(x) — g(x)| < 6 forx € M;
(iii) g differs from f only on \Uyepipy (V, — W,) where W, is an open neighbor-
hood of p in M with TW, C V,;
(iv) g is homotopic to f.

Proof. Let d € R be a constant and ¢ < d < b. We say a Morse function H
on M has property (A) for (a,b) if and only if H has properties (i)—(iv) of
g from above and H is an (p, q)-bowl function for all p, ¢ € P(f) with ¢ <
H(g) < H(p) < b. Assume now, & is a Morse function with property (A) for
(a, b). If there exists a critical value of f less than « then choose the constant
a* such that for exactly one critical value ¢ of f holds ¢* < ¢ = a. Using, if
necessary, 2.2 for the critical points g of & with k(g) = ¢, we can construct a
Morse function #* on M with property (A) for (a*, b). The same construction
can be done for —i* instead of % if there exists some critical value ¢ of f greater
than b. The existence of g follows then by using an inductive argument.
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Theorem 2 of the introduction is an immediate consequence of 3.1.

The following remark is not used later in this paper. It shows that the altera-
tion of the function f of 2.2 to get the function g can be “transported’ along
the trajectories of f from V, to V.

3.2. Remark. Assume the Morse function f on M is not an (p, ¢)-bowl
function for p, ¢ € P(f) with f(q) < f(p), but fis an (r, ¢)- and (p, 7)-bowl
function for all r € P(f) with f(g) < f(r) < f(p). Then there exists a Morse
function g* on V, and a Riemannian metric § on M which differs from the
given Riemannian metric on M only on a compact subset C of V, such that

) fy) =g foryc V, = C
(ii) for the descending bowl E,* (using the Riemannian metric g) of g*
associated with p, E, N TE* = @;

(iit) |f(y) — g*(v)| < b6 for y € V, and some constant § > 0;

(iv) g* has no critical point on C;

(v) g* is an (p, ¢)-bowl function.

Proof. Since f is an (r, q¢)- and (p, r)-bowl function for all » ¢ P(f) with
f(@) < f(r) < f(p) there exists an open neighborhood N of TE, in M — M/@
with TE, N NN TV, = #. We show in (a) that in 2.2 the alteration of f to an
(p, q¢)-bowl function g can be modified such that g differs from f only on N.
Using the diffeomorphism ¢g_, of [7, p. 13] from {x € V |g(x) # f(x)} = B
onto D C TV, («, B suitable constants), we get as a new set of trajectories x on
D the images under ¢z, of the trajectories of g in 5. We have to pick (see (b))
another Riemannian metric § on D to show in (c) that there exists a Morse
function g* on D which has x as its set of orthogonal trajectories and which
fulfills also all the other requirements of the remark.

(a) By Proposition 2 of [4, p. 542] there exist neighborhoods W and W’ of
TE,in M — M@ with W C W C N and a separation function (see [4]) H
of M — (W\U M) and W' — M@, Some properties of H are: H(x) = 1
near the boundary of W and H(x) = 0 for x € W/, the function H is smooth
and Hypa (x) = 0forx € WM V,. Itis easy to see that the constants in (d)
of section 2 can be chosen such that T'E,* of 2.2 lies in W’. Thus the Morse
function F on M defined by F(x) = Hx)f(x) + (1 — H(x))g(x) for x € V,
and F(x) = f(x) otherwise, has the properties of g in 2.2 and has the same
descending bowl E,* associated with p as g.

(b) Let «x, respectively vy, be the preferred coordinate system in V, respec-
tively 1,. Note, that det (dy(ps—a(x))/dx) > 0 throughout

V= {x€ V,|F(x) # f(x)}.

Let g be the Riemannian metric on M. Then there exists a new Riemannian
metric g on V, such that for y € ¢po(V) holds g (v) (v, w) = F(¢—pra(¥y))
(do—ptav, do_pgraw) and for y € V, — V' holds g(v) (v, w) = g(y) (v, w) where
V' is a neighborhood of Teg (V) in V, not containing $ and where de_g;, is
the map induced by ¢_g,, on the tangent bundle of pg_, (V). The existence of g
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is an easy consequence of the following facts. Let 4 (y) = (9x(o_pgia(v))/3y).
Note, that g(y) = > imidydy; and det A(y) > 0 for y € ¢s_o(V). Let g4 (y)
be the (¢, k)-entry of the matrix A (y)A!(y). Then for y € V' we get

Z(e—p+a(¥)) (A¢—p+ad/ 0y 1, dp_p1a0/yr) = Zu(y).
(c) Set g*(¥) = Fle—pra(y)) + B — afory € s (V) and set g*(y) = f(y)
otherwise. The equation d¢g_, grad F = grad g* on ¢ (V) follows from

2(¥)(8/8y, dps—o grad F)

| 3 05, (e-a1a))/ 03, /03,
gradF)

= 2:1 aF/axj' ‘9xj<¢—s+a(y))/ayi
P

= 00 ¢ s1a(y)/0ys = 9g*(y)/ 0y
Then the set x, the images under ¢g_, of the trajectories of Fin V| is the set of
trajectories of g* on ¢z _o(V), since the vectors d ¢s_, grad F = grad g* are the
tangent vectors to the elements of x.

4. The local structure of T'E,. The next lemma is from (8, pp. 58-66]. We
present a different proof here. A linear map !/ is called tangent to a diffeomor-
phism /& at O if and only if the Jacobian of / and of % at 0 coincide.
Let (a)1<4,j<n be the Jacobian of I. Then [ is called an elementary rotation
if and only if there exist numbers 7, p, ¢ with 1 < p, ¢ < n and p # ¢ such
that a,; = 8;; (Kronecker symbol) for {7, j} & {p, ¢}, that a,, = cos 1 = ay
and a, = sin g = — a,, For a definition of an intersection number see [8,
p- 67]. For 1 = m < n and m + k = n the space R™, respectively R, is the
submanifold R™ X 0, respectively 0 X R¥, of R".

4.1 LEMMA. Let h be an orientation preserving diffeomorphism from R" into
R* with h(0) = 0 and h(R™) N R¥ = {0} such that the intersection of h(R™)
and R* is transverse with the intersection number 1. Then there exists a diffeo-
morphism h* : R* — R" such that

(1) B*(x) = h(x) for x € R* — N where N is some neighborhood of 0;
(i1) h*(x) = x in a neighborhood of 0;

(iii) there exists an isotopy (h,)o<.<1 between b and b* such that b, (R™) M R* =

{0} and the intersection is transverse for every t [8, p. 58].

Proof. We discuss two special cases first, in (a) that the identity is tangent to
h and in (b) that % is an elementary rotation with —« < 5 < w. The general

case is treated in (c). Let 2(x) = (hi(x), ..., h,(x)).
(a) Let m be the function of (k) section 2 and |m/ ()] < ¢ for 0 =t =< 1.
Define

hi*(x) = m(lx]* — a/b — a)x; + (1 — m(jx]* — a/b — a)h;(x)
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where 0 < a = b/2. We can choose a neighborhood V of 0 and a constant
e > 0 such that the derivative of & ; with respect to x; is larger than 1 — e and
with respect to x; for 7 # j lies between —e and e. We ask also that
4¢ - |hj(x)/x; — 1] < e. Then |0h*(x)/0x;| < 2¢ for ¢ # jand oh;*(x)/dx; >
1 — 2¢ which shows that for sufficiently small chosen b, e and V, the Jacobian
of h*, is not zero. Using the Taylor formula for k¥ it is straightforward to see
that 4* is one-to-one, i.e. a diffeomorphism. (iii) is an easy consequence of the
definition of A*.
(b) Put g(x) =7 - (1 — m(|jx|* — a*/b* — a*) for 0 < a* < b* and

H(x) = (Zl “if(x)xf)lggn

=
where a;(x) = 6;; for {7, j} € {p, ¢} and a,,(x) = cos (g(x)) = a,(x) and
ap(x) =sin (g(x)) = —ay,(x). The map H is one-to-one since |H(x)| = |x|.
It is straightforward to check that the determinant of the Jacobian of H is
always 1 and that (iii) holds.

(c) Let I be the linear map tangent to 2 at 0. Using (a) for the map [=' o %
we can find a map &’ with the properties (i), (iii) of 4.1 and with 4'(x) = I(x)
in a neighborhood U of 0. The Jacobian 4 of [ can be written as the product
C - B of two matrices with det B = 1 and C = (¢y;) where ¢;1 = ¢ > 0 and
¢i; = 8;; otherwise. Since the map r(x) = B - x (matrix product) is a finite
composition of elementary rotations we can use (b) to find a diffeomorphism f
with the properties (i), (iii) of 4.1 in U (I replaces &) and which coincides with
s(x) = C - x in a neighborhood W of 0. Finally, for s replacing %, we can find
a function F with the properties of the Lemma. If we put #* equal to F in WV,
equal to fin U — W and equal to %’ in R" — U then &* has the properties
required.

4.2 Definition. Let p, ¢ be critical points of a Morse function f on M of index
N, A — 1 such that

() f(g) < f(p) and E, € TE,, and

(ii) there exists a neighborhood W of E, in M/®+¢ — M/ where ¢ > 0

such that WM P(f) = {p}.
Note that in this case there exist finitely many trajectories xi, . . ., x, of f in
E, such that the x; are exactly the trajectories of f which have p and ¢ as limit
points. We then call the pair (p, g) a preferred pair of critical points of type
(X4) i=1,...,r (or of type 7).

4.3 Definition. Let A be a linear k-dimensional subspace of R* and L; be
halflines with the endpoint in 4 for 1 < ¢ < r. Asume P; is the closed half-
space in R* spanned by 4 and L; and P, P, = A for ¢ # j. Then B =
Ui=1P is a ((k + 1)-dimensional) book with r pages having spine 4.

4.4 THEOREM. Let f be a bowl function on M and N & M compact. There exists
a neighborhood W, of p € P(f) with TW, C V, and a Riemannian metric on M

which differs from the original Riemannian metric only on Upepn nan Ve — Wp
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such that with respect to the new Riemannian metric on M the following holds:
for every preferred pair of critical points (p, q) (where p, ¢ € N) of type r the
intersection TE, (M W, is a book with v pages having the spine E, M W,.

Proof. Assume that (p, ¢) is of type (x;)i1,....» and (II) holds;

(IT) we constructed a new Riemannian metric in a neighborhood N; of a
point x¢ € x; (7 fixed) in V, such that

(i) dist (N4, q) > 0;

(ii) x; remains a trajectory of f;

(iii) there is a neighborhood 4 ; of I'x;in TE, (taken in the new Riemannian

metric) and a neighborhood U, of ¢ in M such that 4,MN U, is a closed \-
dimensional linear halfsubspace of U,, (A is the index at p).
Then the theorem follows by using disjoint sets V; and, if necessary, the diffeo-
morphism from M@=« W to M/@+e¢ M\ W induced by f, together with
some inductive argument similar to the one used in 3.1. Here ¢ > 0, and the
neighborhood W of E, — M/ has the properties of W in 4.2. The proof of (II)
is in three parts. In (a) we define an isotopy %, on 4 = f~1(f(q) + ¢) M N,
with the analogue to the properties of %, in 4.1. The isotopy %, is used in (b)
to define on N; a new set of trajectories ¢ with the following properties:

(iv) the elements of ¢ and the trajectories of f coincide as sets close to the
boundary of N; (and on x;), thus ¢ can be extended to a set of trajectories on M ;

(v) using ¢, the new descending bowl associated with p is, close to x a
linear subspace of some open neighborhood U, of ¢ in M. To get the trajectories
¥ to be the orthogonal trajectories of f we change in (c) the Riemannian metric
on N ;. We are using the diffeomorphisms ¢g_, of [7, p. 13].

(a) In A (respectively ¢sm—e—r—e(N:) M f71(f(p) — €) we choose the
intersection with x; as the origin and the coordinates # (respectively v) as the
translation induced by the preferred coordinate system in V, (respectively V).
Put 2(v) = o_;py+rerrp+e(®). The map & is a diffeomorphism of 4 onto 4 if
we change the coordinate system « on 4 to either v = u or (v; = u; for z £ \
and oy = —up) or (v; = u;for i # N\, N+ 1,00 = —uy, o1 = —ury1) What-
ever is necessary to make % also orientation preserving and A (E,) and I, N\ A
intersect transversely with the intersection number 1. Take %, as the isotopy
of 4.1.

(b) Define in N, the curves ¢(w) for w = ho(v) € N; N f~1(f(g) + ¢) = N*
by ¢(t, w) = @u_jyy—e(h,(v)) where a = f(qg) + e —t-b for 0 =t <1 and
some small constant b > 0. Then w € E, M N* if and only if ¢(1, w) € N; N
{x € [~1(f(g) + € = b)|xn = ... = x,01 = 0,x, < 0} = N'. Here we assume
that x is the preferred coordinate system in V, and x; is the negative x,-axis
in V,. We extend the curves ¢(w) by the trajectories of f through ¢(0, w)
respectively ¢ (1, w) in the direction of increasing respectively decreasing values
of f. For points of M which do not lie on one of these curves we take the tra-
jectories of f, thus getting a set ¢ of disjoint curves on M — P(f). These curves
may fail to be smooth on N* M N’. A lemma of Munkres [15, p. 26] applies
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in this case and proves the existence of a smooth set of curves ¥ which coincides
with ¢ outside of a small neighborhood of N* N N’.

(c) We choose a parametrization of the trajectories of ¢ such that the vector-
field »(x) = (v1(x), ..., v,(x)) of tangents of these trajectories on V, coincide
with grad f outside of N,. Define the new Riemannian metric

n

g*(x) = Z lg”(x)dx,-dxj on Ni
1, =
by g4;(x) = 8;; (Kronecker symbol) if ¢, j # #n, by g4, (x) = g.:(x) = —1/v,(x)
(vi(x) + v:2¢;)forl £2=m — 1withy; =1lifs < Xandy; = —1if X =1
and by

n—1

(%) = —(lx—) @) + T 74(o) (04(a) + 7200).

We can assume that |v;(x)| and |x,| are small in comparison with |»,(x)| and
lx,| for 2 =1, ..., (m — 1). Then it is easy to show that g* is a Riemannian
metric on V,. Note, that g*(x) = Y 7-1dx.dx; outside of N; and that ¢ is the
set of orthogonal trajectories of f with respect to the Riemannian metric g*
on NV,

Theorem 3 of the introduction follows immediately from 4.4. The proof of
the corollary to Theorem 3: using the notation of 4.4(b) recall, that TE, N\ I,
respectively T'E, was given in a neighborhood U, of ¢ by

{xe UQ!x= (09'--10vxn)7xn éo}

respectively {x € Ugxr = ... = x,.1 = 0, x, = 0}. We define with some suit-
able constants o > 0 and 8 > 0 the set N by
N = (TE, — M7@-8) U {x € Vjur =...=x,1 =0,

0 < x, <a,flx)>flq — B}

Note, that the proof of 4.4 can be modified for a bowl function f on 3/ such
that in Theorem 4.4 not all requirements of 4.2, but only 4.2(i) is needed as an
assumption for the pair of critical points (p, ¢), to show that the intersection
TE, N W, is the union of a finite number of closed linear submanifolds of W,
which pairwise intersect in E, M W,. In particular the indices at p and ¢ may
differ by more than 1. We use this fact below in 4.5, a correction to the proof of
Proposition 4 of [4, p. 543]; this Proposition 4 itself is now used in the

Proof of Theorem 1 of the introduction: Let f be a non-negative bowl func-
tion on M satisfying the modified version of 4.4 and a > 0 be a noncritical
value of f. We want to show that the union K* C M of the descending bowls E,
associated with p € M* M P(f) isa CW-complex. Clearly K* with the induced
topology is a Hausdorff space and is the union of disjoint (open) cells. Assume
P, ¢ € M* are distinct critical points of f of index \, r and E, & TE,. Since
I,N\ TE, # @ and I, and TE, intersect transversely we have N 4+ ( — 7) —
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1 = #n,ie, N> 7. Hence TE, — E, lies in the (A — 1)-dimensional skeleton
of K° It remains to show that there exists an attaching map from the closed
\-dimensional unit ball onto TE,. We prove this by proving that for a suffi-
ciently small constant ¢ > 0 the cell 4 = T'(E, — M7®-2¢) is attached to
K/@—¢< Without loss of generality, f(p) is the only critical value of f between
f(p) — 3e and f(p) + e. Let m be the function of (k) section 2 and g(x) =
m((f(x) — f(p) + 2¢)/e) forx € M/ P« If r,for 0 = ¢ < 1 is the deforma-
tion retraction of M/®~¢ onto K’®-¢ from [4, Proposition 4] then,

r(x) = x, for x € TE, — M/®—¢
x) = 7o (%), for x € M/®~< N\ TE,

is a map attaching 4 to K/®—¢, Using [23, p. 129] we have as an easy conse-
quence of Theorem 1 the corollary to Theorem 1.

The preceding proof of Theorem 1 and 4.5 is added to the original version of
this paper due to questions of J. Milnor and the referee of this paper.

4.5 Correction to the proof of Proposition 4 of [4, p. 543]: We complete the
proof of the statement of [4, p. 543, line 9-11]: x(p) has exactly one limit point
p’ € K° By 3.1 and the note to 4.4 we can assume that the function f is a bowl
function which satisfies: if £, & TE, (¢, 7 € M°) then TE, M W,is the union
of a finite number of closed linear submanifolds of W, which pairwise intersect
in E, M W,. This construction can be done such that also the level submani-
folds %, = const. of the function %;, of Proposition 4 are linear submanifolds
of W, intersecting I, transversely. Thus in the notation of [4], (A) if u €
Vi, — (Wi, Y E,)) NIy, then x(u) € I;,_, holds. Here I,_,, E,, are
the sets I, E, and V;,/, W, are neighborhoods of E;, in M. But (A) implies
that for v € W, the trajectory x(v) does not have a limit point in both, E, and
E,. Thus x(v) has exactly one limit point in K¢,

5. The alteration of critical values. Theorem 5 of the introduction is an
easy consequence of the following Lemma.

5.1 LEMMA. Let f be a Morse function on M and p € P(f) such that for some
constant d < f(p) the set B = TE, — M? contains no critical point of f other
than p. Then there exists a neighborhood N of B in M and a Morse function F on M
such that

(i) F coincides with f in M — N;
(i) F(p) = d;

(iii) p s the only critical point of F in N;

(iv) f and F are homotopic (via Morse functions).

Proof. We define in (a) the auxiliary function G which is used in (b) to define
F. We also use in (b) the fact that by Proposition 1 of [4, p. 541] there exists

a differentiable function % on N satisfying k(x) = 0 for x € B and k(x) > 0
for x € N — B. For the gradient of % holds grad k(x) 2 0 for x € N — B
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and grad k(x) = 0 for x € B. The derivative kgrq ;(x) of & in the direction of
grad f is not negative. Each trajectory ¢(x) of % through x € N — B has
exactly one limit point x* € B. The function m is taken from (&) of section 2.
Assume that 0 < ¢ < f(p) — d and P(f) N\ (TE, — M%) = {p}.

(a) Define g*(x) = d —a) +a¢-(fx) — d + a)/(f(p) — d + «) and
G(x) = m((f(x) —d + 2a)/a)(f(x) — g*(x)) + g*(x) forx € E, — M.
Then G(p) = d. Wehave G(x) < f(x) forallx € E, — M*%and G(x) > f(x)
for x € E, withd — 2¢ = f(x) < d — . The function G satisties G(x) =
flx) forx € E, withd — 3a £ f(x) £ d — 2z and G and f have the same level
manifolds. Moreover, Ggraa s(x) > 0 for x € E, with d — 3¢ < f(x) < f(p).

(b) Let ¢ > 0 be a constant with 4 = {x € M|h(x) £ 2¢} € N. Define
Fx) =f(x) —mhx)/e) - (f(x') — G(x")) for x € N with h(x) =< 2¢ and
F(x) = f(x) otherwise. Here &’ is the limit point in B of the trajectory y(x)
mentioned above. Then F(p) = d. The point p is the only critical point of F
in 4 since Fypq n(x) #£ 0if h(x) £ 2eandx ¢ E,and f(x) #d — a. Il h(x) <
2¢ and x ¢ E,, but f(x) =d — ¢ then Fyq ;(x) > 0. The existence of a
homotopy between f and F follows from the definition of F.

6. Functions on submanifolds of 1/. This section contains the auxiliary
Lemma 6.1 which is used in the proof of Theorem 6.

6.1 LEMMA. If (p, q) is a preferred pair of critical points of f of type (x) and
the index at p is n then there exists a Morse function f' on M and neighborhoods Z
respectively Z, of T'x respectively TE, — M'9 such that f and [’ have the same
level manifolds on M — Z, that grad f'(x) # 0 for x € Z and f coincides with f'
on M — Z,.

Proof. In our first step (a) of the proof we delete a neighborhood L of ¢ in
E,toshow thaton M — L there exists a smooth function G with the same levels
as f such that G(x) = f(g) — a for x € TE, — (L U M/@=3) and for some
constant ¢ > 0. G and f coincide on M/(@—3¢ The set L is deleted since G would
be discontinuous on L and for the purpose G serves later, G does not have to be
defined on L. In (b) we define a function F on Z without critical points on Z
which is used in (f) to replace the function f on a neighborhood U of x con-
tained in Z. The function G replaces f on TE, — (Z \J M/(D=3%)_ To put the
functions G and F smoothly and without critical points on Z — U together
we use the function H, go and f, constructed in (c), () and (e). Finally, in (f)
we construct the function f” with the properties listed in 6.1. The function m is
taken from (k) section 2. The local coordinates in V, respectively V, are x
respectively v such that x \ V, = {(0, ..., 0, x,)|x, < 0} and x N\ V,, =
{(y1, 0, ..., 0)]yr > 0}. We can choose the constants d, ¢ € R such that
f@&) —y1i—d =20 for y € V, with y1 > 0 and f(x) +x, + ¢ —d = 0 for
x € V, with x, < 0. The special choice of d, e is used in (b) to show that the
gradient of F on Z is not zero.
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(a) Take a > 0 such that

n—1
L= {x cr, Zi x,-2§3a,x,,=0}
is closed in V,. Put g(z) = (f(g) — 20) + a - (f(z) — f(q) + 20)/(f(p) —
J(q) + 2a) and define G(z) = g(z) + m((f(z) — f(q) + 3a)/a) - (f(z) — &(2))
forz ¢ TE, — (L U M/@=3) and G(3) = f(z) otherwise. Then G has the
properties listed above.

(b) Put A'(y) = y1 for y € V,, and h'(x) = x, + ¢ for x € V, Let
0 <a <V and ¢’ < d <0 be small constants. Define the function g* on Z
by g*(y) = m((h'(y) — a')/b" — a’) fory € V,, forx € V,by g*¥(x) =1 —
m((h'(x) —e —¢c')/d — ¢)and g*(z) = O0forz € Z — (V, U V,). Then
F'(z) = g*@)-WiE) + A —g*@)) - (—f(z) +d) is a smooth, bounded
function on Z. Let n > 0 be such that |F'(z) — F'(u)| < q for all 3, u € Z.
Define F(z) = a - F'(z)/n for z € Z. We list some properties of F: if g¥(z) = 0
then Fyraq 7(2) # 0. 1f g*(2) # 0 then Fyrq1’(z) > 0, using the special choice of
the constants d, e from above. In Z — (V,U V,) we have F(3) =
a-(—f(g) +d)/n and for z € {y € V,ly1 =0} U {x € V,|x, = 0}, we have
F(z) =a-HW(z)/n.

(c) For a suitable neighborhood Z'" of Tx in M with TZ" C Z we have that
the orthogonal trajectory y(z) of F through z € Z”’ has its intersection with
boundary Z in V,\U V,. Thus for z € Z"" and &’ = ¢(z) N {x € V,|x, = 0}
we can define H(z) = H(x') where H(x) = Y.'Zix2forx = (x1,...,%,-1,0) €
V, Then H is smooth and Hgpma #(2) = 0 for z € Z. Define Z' =
\z € Z|H(z) = 4ai.

(d) Let a*, b*, ¢*, d*, be constants with 0 < «* < 0* and ¢* < d* < 0 such
that ¢** = 3¢ and b* — «* = a = d* — ¢*. The property a*? = 3¢ is used in
(f) to show on a subset E’ of V, \U V, defined below, that on E’ the derivative
of the function f’ in the direction of grad H is negative. Put g;(z) = 1 —
m((h' (z) — ¢*)/a) forz € Vyand gi(z) = m((h'(z) — ¢ — a*)/a) forz € V,.
In Z’, set g2(z) = 1 — m((H(z) — a)/a) and g3(z) = m((H(z) — 3u)/a).
Define go(z) = gi(2)g2(2)gs(z) in Z’ and go(z) = 0 in M — Z’. Then
Qograa #(2) = 0 for z € Z/ — A’ since gi(z) =1 and Hypg #(z) = 0. Here
A" ={x € Vyx, 2 0} U {y € V,|y: £ 0}. Other properties of g, are: g, is
bounded by 0 and 1 and is zero on (M — Z') U TI'x and 1 on
{u € Z'2a £ H(u) < 3a,u ¢ A’}. The function g, is smooth and g¢ graa #(2) =
0in V, respectively gq graa »(2) < 0in V,.

(e) We need the following constants, functions and sets: d* < a1 < «» < 0
and 0 < b1 < by < a*; define G'(z) = m((W' (z) — e — b1)/bs — by) in V,
and G'(z) = 1 — m((W(2) — a1)/a2 — a1) in V,. Forz € C — (V, U V)
put G'(z) = 1. Here C = {z € Z'|g2(3) < 1}. Finally, put G’(z) = 0 for
z2 € M — Cand ¢’ = inf,,F(z). Let A = {3 € Z'|go(z) = 1}. Define

Jo(z) = G'(2) - (F(z) +f(q) —a—¢) + (1 —G'(2)G(2)
forz € M — A4.
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If G'(2) # 0thena** = 3a implies that fy graq #(z) > 0. This holds forz € Z' —
A and H(z) £ 3a. For z2¢€ C— {3 € C|G'(3) < 1} holds fo(z) = F(z) +
flg) —a — ¢, on M — Z’ the functions f, and G coincide and grad fy(z) = 0
holds for z € Z' — A.

(f) Put E = {3 € M|0 < go(z) < 1}. We also use the sets

D ={z2c V,UV,0<gi(z) <1}V ({5 € Z'|H(z) < 3a} — 4),
D" ={z¢€ Z'H(z) Z 3a} — ({y € Vply1 20} U {x € V,x, = 0}), and
E ={z¢ V,UV,]ak) =1,H(z) > 3a}

N ({y € Valyr = 0} U {x € Vi, 2 0}).

Then £ C D’"\U D" U E’. Define

@) = 1 = g@)fu(z) + g(2) (=H(z) + f(g) + 3a).

For z € D" holds f'graa #(3) = Ggraa #(3) < 0 and for z € D’ we have
Fleraa #(2) > 0. Since a*? = 3a we get feraa n(2) < 0if 2 € £'. If 2 € 4 and
go(z) = 0 or 1 then grad H(z) # 0 implies that grad f'(z) # 0. The other
properties of f” listed in 6.1 follow from the definition of f’.

7. Elimination of critical points of index » and 0.

Proof of Theorem 6 of the introduction: In 7.1 below we show that for every
critical point p of f of index # which is not a maximum point we have a pre-
ferred pair (p, ¢) of critical points of f (see Definition 4.2). By 6.1 we can
eliminate p and ¢ as critical points. This shows the part of Theorem 6 for
the critical points of f of index # if only finitely many such points exist on .
If infinitely many critical points of f of index # exist then we have to alter the
function values of f at critical points of index #» and » — 1 such that for every
point & € M only finitely many alterations of f by 6.1 reach x. To do this, we
alter the function values of f as follows: there exists a sequence

el e <Ll e < oo < g <a< o< <l <...

of real numbers such that f has at most one critical point p of index # on
f~1(¢;) and for every such critical point of index = holds f(p) = ¢, for some i.
In 7.2 below we show that for every critical point p of index n with f(p) = ¢;
there exists a preferred pair of critical points (p, ¢) with ¢,—» < f(¢). Using
these preferred pairs of critical points we can eliminate by 6.1 inductively all
superficial critical points of index # and only finitely many such alterations of
f reach a given compact subset of M. Using this construction for —f instead
of f we can also eliminate all superficial points of index 0.

7.1 Remark. Let f be a bowl function on M and p be a critical point of f of
index » which is not a maximum point. Then there exists ¢ ¢ P(f) such that
(p, q) is a preferred pair of critical points of f.
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Proof. We show in (a) that there exists a critical point ¢ € TE, such that
T'E, does not contain an n-dimensional neighborhood of ¢. We use this fact
in (b) to show 7.1.

(a) If TE, contains for every ¢ € P(f) M T'E, an n-dimensional neighbor-
hood then T'E, is an n-dimensional manifold. Since p is not a maximum point
we have TE, % M, contradicting M connected.

(b) Take the point ¢ € P(f) M I'E, of (a) with a maximal function value.
If E,C TE, for r € P(f) with f(¢) < f(r) then TE, N\ E, = @ since the
index of f at r is less or equal to » — 1, the point 7 is an interior point of TE,
and the index of f at ¢ has to be (» — 1) because I, N f~1(f(¢) + ¢) for e > 0
has to be disconnected. Hence E, and I, intersect in exactly one trajectory of f.

7.2 Remark. The assumptions are as in the proof of Theorem 6. Then for
every critical point p of index n with f(p) = c¢; there exists a preferred pair of
critical points (p, ¢) with ¢;—2 < f(q).

Proof. For every constant ¢ the set f~!(¢) meets with at most a finite number
of sets T'E, in disconnected components of f~1(¢) where p is a critical point of f
of index n. Hence for at most a finite number of such points p the critical point
g of the preferred pair (p, ¢) of critical points of 7.1 satisfies f(g) < ¢. There-
fore, to get the result of 7.2 we have to use at most a finite number of altera-
tions of f according to § 5 which meet f~1(c).

8. The elimination theorem. A short proof of the elimination theorem
(Theorem 7) is completed in this section. It uses 8.1 and 8.2. The proof of
Theorem 7 itself is the original one given by M. Morse [10, p. 270,271, 304-307,
312-316] and is repeated in this section for the convenience of the reader. The
length of the proof of Theorem 7 given by M. Morse is due to the fact that
M. Morse needs all the results of [1; 2] and [9-11] to fill in the part of the proof
of Theorem 7 in which we are using 8.1 and 8.2.

8.1 Let (p, g) be a preferred pair of critical points of the Morse function f
on M of type 1 and \ be the index of f at p. Let NV be the N\-dimensional sub-
manifold of M given by the Corollary 4 of the introduction. Then there exists
a smooth function f* on N such that

(i) f* has no critical points on N;
(i1) f* and f have the same levels outside of a neighborhood of E, M I,;

(iii) f*(x) < f(x) for x € 4 where {x € TE,)|f(x) = f(g)} £ A4 and 4 is
a compact subset of N;

(iv) f¥*(x) = f(x) forx € Nand f*(x) = f(x) forallx € N near the boundary
of N.

Proof. From Theorem 6 we have the existence of a function f on N with all
properties of f* asked in 8.1 except perhaps f'(x) < f(x) for all x € N. Let the
constants a, b*, ¢ and the function %’ be taken as in Lemma 6.1. Choose the
constant ¢’ such that f(x) = f'(x) for f'(x) = ¢'. Since the minimum value
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k(t) of f on the level f'(x) =t for f(q) — 4a £ ¢ £ ¢’ is a strictly monotonic
increasing function there exists a smooth strictly monotonic increasing func-
tion b(¢) on f(q) — 4a < t < € with b(t) < k(t) and with b(¢t) = ¢t for t <
fl@) —4a or t z¢. Let b* < ¢1 < ¢ with ¢ — ¢ = a. Then 8.1 holds for
the function

@) =m((W (x) —e—c1)/a) -b(f'(x)) + A —=m((h' (x) —e—c1)/a)f(x).

8.2 Assumptions as in 8.1. There exists a smooth function 4 on a neighbor-
hood W of N such that
(i) h(x) = 0forx € Nand h(x) > 0forx € W — N;
(i1) hgraa s(x) = 0, grad A(x) % 0 for x € W — N and grad k(x) = 0 for
x € N;
(iii) each trajectory ¢(x) of h for x € W — N has exactly one limit point x’
in V.

Proof. By [4, p. 541] there exists a function %, on a suitable neighborhood
W, of 4 = E, — M/9~=¢(¢ > 0) with the properties of 8.2 for (4, W,) re-
placing (N, W) and such that %, gra ,(x) = 0 for x € W, — V,. Let A*(x) =
S " A x? in V,. There exists a function z on V, such that 4* and & have the
same levels in V, and & (x) < h,(x) on

B = {x € V] £ h(x) <2, h*(x) £ e

for some ¢; > 0 and ¢ > 0 where 2,(x) = h*(x) + x,% Define h(x) = hy(x) +
m((h,(x) — €)/€)(h(x) — hp(x)) in V,and h(x) = hy(x) in W, — V,. We
have then Agra s(x) > 0if x € B’ — N since ki grag s(x) = 0. The other proper-
ties of 8.2 hold trivially.

Proof of Theorem 7. This proof is now exactly the proof of Morse given in [12,
p- 313] but uses only 8.1 and 8.2. For the convenience of the reader we repeat
this proof: Let n > 0. If x ¢ N then let ¢(x) be the trajectory of % through x
and TyY(x) N\ N = {x'}. Define F(x) = f(x) forx € M — W or x € W with
h(x) = 2q; for x € W with k(x) < 29 let F(x) = f(x) — m(h(x)/9)(f(x") —
f¥(’)). Then F is smooth and F(x) = f(x) for x € W with n £ h(x) < 2.
Since F(x) = f*(x) for x € N we have grad F(x) % 0 forx € N. Letx ¢ W
and 0 < h(x) < n. Then Fgraq (%) = faraa n(%) — hgraa n(x)m’ (B (x)/n) - 1/79 -
(f(x") — f*(x")). Now, f*(x') = f(x’) implies Fgraq 2(x) = 0 and [*(x') <
f(x") implies Fgraa #(x) > 0. Hence F has no critical points in W. The other
properties of F are easily checked.
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