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MULTIPLICATIVE FUNCTIONALS ON FRECHET 
ALGEBRAS WITH BASES 

T. HUSAIN AND J. LIANG 

1. Introduction. Let A denote a complex (or real) Fréchet algebra (i.e. a 
complete metrizable locally ra-convex algebra, see [2] or [3]). It is known [2] 
that the topology of such an algebra can be defined by an increasing sequence 
[qn) (i.e. qn(x) ^ qn+i(x) for all x £ A and n ^ 1) of submultiplicative (i.e. 
qn(xy) ^ qn{^)qniy) for all x, 3/ Ç 4̂ and for each n ^ I) seminomas. 

A sequence {xt} in a topological vector space A is said to be a basis (see [3, 
p. 114]) if for each x 6 A there exists a unique sequence {a^ of complex 
numbers such that x = ^27=1 a tXi. It is known that each coordinate functional 
oii(x) = at is continuous if A is a Fréchet space (i.e. a complete metrizable 
locally convex space ([3, p. 49]). 

The purpose of this paper is to prove the continuity of each multiplicative 
linear functional on a certain Fréchet algebra A with a basis (Theorems 2, 3 
and 4). For this we need a necessary and sufficient condition for the conver­
gence of ^2^=1 aiXt in A for any complex sequence {at} in terms of the semi-
norms and the basis (Proposition 1). Also we prove some necessary and suffi­
cient conditions for the existence of an identity in A (Proposision 3, Theorem 
1). The problem of whether or not every multiplicative linear functional on a 
commutative Fréchet algebra is continuous is still unresolved (cf. [1 ; 2]). 

We shall use the definitions and notations from [1] and [2]. We shall through­
out assume that the topology of a Fréchet algebra is given by an increasing 
sequence {qn} of submultiplicative seminomas. 

The authors are very thankful to the referee for valuable suggestions to im­
prove this paper. 

2. Some necessary and sufficient conditions. Let A be a Fréchet space 
with a sequence {x*}. We first prove (Proposition 1) a necessary and a sufficient 
condition for J t i a ^ i £ A for any complex sequence («jj. This will lead us 
to a necessary and sufficient conditions for the existence of an identity in a 
Fréchet algebra (Proposition 3 and Theorem 1). 

PROPOSITION 1. Let H = {xt} be a sequence in a Fréchet space A. Then, for 
each complex sequence {an}, Y2^=iaixi £ A if and only if for each qn there is a 
positive integer Nn {depending on n) such that qn(xi) = 0 for all i ^ Nn. 

Proof. (Sufficiency) Suppose for each complex sequence {a*}, Y^°i=iaixi ê ^-
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Then for each n, \\mi^œqn(a1xi) = l i m ^ œ \<Xi\qn(Xi) — 0. But then it implies 
t h a t there exists Nn such tha t qn(Xi) = 0 for all i ^ Nn, because {at} is arbi­
t rary. 

(Necessity) Suppose tha t for each seminorm qn there is a positive integer Nn 

such tha t qn(Xi) = 0 for all i ^ Nn. Then for any complex sequence {a^, 
Y^=iaiqn(xi) i s convergent for each n and hence, Y^=iaixi converges in A for 
each complex sequence {a*}. 

PROPOSITION 2. Let A be a Frêchet algebra with a basis H = {x^ such that, for 
each x = Y^=iaixi 6 A, at —» 0. Then there exists a qn such that qn(Xi) > 0 for 
all xt (E H. Conversely, if A possesses a sequence H = {x^} such that 

i) for each Xi £ H, where mit>i \c{\ > 0, and 
ii) there exists a qn such that qn{Xi) > Ofor all xt £ H, 

then for each x = X)?=i atXi £ A,at —>0. 

Proof. For each w, pu t Zw = {i G 7V+ : gn(x<) = 0}. Since \qn) is an increasing 
sequence of seminorms, Zn C Zm for n ^ m. Suppose Zn T6- 0 for all n ^ 1. 
Let xkn £ Zw. But then qm(xkn) = 0 for n ^ m. Hence, by Proposition 1, 
Ysn=iPnxkn converges in A for any complex sequence {/3n} which is contrary to 
the assumption. Hence, Zno = 0 for some no and so qm{xt) ^ 0 for i ^ 1. 

For the converse, suppose there exists n0 such tha t qm(xi) > 0 for a l H ^ 1. 
Clearly [qm{xt)]

2 ^ qno(xi2) = k<|gno(^*) bY (0 a n d s o 2no(*<) = i n f k t | > 0. 
If x = ^t^iOLiXi £ ^4, then l i m ^ œ gn0(«***) = h m ^ œ |û^|gno(xO = 0 and hence 
kikno(^i) = ki l inf \ct\ implies l i m ^ œ \at\ = 0. 

COROLLARY 2.1. Let {xi} be a basis in a Frêchet algebra such that X î C fX ï, 
where i n f^ i \ct\ > 0. Then for any x = X X ^ P ^ Ç A, at —•> 0 if and only if there 
exists a qn such that qn{xi) ^ Ofor alii ^ 1. 

COROLLARY 2.2. Le/ {xz} fre a basis in a Frêchet space such that for each 

x = ^1=1 aiXt £ A, cti —> 0. 77&ew //zere ex^'s/s a qn such that qn(Xi) 7^ 0 for all 

i ^ 1. 

Conversely, if {xi) is a sequence in A such that i n f^ i qn(Xi) > 0 for some qn, 

then for each x = ^ t i a ^ i G ^4, a *—>(). 

PROPOSITION 3. Let {xf} be a basis of a Frêchet algebra such that xtXj = 0 
whenever i 7̂  j . Then A contains an identity e if and only if x2 9^ Ofor all xt £ H 
and, for any sequence {fii} of complex numbers, XT?=i PtXi G A. 

Proof. (Sufficiency) Suppose A has the identi ty e. Write e = J ^ i ^ i ^ i - Then 
Xj = xf = Xj Y^=iaixi = <*jXj. Hence clearly xf ^ 0 and \aj\[qn(Xj)]2 ^ 
qnipijXj2) = qn{Xj) and so qn{

xj)[Wj\qn{
xj) - 1] ^ 0. Since l i m ^ g ^ x , ) = 

limJ_>œ \aj\qn(xj) = 0 for each n, it follows tha t qn{Xj) = 0 for each n and j 
(large enough) depending upon n. Hence by Proposition 1, the rest of the 
"only if" pa r t follows. 

(Necessity) Suppose xt
2 9^ 0 for all i ^ 1 and for each complex sequence 

{<**}> Jl^iOiiXf G A. Since {x^ is a basis, for each i we have xt
2 = XT=iQ : i^ i-
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Then 0 = xk%i = xkÇ£j%iaijxj) = &ikxk2 for all k ^ i. But then xk
2 ^ 0 implies 

aik = 0 for ail k ^ i and x*2 = a^x*. Whence a^ ^ 0 and XT?=i (!/««)#* ë ^ 
by our assumption. If we put e = X X i (l /a^)^*, then for any x = X)?=i / ^ ï £ 
yl, ex = xe = J2°i=i fiiOLii~lXi2 = Y^=i$ixi = x proves that e is the identity. 

THEOREM 1. Let A be a Fréchet algebra with a basis {xi} such that xtXj = 0 
for i ^ j , and ^ 0 for i = j . Then the following statements are equivalent: 

(i) For each complex sequence {a^, J^i=iaixi £ A. 
(ii) For each seminorm qn, there is a positive integer Nn such that qn(xi) = 0 

for all i > Nn. 
(iii) A contains an identity e. 
(iv) A ~ CN. 

Proof, (i) <=$ (ii) follows from Proposition 1; (i) <=» (iii) from Proposition 2. 
Hence (ii) <=> (iii). Clearly (i) <=> (iv). 

Remark. Theorem 1 shows that the only Fréchet algebra with an orthogonal 
(XiXj = 0, i 7e j) basis and an identity is the algebra of all complex sequences, 
provided with the coordinate-wise multiplication. 

3. On the continuity of multiplicative linear functionals. As men­
tioned before, it is not yet known whether or not every multiplicative linear 
functional on a commutative Fréchet algebra is continuous (Michael [2]). In 
this section we show that the answer to this question is in the affirmative for 
certain Fréchet algebras with a basis. See also [1]. 

THEOREM 2. Let A be a Fréchet algebra with a basis {xt} such that XfXj = 0 
for i ^ j . Then every multiplicative linear functional f on A is continuous, pro­
vided for some Xi,f(xi) ^ o. 

Proof. Let x = Y^t=iaixi be an arbitrary element of A. Clearly by hypothe­
sis, x xt = oiiXi2. Since / is multiplicative and /(x*) 9e 0, we have f(xxt) = 
f(x)f(Xi) = aif2(xi), or f(x) = ctif(Xi) = 0Li(x)f(Xi). Since each at(x) is con­
tinuous and/(x^) is a fixed complex number, this proves t h a t / is continuous. 

In order to prove a result similar to Theorem 2 under different conditions, 
we need the following: 

LEMMA 3.1. Let A be a Fréchet algebra with a sequence {x̂ } C A such that 
x^j = 0 for i 9e j and for each complex sequence {at}, Y^=iaixi ë A. If f is a 
multiplicative linear functional on A such that f(xt) = 0 for all i ^ 1, then 
/ Œ ? = i aixù = 0 for any complex sequence {«<}. 

Proof. First, we show that /(]CS=i#i) = 0- If no t> then by hypothesis, 
/ (Z?=i «Ci)/(E?-i (1A)*<) = / ( £ « xi2) = UŒXi xi)Y * 0. Therefore, 
/ ( X X i «cO ^ 0. Put / (E?=i *0 = « and / ( £ ? _ ! w 0 = a/3. Then 
/ Œ ? - i (0 " *)*<) = /(/3 E?- i ** - Z?- i **<) = # ( E ?= i ^*) - / (£?= i **<) = 
/fa — /fa = 0. If /3 is not a positive integer, then 0 = / (2?= i (0 ~ i)xt) 
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fŒXi (VOS - «'))*<) = / Œ ? = i xt
2) = [fŒ.t-i *«)F * 0, which is impossible. 

If /3 is an integer, say /3 = n, then (s ince/(x;) = 0 for ail i) 

"/(g «,)" 
2 

>(§-)! 
which is also impossible. Hence / ( S ? = i #*) = 0> a n d for any complex sequence 

which proves the lemma. 

Remark. Lemma 3.1 shows tha t each multiplicative linear functional on the 
Fréchet algebra C N of all complex sequences is identically zero if it vanishes 
on the basis {^}, et = {<5*;}^i, where 5^ is the Kronecker <5, which is a well-
known fact, since C is singly generated. 

T H E O R E M 3. Let Abe a Frêchet algebra with a basis H = (XJ) such thatXiXj = 0 
for i 9^ j and for any complex sequence {at}, Y^=iaixi £ ^ - Then every multi­
plicative linear functional f on A is continuous. 

Proof. If there exists xt £ H such t h a t / ( # f ) y^ 0, then by Theorem 2, / is 
continuous. If f(xt) = 0 for all Xj Ç H, then by hypothesis coupled with 
Lemma 3.1 we see t h a t / is identically zero and so continuous. 

Before we prove the next theorem, we make the following observations: 
If {xt} is a basis of a Fréchet algebra A such tha t xtXj = 0 for i ^ j , then 

for each xf there exists a unique complex sequence {a^) such t ha t 

oo 

%i = LJ OLijXj. 

Multiplying the last equation both sides by xt and using the orthogonali ty 
relation xtXj = 0 for i ^ j , we obtain: 

( ) %i = (XaXi . 

Again multiplying (*) by xt we have: 

(**) x,4 = auxl. 

If a. a ?£ 0, then by put t ing yt = au~lXi in (**), wre obtain: yf = yf. If au = 
0, then from (*) and (**) we see tha t xt

s = xt
A = 0. Thus it may be assumed 

tha t a given orthogonal basis {xt} satisfies: 

(***) %i
A = xt\ 

If an orthogonal basis {xt} satisfies (***), we say tha t it is normalized. Clearly 
from (***) we have: 

(****) xt
6 = xt

A and xt
8 = xf. 
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T H E O R E M 4. Let A be a Fréchet algebra with a basis H = {xt\ such that 

(i) %iXj = 0 whenever j ^ i, and 

(ii) Y^=iaiaixi € A whenever Y^=iaixi £ 4̂ and \at\ ^ 1. 
21*ew every multiplicative linear functional on A is continuous. 

Proof. L e t / be a multiplicative linear functional on A. Suppose there exists 
an xt G H such that / (a;*) ^ 0. T h e n / is continuous by Theorem 2. 

Suppose / (x f ) = 0 for all xt G H. We show then t h a t / is identically zero. 
I t is easy to see t h a t wi thout any loss of generali ty we may assume {xi) is 

a normalized basis satisfying conditions (i) and (ii) of the hypothesis. 
Let Bn = {x G H: qn(x

2) — 0} for each n ^ l . Since {gw}n^i is an increasing 
sequence of seminorms, it follows t ha t Bn Z) Bn+i f ° r all n ^ 1. Let iï*i = 
{x G H: qi(x2) ^ 0} and Hn = Bn^\Bnj for w è 2, then, Hn n Bn = td and so 

(1) qn(x
2) 7* 0 for all x G Hn, n ^ 1. 

I t is clear t h a t for m > n, Hm C Bm-\ C 5W , and so we have 

(2) qn(%
2) = 0 for all x G #TO, m > n. 

P u t Uo = nT=i-B^. H x G Ho then çn(x2) = 0 for all n ^ 1. Since i is a 
Hausdorff topological vector space, we have x2 = 0. I t is clear by definition 
t ha t {Hi) ^i are pairwise disjoint and U?=o ^ i = H. Set Hi = {xjm}m^i. For 
each j , we can arrange {xjm}m^i such t ha t jm ^ jw if and only if m > n. We 
show tha t , for each x = X?=i <**#* £ -4, we can write 

CO CO OO 

2 _ V ^ 2 2 _ V - ^ V~^ 2 2 
X / y OLi Xi / J / J OLjm Xjm . 

i = l ; = 1 m = l 

For each positive integer k, pu t 

= / l if xt G iîifc. 
a i l0 if*, $Hk. 

Clearly, \at\ ^ 1 and so by hypothesis (ii), we have: 

CO  

X^ CLipLiXi = ^2 ai°°i £ A. 
i=l xiÇHk 

Since km > kn if and only if m > n, J^xioik aixi = S = i W t a G ^4, and 
hence ( S = i a A m ^ m ) 2 = S = i ^ f e m 2 G 4̂ in view of hypothesis (i). Set 
Jk = Em=i akm

2xkm
2, for & ̂  1. From (2), we observe tha t , for & > 7, qj(xkm

2) = 0 
for all x ^ G # * and so g ;(Zm=i ^ m

2 ) = 0 for k > j . Therefore, J2mk=iakm
2xkm

2 —> 
Z L i oùkm

2xkm
2 = yk as ^ —> 00 implies t ha t qj{yk) = 0 whenever & > j . T h u s 

by Proposition 1, it follows tha t , for any complex sequence {l3k}, S ? = i fay* ê -4. 
In particular, 2™=i3'» = I X i E m = i a t e

2 ^ m 2 6 A. 

Since y* = ^ S = i ^km
2xkm

2, for each seminorm g^, qj(yk — Z 5 = i akm
2xkm

2) —> 0 
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as pk —> oo for each ft ^ 1. Observe tha t 

( oo V \ / oo / oo P& \ \ 

Z y* ~ S « ^ i 2 | = <lj\ Z I Z akm2%km2 - Z «*OT2 *̂TO2) ) 
fc=l *=1 / \ jfc=l \ m = l ro=l / / 

;' / oo pfc \ 
= / J Q_j\ s J °Ljcm Xkm / J °£km Xkm J > 

fc=l \ m = l ra=l / 

because qj(xkm
2) = 0 for & > / by (2). Here p is split up into pks in the obvious 

way and p —> oo implies pk-* co. Hence g ^ Z ^ i ^ - Z*=i a ^ ï 2 ) —> 0 as 
p —> co for ft > j . Since 4̂ is Hausdorff, we have shown t h a t 

CO OO CO CO 

2 \ ^ 2 2 ^ V * \ " ^ 2 2 
X = 2 s a i % i = 2 s y* = 2 s 2 ^ «fcm #*ro • 

i=l k=l / c= l ra=l 

But from yk = E L i ^ m 2 ^ m 2 , it follows tha t \imm^œ qk(akm
2xkm

2) = limm^œ 

Wkm\2 qkm(Xkm2) = 0. Whence we conclude tha t limm_>œ \akm\2 = 0 for each ft, 
because qk(xkm

2) 9* 0 by (1). 
Since x ^ - = 0 for i 9e j , it is clear tha t ytyj = 0 for i 9e j . 
We show t h a t / ( 3 ^ ) = 0 for a l H ^ 1. Suppose / (3O ^ 0 for some i. Wi thou t 

loss of generality, observe tha t we may assume tha t f(yt) = 1 for some i. 
S i n c e / is a multiplicative linear functional, we have/(3>z

2 — yt
3) = f{zt) = 0, 

where 

( 00 \ 2 / 00 \ Ï 

/ J &im X im 1 \ / J ^im X im 1 
m=l ' \ m = l / 

. 3 

s* = yt - y? 

Z 4 4 _ ^ 6 6 

=1 m = l 

Since by (****), xim
A = xim\ we have zt = S = i (a i ro

4 — aim
6)xim\ 

Since a im
2 —> 0 as m —> oo , for large m, \airn

2\ < 1/2 and so \aim
&/(aim

4 — aim
%)\ 

^ 1, provided aim 9e 0. (Observe tha t f{yi) = 1 implies tha t there exists 
aim ?* 0) . Since x = X ^ i c ^ x * £ A by hypothesis (ii), J2m=iaimxim Ç A and 

co 6 
a i m „ Y r A 

4 6 " Z'TTZA im vl ^ i • 

ra=l ^ Ï T T I ^ i m 

Hence using hypothesis (i), we have 

/ co a C 

2 * = I 2s 4 6 a iw^ im ) X \ / J & im,X im J 
\ m=l / 

— Zs 4 _ 6 Xim Kz J±. 
77i=l &im OLim 

But then z&{ = J2m=i aim
sxim

Q. Again by (****), xim
Q = xim

8 and so zfz/ = 
J2m=iaim

8xim
s = (J2Z=iaim

2xim
2)4 = yt\ Thus we have 0 = / ( z i ) / ( z / ) = 

j{ztZi) — [f(yi)Y = 1, which is absurd. Hence / ( ^ 0 = 0 for all i ^ 1, and by 
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applying Lemma 3.1 to the sequence {ji)i^i we obtain 0 = f(^2°t=iyi) = 

f(x2) = (f(x))2. In other words, f(x) = 0 for an arbitrary x £ A. This com­
pletes the proof. 

Remarks. Recall that a basis satisfying the hypothesis (ii) is called an 
unconditional basis ([3, p. 185]). Every basis in a Fréchet nuclear space is 
unconditional. Thus we have from Theorem 4 that every nuclear Fréchet 
algebra with an orthogonal basis is functionally continuous. 

Theorem 4 says that every maximal ideal of codimension one in a Fréchet 
algebra with an orthogonal and unconditional basis (in particular, a Fréchet 
nuclear algebra with an orthogonal basis) is closed. 

We note that some results of § 2 have appeared in a paper [4] by one of us 
with slightly different proofs. But they are given here for the sake of com­
pleteness. 
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