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Abstract  We characterize the Bloch space and the Besov spaces of harmonic functions on the open
unit disc D by using the following oscillation:

Dn-1) — D(n=1)
sup  (1— [2?)*(1 — Jwl?)? hz) h(w) |
B(z,w)<r zZ—w

where a + 8 =n, a, 3 € R and D™ = (97 /0" z + 0™ /9" %).
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1. Introduction

Denote by H(D) the space of functions f that are analytic on the open unit disk D in the
complex plane C. dA(z) denotes the normalized area measure on D. For 1 < p < +o0,
the Lebesgue space LP (D, d)) is defined to be the Banach space of Lebesgue measurable
functions on the open unit disc D with

1/p
wnﬂﬁp=(éuuwwMa) < o0,

where d\(z) = dA(z)/(1 — |2]?)%. The Lebesgue space L*°(D,d)) is defined to be
the Banach space of Lebesgue measurable functions on the open unit disc D with

sup.cp | ()] < +oo.

Let a > 0 and let (1/a) < p < oo. Denote by Bj' the vector space of functions
f € H(D) such that 2 — (1—12|?)%|f"(2)| € LP(D,d)\), and by B§ the space of functions
f € H(D) such that

L= ) =0 (2] = 1)
For p = 1, a = 1, the Besov space Bj consists of analytic functions f on D such that

flz) = E:z an@y, (z) with z:fl lan| < 400, where {/\n}:iol c D.
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Define
h,a __ « Do = . «
By® =By +By={f+g:f.g¢€ By}
and

By =By + B ={f +39: f.9 € B}.

You might then like to observe that B;,, with 1 < p < o0, is the usual scale of Besov
spaces, that is B; = B,. Observe that Bl and B} are the usual scale of Bloch space B
and the little Bloch space By, respectively.

For z,w € D, let o)

o 1+ | (w
P w) = 28 T e )
where ¢,(w) = (z — w)/(1 — Zw). For 0 < r < 400, let D(z) = D(z,r) = {w €
D; B(z,w) < r} denote the Bergman disc. | D(z,r)| denotes the normalized area of D(z, )
and |D(z,r)| is comparable with (1 — |2]?)2.

For a differentiable complex function A on D and for n = 0,1,2,3,..., we define a
differential operator D™ by DMh = (9" /9" z 4+ 8" /0"Z)h. If h = f + § is a harmonic
function on D such that f and g are analytic functions on D, then DMp = f(”) + W,
forn=0,1,2,3,....

The following theorem explains why B; as defined above is compatible with the other
Besov spaces B, (1 < p < 00).

)

Theorem A (see p. 90 in [6]). If f € H(D), 1 < p < +o00 and n > 2 is an integer,
then f € B, if and only if (1 — |2|*)"f(z) € LP(D,dN).

In [5] the author proved the following Theorems B and C for the Bloch space B and
the Besov space B, by using Theorem A, respectively.

Theorem B. Let n be a positive integer, and «, 3 real numbers with a+ 3 = n. Then
for f € H(D) and for r € (0,+0), f € B if and only if

sup sup

(L= ]2 (1 - |w|2)ﬁ‘ f"7D(z) = f" D (w)
z€D weD(z,r),z4w

'<—|—oo.
z—w

Theorem C. Let n be a positive integer, and o, § real numbers with o+ 3 = n. Then
for f € H(D) and for r € (0,400), for p > 1 in the case of n = 1, and for p > 1 in the
case of n > 2, f € B, if and only if

/D( sup (1 —[z*)*(1 — |w|2),3’ F=D(2) — fO=D) ()

weD(z,r) zZ—w

>p dA(z) < +o0.

In this paper we will give the analogous result which characterize the spaces B!, Bg o1
and Bz}?l.

In [3], Holland and Walsh proved the following theorem in the case of n = 1. And we
proved it in the case of n =2 in [5].
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Theorem D. Let f € H(D) and n =1,2. Then f € B if and only if

. w2 £070() = D w
sup(l _ |Z|2) /2(1 _ ‘w|2) /2 ( ) — ( )
ZF#w zZ—w

< +00.

In this paper we will also generalize Theorem D.

In §4 we will also characterize the a-harmonic Bloch space B%® and the little a-
harmonic Bloch space Bg’u and the a-harmonic Besov space Bg’o‘ as well as the harmonic
Bloch space B! and the little harmonic Bloch space Bg "' and the harmonic Besov space
BJ!, respectively.

Throughout this paper, C;, K; for i = 0,1,2, C, K will denote positive constants
whose values are not necessarily the same at every occurrence.

2. The harmonic Bloch space

To prove the theorems above, we use the following lemmas.

Lemma 2.1. Let h € H(D)+ H(D). Let n > 2 be an integer and 1 < p < 4+o00. Then
h=f+gc¢ Bz’}*1 if and only if

(L= [="(1f " ()] + 19" (2)]) € LP(D, dN).

Proof. This follows from Theorem A. O

Lemma 2.2. Let h € H(D)+ H(D). Let n > 2 be an integer and 1 < p < 4oc0. Then
h=f+ge€ Bg’l if and only if

(1 |22 (LF™ ()] + 19" (2)]) = 0.

Proof. This follows from Theorem 5.2.6 of [6]. O

Some of the techniques used to prove the following theorem were inspired by Colonna

[1].

Theorem 2.3. Let r € (0,+00). Fix an integer n > 1 and a pair of real numbers «,
B such that o+ 3 =n. Let h € H(D) + H(D). Then h € B%! if and only if

DO =Dp(z) — D=V h(w)

zZ—w

sp  sup (1 2P)e(1 - |w|2>ﬁ]

’ < 400.
2€D B(z,w)<r,zZ£w

Proof. Let h € H(D) + H(D). To prove the necessity, put

Bpooun=sup swp (1= [P0 uf)] =D

DO=Dp(z) — DD h(w) ‘
2€D B(z,w)<r,z7£w
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Let w = z + ¢ € D. Then

Z—w

D=Dp(z) — DD p(w) D=Dh(z) — D=V h(z + relf)
’:’ z— (24 r1e?)
D=V h(z) — DD h(z 4 re?)|
- -
— (D" Vh),(2) cos 8 + (D™ Vh),(2)sinf]  (r1 — 0).

Putting

. N B(n 1) [)n Dp
B (2) 1= limsup(1 — [212)*(1 — Juf?)?| 2221 = w))

w—z zZ—w

then we have

Epinnp(2) = max(l = [2*)" (D" Dh)a(2) cos§ + (D" V), (2) sin 6],
By Lemma 1 of [1], we have
Epm-np(2) = 3(1 = |P)" (DT h)s(2) + (D Vh), (2)]
+ (D" D), (2) = (D" Dh), (2)])
= (1= "1™ )] + g™ (2)]).
Since Ep -1y, (2) < Epm-n,, (2 € D), hence we have

Sgg(l — )™ ()] + 19" (2)]) € Bpin-nyy, < 0.

By Lemma 2.1, we have h € B!,
To prove the sufficiency, suppose that h = f + g € B%!. Then

DU=Dp(z) — D= h(w) ‘

Z—w

sup (1—|22)(1 - |w|2>f’\
B(zw)<r

< sup (1-[)(

B(zw)<r Z—w

— Juwl?) ‘f( f(”‘”(w>’

(n_l) z) — (n 1) w
+ sup (1_ ‘z|2)a(1_ |w|2)ﬁ’g ( ) g ( )’

B(zw)<r zZ—w

Since h = f +g € B%!, f € B and g € B. By Theorem 2.7 in [5],

o] V() — T (w)

Z—w

sup sup (1= 21 — |w[*) ‘ < 00,
z€ED weD(z,r),z74w zZ—w

(n—1) _ (n—1)
sup  sup  (1—[z[*)*(1— |w|2)ﬁ‘g (2) =9 (w)' < 4o0.

z€D weD(z,r),z4w
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Hence we have

5 D=V p(z) — D=V h(w)

sup sup (1 —[2H)*(1 — |wl?) < +o0.
ze€D B(z,w)<r,z£w zZ—w
This completes the proof of Theorem 2.3. O

The following corollary does not hold for n > 3 because h(z) = log(1 — z) € B2 is a
counterexample and it will generalize Theorem D.

Corollary 2.4. Let h € H(D) + H(D). Then for n = 1,2, h € B! if and only if

D=Dp(z) — D=V h(w)

zZ—w

Sip(l =[PP (1~ fwl)?

< +00.

Proof. The necessity follows easily from Theorem 2.3. To prove the sufficiency, sup-
pose that h € B!, When n = 1, we have

sup (1 — [2[*)/2(1 — |w[?)!/? h(Z)_h(w)‘
ZzFwW Z —w
< sup(1 — [2) (1~ wf?) /2 W‘
up (1 — [2[H)Y2(1 — w2V g(z)g(w)‘
+§#2(1 2121 = [w]*)/? — |

Since h € B%!', f € B and g € B. By Theorem D we have

sup(1 = [£f%)"2(1 ~ )2 W‘ < oo,
sup(1 = )1 /2(1 = uf) /2| LI < oo

When n = 2, we have

D
sup (1 —[2*)(1 — [w[?)
zZ#w

< sup(l— \z|2)(1 _ |w|2) M

-+ sup(1 = 51 = o) CEL L
ZF#w

ZF#w —w z—w
Since h € B%!, f € B and g € B. By Theorem D we have
f'(z) = f'(w
sup(1 — 212)(1 — fuf?)| D=L o
zZF#w zZ—w
’ o
sup(1 = (1 = )| L < o,
zF#w zZ—w
This completes the proof of Corollary 2.4. O
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Corollary 2.5. Let r € (0,+00). Fix an integer n > 1 and a pair of real numbers «,
3 such that a + 8 = n. Let h € H(D) + H(D). Then h € Bl"" if and only if

D(n—l)h _ ﬁ(n_l)h
lim sup (1-— |z|2)0‘(1 _ |w|2)ﬂ (2) (w) _

[z|=1~ B(z,w)<r,z£w - w

Proof. This is an immediate consequence of Lemma 2.2 and Theorem 2.3. (I

The following corollary does not hold for n > 3 because h(z) = (1 — z)/* € Bg’l isa
counterexample. And it will generalize Theorem 2 in [4] and Corollary 4.3 in [5].

Corollary 2.6. Let h € H(D) + H(D). Then forn=1,2, h € Bg’l if and only if

D=Dp(5) — Din=Dp,
lim sup (1 -— |Z|2)”/2(1 _ |w\2)"/2 (2) (w)

[2|] =17 weD,z#4w Z—-w

=0.

Proof. This follows easily from Lemma 2.2, Corollary 2.5, Theorem 2 in [4], and
Corollary 4.3 in [5]. O

3. The harmonic Besov spaces

The following lemmas are used to prove Theorem 3.3.

Lemma 3.1. Let f € H(D) and let 0 < r < 4+00. Then for some constant K > 0
f(z) = f(w) K f(uw) = f(2)

sup <
Z-w ‘ ‘D(Z,QT” D(z,2r) u—=z

B(z,w)<r

dA(u).

Proof. In fact, we have for all analytic functions g on D

_C¢
|D(U}, T)| D(w,r)

Applying g(u) = (f(u) — (2))/(u - =), then

‘M 1)< |D<i,r> /Dw,r)

w—z
for all analytic functions f on D. Since D(w,r) C D(z,2r) for w € D(z,r) and there is
a constant K > 0 such that (1/|D(w,r)|) < (K/|D(z,2r)|), we have

flw) = f(2) f(w) = f(2)

w—z u—=z

lg(w)] < |9(uw)[ dA(w).

flw) = f(2)

u—=z

dA(u)

CK
h ‘D(272T)| D(z,2r)

sup dA(u).

weD(z,r)

Lemma 3.2. Let f € H(D) and let 0 < r < 4+o00. Then for some constant K > 0

1 f(uw) = f(2)

1D(z,7) Jpem dA(u) < K (1 = [w[")[f(w)[ dM(w).

D(z,r)

(112
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Proof. The following inequality follows from Theorem 5.6 of [2]:

[ =20 aaw < ¢ [ lla - P aa

u
for all analytic functions g on D, where sD = {w € D; |w| < s} = D(0,r), s = tanhr.
Applying g to f o ¢,, we have

\/D(O,r)

o)) = S 20)0) 50

w

< C/ |(f 0 @2) (w)|(1 = [wl?) dA(w). ()
D(o,r)

Then by using (), changing the variable and noting that (1 — |2|?) is comparable with
|1 —wz|, (1 —|w|?) and |D(z,7)|'/? when w € D(z,r), there exist constants C;, Co, K,
K, Ky > 0 (independent of f) such that

| f@) = 1)
<Cl /D(z,r)(l | | ) (pz(w)

o[ gL L O s )l aaw
D(0,r)

1

L[ e
D] Joen

<k [ e oyl )
D(0,r) 11— Zw|
[ R )l ) A

<m/ (1= 22)| (2 (w))] dA(w)
D(0,r)

oy A
<Ko f BRI g A

— Jw)|F (w w).
<C2/(Z,T)(1 |w])[f'(w)] dA(w)
O

Theorem 3.3. Let r € (0,+00). Fix an integer n > 1 and a pair of real numbers «,
B such that « + 3 =n. Let h € H(D) + H(D). Then for p > 1 in the case of n = 1, and
for p > 1 in the case of n > 2, h € Bl'" if and only if

A (1= Jof2)2(1 = fufy| XA = DO ()

D \B(z,w)<r z—

>p dA(z) < +o0.
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Proof. Let h € H(D) + H(D). Suppose that

L( s a-ppea- by

B(zw)<r

Z—w

) (n—1) _ Pn-1) p
’D iz) = D h(w) ) d\(z) < +oo.

Let

B () = limsup(1 — [22)7(1 — [w]?)?

w—rz

D=Dp(z) — D=V h(w)
z—w '

Then, by the proof of Theorem 2.3, we have

Epm-np(2) = (1= 22" (IF ™ (2) + g™ (2)]).

Since

Epm-up(2) < sup (1—[z[*)(1 —wl*)”
B(z,w)<r

)

‘ DU=Dp(z) — D= p(w)

zZ—w

hence we see

(LO%#WWWWM+MWMVM@

</<sw (1~ |21 — )
D \B(z,w)<r

By Lemma 2.1, we have h € B;,L’l.
To prove the sufficiency, suppose h € B;}J. Since (1—|z|?) is comparable with (1—|w|?)
for B(z,w) < r, for some constant C' > 0

P DU=Dp(z) — D= p(w)
z—w

)p dA(2).

sup uﬁwummﬂ

DU=Dp(z) — DD h(w) ‘
B(zw)<r

Z—w

< sup (1= o)1 = fwl?

B(z,w)<r —w

L=

(n—1) 2) — (n—1) w
T sup (1_|z|2)a(1_|w|2)ﬂ‘g ( ) g ( )’

B(zw)<r Z—w
(n—1) _ f£(n—1)
S e
B(zw)<r Z—w
(n—1) _ ,(n—1)
1O s (1-|opyr| B0 (w)’
B(zw)<r Z—-w
K (n—1) _ f(n—-1)
< 1 (1 _ |Z|2)n f (u) f (Z) dA(u)
|D(Z’2T)| D(z,2r) u—=z
K o] g (W) — gV (2)
+ (1—1z]")" dA(u).
|D(2,2r)| Jp(z.2r) u—z
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The last inequality follows from Lemma 3.1. By using Lemma 3.2, we have the following:

F D) — D)

u—=z

<c[ -] aw).
D(z,2r)

1
‘D(Z, 27‘)| D(z,2r)

(112 dA(u)

Multiplying both sides by (1 — |2|?)*~1) and then using the fact that (1 — |2|?) is com-
parable with (1 — |w|?), we have

1
‘D(Z7 2T)| D(z,2r)

Fr W) = f V()

u—z

< Ky / (1= Juo])" £ (w)] dA(w).
D(z,2r)

(1= [21)"

dA(u)

By similar calculations, we also have

9" PV (w) —g"V(z)
u—z

<K, / (1~ )" g™ (w)] dA(w).
D(z,2r)

Put K := max{K; K3, KsK4}. Then we have

1
‘D(Z7 2T)| D(z,2r)

(1= 21"

dA(u)

sup (1= [2*)*(1 — [w]*)"

B(zw)<r Z—-w

’f)("_l)h(z) — DD p(w) ’

K

- _ w2 n (n) w (n) w w).
S DG 2] D(m)(l [ *)™ (| (w)] + 1™ (w)]) dA(w)

Hence, since
/ dA(w) < C < 40
D(z,2r)

and X p(w,2r)(2) = XD(z,2r)(w), by using Hélder’s inequality and Fubini’s theorem, we

have
/ ( sup (1— [2P)*(1 — wf?)
D \B(z,w)<r

P _an (n)w (n)w Y s
<K /D</D(z’2r)(1 of2)7(1£) () + 19 )>dk( 1P AA2)

5 DU=Dp(z) — D= p(w)
Z—w

)pd)\(z)
— lw|?)P (n)w (n)w » w s
<o f [ am By ) wlrae) ae)

/([ " A ) (1 ()] + 15 w)]) A (w)

<o /D (1= [wf2)"2( £ (w)] + g™ (w)])? dA(w).
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Since f € B;}’l, we have, by Lemma 2.1,

/D(l = )" (1) (w)] + g™ (w))? dA(w) < +oo.

This completes the proof of Theorem 3.3. (]

4. The a-harmonic Bloch space B’gf‘, the little a-harmonic Bloch space Bg’a
and the a-harmonic Besov space B;}"‘"

In §§2 and 3 we characterized the harmonic Bloch space B! and the little harmonic
Bloch space B0 and the harmonic Besov space Bh L but similar characterizations also
hold for the a-harmonic Bloch space B%® and the httle a-harmonic Bloch space Bh “
and the a-harmonic Besov space BZ},L @ by using the following Lemma E and Lemma F as
well. Since most proofs are also similar to the case of « = 1, we will only present results.

Lemma E. Let o > 0 and n an integer greater than or equal to 2. Let h € H(D) +
H(D). For 1 <p < +oo, pla+n—1)>1, h= f+ge B if and only if

(1= [z (" ()] + 19" (2)]) € LP(D, ).

Lemma F. Let « > 0 and n an integer greater than or equal to 2. Let h € H(D) +
H(D). Then h=f+ge€ Bg’a if and only if

(L= [z @)+ 19 () =0 (2] = 17).

Theorem 4.1. Let a > 0 and p > 0. Fix an integer n > 1 and a pair of real numbers
a1, 1 such that a3 + /1 —a+ 1 =n and let r € (0,400). Then for h € H(D) + H(D),
h € B% if and only if

sup( sup (1 [P (1 - Juf?)®| 2
z€D \weD(z,r),z4w

i(z) = D~Vhw) ) <+

Corollary 4.2. Let o > 0 and p > 0 and fix an integer n > 1 and a pair of real numbers
aq, 1 such that oy + /1 —a+1=mn and let r € (0,+00). Then for h € H(D) + H(D),
h € By®™ if and only if

D =Dh(z) = D =Dh(w) D o

zZ—w

nm( sup (1= [#2) (1 = Juf?)
weD

|z[—1~ (2,7),z£w

Theorem 4.3. Let o > 0 and fix an integer n > 1 and a pair of real numbers a1, (1
such that a1 + 01 —a+1 =n and let r € (0,400). Then for h € H(D) + H(D), for
1<p<+oo,pla+n—1)>1,he Bg’a if and only if

L (s @l opy
D \weD(z,r)
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D=Dp(z) — D=V h(w)

zZ—w

)p dA(z) < +o0.
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