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MULTIPLICATIVE FUNCTIONALS ON FRECHET
ALGEBRAS WITH BASES

T. HUSAIN AND ]J. LIANG

1. Introduction. Let 4 denote a complex (or real) Fréchet algebra (i.e. a
complete metrizable locally m-convex algebra, see [2] or [3]). It is known |2]
that the topology of such an algebra can be defined by an increasing sequence
{¢.} (G.e. ¢,(x) = guy1(x) for all x € 4 and » = 1) of submultiplicative (i.e.
G (xy) = g, (x)g,(v) for all x, y € 4 and for each #» = 1) seminorms.

A sequence {x;} in a topological vector space A is said to be a basis (see [3,
p. 114]) if for each x € A there exists a unique sequence {a;} of complex
numbers such that x = Y %1 ax, It is known that each coordinate functional
a;(x) = a; is continuous if 4 is a Fréchet space (i.e. a complete metrizable
locally convex space ([3, p. 49]).

The purpose of this paper is to prove the continuity of each multiplicative
linear functional on a certain Fréchet algebra 4 with a basis (Theorems 2, 3
and 4). For this we need a necessary and sufficient condition for the conver-
gence of > %;ax; in A for any complex sequence {a;} in terms of the semi-
norms and the basis (Proposition 1). Also we prove some necessary and suffi-
cient conditions for the existence of an identity in 4 (Proposision 3, Theorem
1). The problem of whether or not every multiplicative linear functional on a
commutative Fréchet algebra is continuous is still unresolved (cf. [1; 2]).

We shall use the definitions and notations from [1] and {2]. We shall through-
out assume that the topology of a Fréchet algebra is given by an increasing
sequence {g,} of submultiplicative seminorms.

The authors are very thankful to the referee for valuable suggestions to im-
prove this paper.

2. Some necessary and sufficient conditions. Let 4 be a Fréchet space
with a sequence {x,}. We first prove (Proposition 1) a necessary and a sufficient
condition for > 7.1 ax; € 4 for any complex sequence {a;}. This will lead us
to a necessary and sufficient conditions for the existence of an identity in a
Fréchet algebra (Proposition 3 and Theorem 1).

ProrosiTiON 1. Let H = {x;} be a sequence in a Fréchet space A. Then, for
each complex sequence {a,}, Y Geiix; € A if and only if for each g, there is a
positive integer N, (depending on n) such that g,(x;) = 0 for allt = N,.

Proof. (Sufficiency) Suppose for each complex sequence {a;}, > 51 ax; € 4.
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Then for each n, lim,. g,(ax;) = lim, |ag,(x;) = 0. But then it implies
that there exists N, such that ¢,(x;) = 0 for all 7 = N,, because {a;} is arbi-
trary.

(Necessity) Suppose that for each seminorm g, there is a positive integer N,
such that ¢,(x;) = 0 for all 2 = N,. Then for any complex sequence {a,},
S i1, (x4) is convergent for each # and hence, Y 7., a;x; converges in 4 for
each complex sequence {a;}.

ProprosITION 2. Let A be a Fréchet algebra with a basis H = {x,} such that, for
each x = Y 5%, € A, a;— 0. Then there exists a q, such that q,(x;) > 0 for
all x; € H. Conversely, if A possesses a sequence H = {x;} such that

i) foreachx; € H,x.2 = ¢, whereinf 51 |cy| > 0, and

ii) there exists a g, such that q,(x;) > 0 forallx; € H,
then for eachx = Y 51 ax; € A,a;— 0.

Proof. For each n, put Z, = {1 € N*: g,(x;) = 0}. Since {g,} is an increasing
sequence of seminorms, Z, C Z,, for n = m. Suppose Z, # @ for all n = 1.
Let x;, € Z,. But then ¢,(x;,) = 0 for n = m. Hence, by Proposition 1,
> o1 Buxe, converges in A for any complex sequence {8,} which is contrary to
the assumption. Hence, Z,, = @ for some 7y and so ¢,,(x;) # 0 forz = 1.

For the converse, suppose there exists 7, such that g,,(x;) > 0 forall z = 1.
Clearly [gn,(x:)]* Z guo(x:*) = [cilgny (x:) Dy (i) and so g, (x,) = inf[c;[ > 0.
Ifx = X% ax; € 4, then lim i, ¢y (@c;) = lim,y, |@4|ge, (x:) = 0 and hence
|| qno (%) = laey| inf |¢y| implies lim ., |e;] = 0.

v

CorOLLARY 2.1. Let {x;} be a basis in a Fréchel algebra such that x;2 = cx;,
where inf ;21 |¢;| > 0. Then for any x = Y F1ax; € 4, a; — 0if and only if there
exists a q, such that g,(x;) # 0 foralli = 1.

COROLLARY 2.2. Let {x;} be a basis in a Fréchet space such that for each
x = > Gax; € A, a;— 0. Then there exists a q, such that q,(x;) # 0 for all
i = 1.

Conversely, if {x;} 1is a sequence in A such that inf;>; q,(x;) > 0 for some q,,
then for eachx = Y S-1ax; € A,a;— 0.

ProrosiTION 3. Let {x;} be a basis of a Fréchet algebra such that xx; = 0
whenever 1 # j. Then A contains an identity e if and only if x> # 0 for wllx; € H
and, for any sequence {8} of complex numbers, 3 G5-1 B, € A.

Proof. (Sufficiency) Suppose 4 has the identity e. Writee = > G_ia;x;. Then
xX; = x;6=2%; > 5ax; = ax; Hence clearly x2 # 0 and |oyl[g,(x;)]* =
q"(ajsz) = gn(xj) and so gn(xj)[|aj|Qn(xj) — 1] 2 0. Since linljaan(a]'xj)
lim . |a,/g.(x;) = 0 for each #, it follows that g,(x;) = 0 for each » and j
(large enough) depending upon n. Hence by Proposition 1, the rest of the
“only if"” part follows.

(Necessity) Suppose x; # 0 for all # = 1 and for each complex sequence
{ay), D51 ax; € A. Since {x;} is a basis, for each 7 we have x;2 = > 51 a5
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Then 0 = x30; = % (O Fe1@s%;) = aux? for all B £ 2. But then x;2 ## 0 implies
ag = 0forall 2 # dand x,2 = a;x,;. Whence a;; # 0 and Y 5% (1/as)x; € 4
by our assumption. If we pute = > 5.1 (1/ay;)x;, then for any x = > 51 Bax; €
A, ex = xe = D> 51 By = D 1B = x proves that e is the identity.

THEOREM 1. Let A be a Fréchet algebra with a basis {x} such that xx, = 0
for i # j, and # 0 for © = j. Then the following statements are equivalent:
(i) For each complex sequence {a;}, D =1 aix; € A.
(ii) For each seminorm q,, there is a positive integer N, such that g,(x;) = 0
for all © > N,.
(iii) A contains an identily e.
(iv) 4 ~CN.

Proof. (i) < (ii) follows from Proposition 1; (i) < (iii) from Proposition 2.
Hence (ii) & (iii). Clearly (i) & (iv).

Remark. Theorem 1 shows that the only Fréchet algebra with an orthogonal
(x@; = 0,7 5 j) basis and an identity is the algebra of all complex sequences,
provided with the coordinate-wise multiplication.

3. On the continuity of multiplicative linear functionals. As men-
tioned before, it is not yet known whether or not every multiplicative linear
functional on a commutative Fréchet algebra is continuous (Michael [2]). In
this section we show that the answer to this question is in the affirmative for
certain Fréchet algebras with a basis. See also [1].

THEOREM 2. Let A be a Fréchet algebra with a basis {x;} such that xx; = 0
for © # j. Then every multiplicative linear functional f on A 1s continuous, pro-
vided for some x;, f(x;) # 0.

Proof. Let x = Y %_1ax; be an arbitrary element of 4. Clearly by hypothe-
sis, ¥ x; = ax,% Since f is multiplicative and f(x;) # 0, we have f(xx;) =
F@)f(xy) = aif*(xi), or f(x) = a;f(x:;) = ai(x)f(x;). Since each a;(x) is con-

tinuous and f(x;) is a fixed complex number, this proves that f is continuous.

In order to prove a result similar to Theorem 2 under different conditions,
we need the following:

LeEmMMA 3.1. Let A be a Fréchet algebra with a sequence {x;} C A such that
xx; = 0 for 1 # j and for each complex sequence {o;}, D Gm1ax; € A. If fis a
multiplicative linear functional on A such that f(x;) = 0 for all © = 1, then
S % axs) = 0 for any complex sequence {a.}.

Proof. First, we show that f(3_%1x;) = 0. If not, then by hypothesis,
Fo i )f (5 (1/d)x:) = f(XTax?) = [f(X% x)]* # 0. Therefore,
FO%y ix) # 0. Put f(XC%1 %) = @ and f(X %1 ;) = aB. Then
F% (B = )xy) = f(B 2T 0 — X%aixy) = Bf (i x:) — (X iny) =
Ba — Ba = 0. If B is not a positive integer, then 0 = f(3- %1 (8 — 7)x,)
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FEE /(B —1)xy) = f(XCTx2) = [f(OC51 x4)]2 # 0, which is impossible.
If B is an integer, say 8 = #, then (since f(x;) = 0 for all 7)

0=f(f; <3“i)x’)f<g Biixi> :f<:z:1 x§>

[(g ] -DAg T

which is also impossible. Hence f(3"%-1 x;) = 0, and for any complex sequence

{od, fF(oT aixi)f(zil axy) = f(XTaix?) = (X afx,)f (%) =0,

which proves the lemma.

Remark. Lemma 3.1 shows that each multiplicative linear functional on the
Fréchet algebra CN of all complex sequences is identically zero if it vanishes
on the basis {e;}, e; = {8;;},21, where §;; is the Kronecker §, which is a well-
known fact, since CN is singly generated.

THEOREM 3. Let A be a Fréchet algebra with a basis H = {x;} such thatxx; = 0
for 1 # j and for any complex sequence {a}, Y =1 ax; € A. Then every multi-
plicative linear functional f on A is continuous.

Proof. If there exists x; € H such that f(x;) # 0, then by Theorem 2, f is
continuous. If f(x;) = 0 for all x;, € H, then by hypothesis coupled with
Lemma 3.1 we see that f is identically zero and so continuous.

Before we prove the next theorem, we make the following observations:
If {x;} is a basis of a Fréchet algebra 4 such that xx; = 0 for 7 5 j, then
for each x ;2 there exists a unique complex sequence {a;;} such that

(=]
2
X1 = 21 @ y5% g
j=

Multiplying the last equation both sides by x; and using the orthogonality
relation xx; = 0 for 7 # j, we obtain:

(*) x4 = oyt
Again multiplying (*) by x; we have:
(**) Xt = oy

If a;; # 0, then by putting y; = a7 'x; in (**), we obtain: y;* = y3. lf ay; =
0, then from (*) and (**) we see that x> = x;* = 0. Thus it may be assumed
that a given orthogonal basis {x,} satisfies:

(***) xi4 = xll‘\.

If an orthogonal basis {x,} satisfies (***), we say that it is normalized. Clearly
from (***) we have:

(*F***) x5 =x4 and x8 = x5
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THEOREM 4. Let A be a Fréchet algebra with a basis H = {x} such that
(i) xic; = 0 whenever j # 1, and

(i) D1 axs € A whenever 3 5y ax; € 4 and |a;| < 1.

Then every multiplicative linear functional on A is continuous.

Proof. Let f be a multiplicative linear functional on 4. Suppose there exists
an x; € H such that f(x;) # 0. Then f is continuous by Theorem 2.

Suppose f(x;) = 0 for all x; € H. We show then that f is identically zero.

It is easy to see that without any loss of generality we may assume {x,} is
a normalized basis satisfying conditions (i) and (ii) of the hypothesis.

Let B, = {x € H: g,(x?) = 0} for each n = 1. Since {¢,},=1 is an increasing
sequence of seminorms, it follows that B, D B,,; for all » =2 1. Let H; =
{x € H: q;(x?) # 0} and H, = B,_1\B,, for n = 2, then, H, N B, = @ and so

(1) gn(x?) # 0 forallx € Hy,,n = 1.
It is clear that for m > », H,, C Bn—1 C B, and so we have

(2) go(x?) =0 forallx € H,, m > n.

Hausdorff topological vector space, we have x* = 0. [t is clear by definition
that {H,} =1 are pairwise disjoint and %= H; = H. Set H; = {x;,}n=1. For
each j, we can arrange {x;,},=1 such that jm = jn if and only if m > n. We
show that, for each x = Y 7.1 ax; € 4, we can write

Put Hy = N%:1 B:. If x € Hy then ¢,(x?) = 0 for all # = 1. Since 4 is a

2 & 2 2 . S 2 2
x =Za1x,~ = Za:‘mxjm-
i=1 j=1 m=1

For each positive integer k, put

a __{1 1fx,€Hk.
0 ifx; ¢ H

Clearly, |a;| = 1 and so by hypothesis (ii), we have:

o)

Z A Xy = Z ax; € A.

i=1 Ti€EHE
Since km > kn if and only if m > n, X icmr aiXs = Dome1 GnXim € A, and
hence (D m—1 @mXim)? = Yomer @r20m? € A in view of hypothesis (i). Set
Vi = Dot G Xin?, for B = 1. From (2), we observe that, for k > j, ¢;(x;,2) =0
for all x;, € Hy and so q;(> vt %1n2) = 0 for £ > j. Therefore, > kg apn2ten? —
D et W gm? = i as p — oo implies that ¢;(y,) = 0 whenever & > j. Thus
by Proposition 1, it follows that, for any complex sequence {B8:}, > 51 Biyr € 4.
In particular, D i1 Vi = Doie1 Dome1 Qxn2in? € A.

Since ¥, = D> om—1 Cen i, for each seminorm q;, ¢;(yi — Yokt @pm26im?) — 0
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as p, — oo for each £ = 1. Observe that

) 4 <] © Dk
QJ(kZ Ve — Zl aini2) = g]( Z ( - akm2ka2 - 21 akm2ka2))

=1 i k=1
! > 2, 2 & 2 2
§ E q; Z A Xgm E Qgm Xkm y
k=1 m=1 m=1

because q;(xx,2) = 0for & > jby (2). Here p is split up into p;’s in the obvious
way and p — oo implies p, — 0. Hence ¢;(>X 51 v — X imr1ax;?) — 0 as
p — o for k > j. Since 4 is Hausdorff, we have shown that

fee] (ee] [ee] fee]
2 _ 2 2 . 2 2
x—Zaixi—Zyk—ZZamka-
i=1 k=1 k=1 m=1

But from y; = D g1 pn26n2, it follows that lim,, . gx(opm26in?) = lim,,
lotxm|? Grm (Xn?) = 0. Whence we conclude that lim,,., |am|* = 0 for each k,
because g (xin?) # 0 by (1).

Since xx; = 0 for ¢ # j, it is clear that y;y; = 0 for ¢ # ;.

We show that f(y;) = 0forall4 = 1. Suppose f(v;) # 0 for some 7. Without
loss of generality, observe that we may assume that f(y;) = 1 for some <.
Since f is a multiplicative linear functional, we have f(y;*> — y;*) = f(z;) = 0,
where

3

2 2 & 2 2 ? S 2 2
2 =Yy —Yi = 21 QXim X im - 21 QX in X im
m= m=

[ el
_ Z 4. 4 6. 6
- Uy Xim — Z Uim X im -
m=1 m=1

Since by (****) x,.* = 1,5 we have z; = Y mo1 (@in? — @im®)x
Since a3,z — 0 as m — 00, for large m, |a,?| < 1/2and so |@ i/ (awm* — am®)|
< 1, provided a;, # 0. (Observe that f(y;) = 1 implies that there exists
am # 0). Since x = > F1ax; € A, by hypothesis (ii), D> me1 @im¥im € 4 and
6

5 oimXm C A.
m=1 Qim — Ugp

Hence using hypothesis (i), we have

© a [} @
r __ im _
Zy = Z P 5 0imXim | X Z A imX im
m=1 ®ym — Ay m=1

im0
=) o 8
im 2
= Z 1 8 Xim €A
m=1 Qyn — Qip
aim#0

But then 22/ = > me1 @bt Again by (****) «x,.° = x,,% and so 2.2/ =
St am®imd = et i)t = y,& Thus we have 0 = f(z,)f(z/) =
flziz!) = [f(y:)]* = 1, which is absurd. Hence f(y;) = 0 for all 2 = 1, and by
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applying Lemma 3.1 to the sequence {y,}=1 we obtain 0 = f(3> %, v:) =
f(x?) = (f(x))2 In other words, f(x) = 0 for an arbitrary x € A. This com-
pletes the proof.

Remarks. Recall that a basis satisfying the hypothesis (ii) is called an
unconditional basis ({3, p. 185]). Every basis in a Fréchet nuclear space is
unconditional. Thus we have from Theorem 4 that every nuclear Fréchet
algebra with an orthogonal basis is functionally continuous.

Theorem 4 says that every maximal ideal of codimension one in a Fréchet
algebra with an orthogonal and unconditional basis (in particular, a Fréchet
nuclear algebra with an orthogonal basis) is closed.

We note that some results of § 2 have appeared in a paper [4] by one of us
with slightly different proofs. But they are given here for the sake of com-
pleteness.
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