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Summary

In a stationary GIjGjl queueing system in which the waiting time
variance is finite, it can be shown that the serial correlation coefficients
{/}„} of a (stationary) sequence of waiting times are non-negative and
decrease monotonically to zero. By means of renewal theory we find a
representation for JoVn from which necessary and sufficient conditions for
its finiteness can be found. In M/G/l rather more can be said: {pn} is a
convex sequence, the asymptotic form of pn can be given in a nearly saturated
queue, and a simple explicit expression for 2<TPn exists. For the stationary
M/M/l queue we find the pn's explicitly, illustrate them numerically, and
derive a representation which shows that {pn} is completely monotonic.

1. Introduction

We are concerned in this paper with a single server first-come first-
served queueing system with service times {St} (t = 0, ± 1 , • • •) and inter-
arrival times {Tt} mutually independent, and each identically and independ-
ently distributed with distribution functions (d.f.s.) B(x) = P[St ^ x] and
A(x) = P[Tt^ x] respectively. If E[Ut] = E[St— 7\] < 0, then it is well
known that a stationary distribution for the waiting times {Wt} exists,
with W(x) = P[W( 5S *] (all t) satisfying the Wiener-Hopf equation

(x< 0),

where U(x) = P[Ut ^ x] = $™B(x+y)dA(y) (— oo < x < oo). Here and
throughout the paper, {Wt} denotes a sequence of waiting times in such a
stationary GIjGjl queue, namely, one for which E[Ut] < 0. Kiefer and
Wolfowitz [11] showed that a sufficient condition for E[Wr

t] = ffxrdW(x)
to be finite is that /ur+1 = ^xr+1dB(x) should be finite, and that this
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condition is also necessary if §™xdA (x) is finite. Since we shall be discussing
the behaviour of {/>„} where

Pn = yjo* (n = 0, 1, • • •) ,
yn = E[(Wt-F)(Wt+n-fi)] (all n and t),

j* = E[Wt] and a2 = E\W\\-p* (all*).

(if all these quantities are finite), we shall assume throughout that

fi3 = E[Sf] = x3dB(x) < oo.J o

We also assume that E[Tt] = ffixdA{x) < oo. (The independence of yn, /i,
and a2 of t follows from the stationarity of {WJ.) For simplicity we omit
the suffix t in expectations where no confusion may arise; for example,

ff2 = E[W2]-(E[W])* and ̂ 3 = E[S3].
The motivation for this work is twofold. In the first place, it is a

standard result in the analysis of a stationary time series {Xt} that, given
an observed sequence {xlt • • •, xN] and setting x = (xt-\- • • • -\-xN)jN, a
large sample approximation to N var (x) is

var (Xo) + 2 f cov (Xo, Xn) = var (X0)(l + 2 f Pn)

where pn is the nm serial correlation coefficient. Such waiting time sequences
{Wt} as we are discussing fall into this framework, and in Theorem 2 below
an expression for 2oVn is developed from which both its approximate value
and conditions for its finiteness can be found. An alternative method
(in principle anyway) of finding 2o°P« y i a t n e solution of an integral equa-
tion may be deduced as a corollary. Not surprisingly, 2oVn c a n be found
exactly in explicit form in a stationary Af/G/1 queueing system (Theorem 4).
This aspect of the paper is related to Breny's studies [2, 3] on large sample
estimates for the mean queue size in Af/M/1, with which Jackson's Monte
Carlo work [10] is linked. Morse ([15]; see also Saaty [18] p. 130) derived
the autocorrelation function of the continuous time queue size process in
Af/M/1 (with comments on M/M/2 and M/M/3), and Fishman and Kiviat
[9] used Morse's work in a simulation study of spectral analyses of time
series derived from fairly simple queueing systems. Work on similar problems
in pure loss systems (i.e., with no waiting facilities) seems more extensive
(e.g. [1], [14] pp. 190-200, [17] chapter 6).

In other respects this paper is a development of Craven's [6] study
concerning the serial dependence of Markov chains. Craven cites as an
example the second order properties of waiting times in the queue M/M/l,
conjecturing that for each n, the correlation coefficients pn satisfy

(1) p n = : l _ w ( l _ T
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for T = E[S]IE[T] f 1. A generalized form of (1) is proved in Theorem 5
for the system Af/G/1, and by comparing this with other heavy traffic
results of Kingman [12], this leads to a conjecture of the analogue of (1)
in the system GIjGjl.

The results in Sections 2 and 3 below lead to considering in [7] Markov
chains more general than {Wt}: this paper is in one sense an extended
example of that work. It illustrates moreover some of the rationale behind
[6]: there is a vast general theory for the (numerical) analysis of second
order stationary time series on the one hand, and an extensive discussion of
the simplest non-trivial stochastic processes (namely, Markov chains) on
the other, yet it seems the two have rarely been fused.

2. The monotonic character of {>„} in GJ/G/1

THEOREM 1. / / {Wt} is a sequence of waiting times for the stationary
queue GI/G/l with //3 = E[S3] = f™x3dB(x) < oo, then the serial correlation
coefficients {pn} decrease monotonically to zero.

PROOF. A more general theorem of which the present result is a special
case is given elsewhere [7]. However, the notation and an auxiliary result
are wanted later, so the formal algebraic steps in the proof are given here.
Equations (2), (3), and (4) below are essentially in [6], but the generality
claimed in [6] for limB_00Cn(a;) is not true. The notation in (2) below is an
important simplification (cf. [21]).

The chief point is to define the sequence of functions

(2) Cn(x) = j w ^ x W0P(dW0, dWn) = J o s ^ s - WQP(dW0, dWn)

where P(-) denotes the probability measure associated with the stationary
sequence {Wt}. These functions can be shown to satisfy

(3) pno*+v* = J7 xdCn(x) = j " (?-Cn(z))dx

and

(4) Cn+1(x) = J~ U(x-y)dCn(y) = / ^ Cn(x-y)dU(y),

from which we deduce that

(5) lpn-Pn+1)o* = j " Hn(z)dx

and

(6) Hn+I(x)=j' Hn{x-y)dU{y),
J —OO

where Hn(x) = Cn+I(x)—Cn(x). Thus, if H0(x) can be shown to be non-
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negative for all x 2s 0, it will follow that (i) every Hn(-) is a non-negative
function, and therefore pn ̂  pn + x; and (ii) for every fixed x 3; 0, and in
particular for x = 0, {Cn(x)} is a non-decreasing sequence. To prove that
Ho(-) ^ 0, we first use integration by parts in the equation

CM-CM = Jo°° xdxP[W0 ^x.W^y]- J " xd.P[W0 ^x,W0^ y]

= Jo°° (P[W0 ^ min (x, y)]-P[W0 ^x,Wx^ y])dx,

and then observe that by stationarity of {Wt},

P[W0 ^x.W^y]^ min (P[WQ ^ x], P{WX ^ y])
= P[W0 ^ min (x, y)],

so the last integrand is non-negative. Using now Lindley's uniqueness
theorem for probabilistic solutions of the Wiener-Hopf equation, we can
deduce that l im^^C^x) = /iW(x). By monotone convergence and (3),

P* = 0.
The properties of {Cn(-)} are usefully stated as

LEMMA 1. For each fixed x ^ 0,

0 ^ Cn(x) ^ Cn+1(x) ^ fiW(x) (n -> co).

3. Conditions for the finiteness of 2^P» a n < l its evaluation

Referring to (3) and recalling that p = E[W] = ff(l-W
consider for y 22 0 and n = 0, 1, • • •, the functions (yn(

-)} a-nd {/>„(•)}
defined by

yn(y) = °2pn(y) = jl 0*w(x)-cn(x))dx (y ̂  o)

j ; ()-MJl (1-W(x))dx,
so that yn = lim,,_s.ooyM(?/). Then since PF(a;) = ^^W(x-y)dU(y) for a; 25 0,
and using (4),

jl ( J ^ MW(x-u)dU{u)-

(8) J ^

Equivalently,

(9) Pn+M = L (Pn(y~u)-Pn(max (-«,
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By Lemma 1, Cn(x) converges monotonically from below to ftW{x) for all
x ^ 0, so (7) shows that pn(y) is for each n a continuous non-decreasing
function of y, with pn(0) = 0 and limv_KX)pn(«/) = pn ^ 1. Thus, each pn(-)
is the d.f. of a (possibly dishonest) positive random variable. Specifically,
given a sequence {Un} (n = 1, 2, • • •) of independent random variables
with common d.f. £/(•), and given a positive random variable Zo with
(honest) d.f. po(y) = P[Z0 ^ y], we deduce from (9) that the random
variables of the sequence {Zn} defined for n = 1, 2, • • • by

(10) Zn = { Zn-i+Un if 0 < Zn^+Un < oo,

oo if otherwise,

have as their d.f.s. pn(y) = P[Zn ^ y]. (In (10), Zn_1 = oo implies Zn = oo
with probability one because Un is finite with probability one.)

Thus, given Zo = z say (2 > 0), we have 0 < Zn < 00 if and only if
every partial sum z—Slt • • •, z—Sn is positive, where Sm = —^L\UT, i.e.,
setting Mn = max (0, Slt • • •, Sn),

P[0 <Zn< oo|Z0 = *] = P[Mn < z].

From the integral equation of renewal theory, we have for 0 < z < 00 that

0 ^ | P[Mn <z] = H(z-0) ^ £ P[Mn ^z}= H(z) < 00,
n=l n=l

where H(-) is the renewal function satisfying the renewal equation1

H(z) = _
0 (« < 0),

in which V(y) = l — U(—y—0) is the d.f. of the random variables of
the sequence {—Un}; the finiteness of H(z) comes from E[—U] > 0,
E[\U\] < 00. Now

Pn = P\0 < Zn < oo] = Jo P[0 <Zn< oo|Z0 = z]dPo(z),

so
oo oo /*oo /»oo

2 P « = I \ P\V<Zn< °°|Z0 = z]dPo(z) = ^(z-O)rfpo(z),
n=l n=lJo Jo

where equality holds in the sense that both sides converge or diverge
together. Since by (7) po(-) is absolutely continuous (indeed, its derivative
is continuous), and the inequality H(z—0) < H(z) can hold for at most a
countable set of values of z,

1 H (-) is in fact the unique finite solution of the equation (see [8] pp. 382—385).
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(11) lPn=r H(z)dpo(z).
n=l JO

Now it is easy to modify the renewal theorem (e.g. [8], chapters XI and XII
in particular) to deduce that for all z ^ 0,

(12) \cz^rC1 ^ H(z) ^ 2cz+C2

where Cx and C2 are (finite) constants and c~x = E{_—U] which implies that
c is finite and positive because we assumed at the outset that

-oo < E[S]-E[T] = E[U] < 0.

Therefore the left hand side of (11) converges or diverges with
From (2) and (7),

"* J7 ytpM = Jo°° ydrM = Jo°° y(/*w(y)-co(y))dy

(13) = [°°ydy f°° (x-/t)dW{x) because f°° (ji-x)dW(x) = 0

= \°° ^(x3—[ix2)dW{x) on inverting the order of integration

which is finite or infinite as 2?[W3] is finite or infinite: the inversion of the
order of integration is justified by observing that the coefficient of — fi/2
equals £[W2] and is finite by assumption, while the remaining term has a
non-negative integrand and is with respect to a non-negative measure,
so Fubini's theorem applies. By the result of Kiefer and Wolfowitz [11]
quoted in the introduction, if E[T] < oo, the necessary and sufficient
condition that Zt[W3] be finite is that /*4 = E[S*] be finite. We have thus
completed the proof of

THEOREM 2. / / {Wt} is a sequence of waiting times for the stationary
queue G//G/1, with ^ = E[SS] < oo, U(x) = P[U ^ x], — oo < E[U] < 0,
and E[\U\] < oo, then the necessary and sufficient condition that the sum
2oV» °f the serial covariances yn = cov {Wt, Wt+n) should be finite is that
jM4 = E[S*] < oo. Further

f yn = rH(x)dyo(x) = rH(x)dx f" {n-y)dW{y)
n=l Jo JO J0—

{equality holding in the sense that both sides may diverge) where

YM = SI {/*W(x)-C0(x))dz - /;_ {y-x)(ji-x)dW(x)

and H(x) is the unique finite non-negative solution of
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H(x) = V(x)+ jx_ooH(x-y)dV(y) (x ^ 0),

V{x) = l-U(-x-0).

An alternative possible method of evaluating 2J5°/3re is to deduce from
(9) an integral equation for R(y) = J£pn(y) and finding l im^^R(y).

Intuitively it is obvious from (12) and (13) that an approximation to
2i°?n (when finite) is

(14) ±Vn*~ 2 F f m

Kingman [12, 13] has shown that for KE[—U] small, where
K = 2E[— U]/var(U) (assuming of course that var (U) < oo), the stationary
distribution W(-) is approximately negative exponential with mean K~X.
If we assume that under the same conditions this implies that the second
and third moments of W(-) are approximately equal to 2K~2 and 6/c^3

respectively, then (14) would suggest that ^yn «*t 2K~ZJE[—U], and so

2 var(U)
(15) I - 1 ' K '

We do not propose investigating these assumptions here, though comparison
of (15) with the exact expression at (28) below for MjGjl suggests that it is
in that case an asymptotic result for K \ 0.

4. Serial correlation coefficients of waiting times in MfG/l

The techniques used in this section to find explicit expressions for
{pn} in the stationary queue M/G/l are essentially standard in queueing
theory. We assume a Poisson arrival process with rate X, and denote the
Laplace-Stieltjes transforms of B(-) and W(-) by 0(0) = ]^e-8xdB{x) and
<p(0) =JSL e-0xdW{x) {Rl{0) ^ 0). Then (e.g. [16] p. 42) for Rl(Q) > 0,
(p(d) and /S(0) are related by the Pollaczek-Khintchine equation

(1— T)0
(16) y(0) K

where, with fiT = ^xrdB(x) {r = 1, 2, 3, 4), r = X^ is the traffic intensity.
The mean JJ, and the variance a2 of the process {Wf} are easily deduced from
(16) to be

With this notation we shall prove
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THEOREM 3. The serial correlation coefficients {pn} of the waiting time
sequence {Wt} in the stationary queue M/G/l are given by

(18) Pn = l-nfi(l-r)l^+ (2U Cr)llo* (n = 1, 2, • • •)

where with D = djdd,

0P(dW0,dWr)

= 1).

)]^
(r = 2, 3, • • •)•

For \z\< 1,

(20) |C/J.C)-'¥CW)
r>=l W ( 2 )

0 = u(z) = g - 1 ( z ) i s <Ae unique inverse from 0 < z < l t o k > 6 > 0 of

REMARK. It follows from the theorem that

W[Pn—Pn+i) =J«(1-—«0—CB+1

and so

(21) W(pn-2Pn+1+Pn+2) = WA*Pn = C n + 2 -C n + 1 .

Lemma 1 states that {Cn} = {Cn(0)} is a monotonic non-decreasing sequence,
so it follows from (21) that in M/G/l, {pn} is a convex sequence. {/>„} being
convex implies (theorem 5.1.8 of [20]) that po+

2^=ipn
 c o s nx is convergent

for 0 < x 5S n to a non-negative function /(a;) continuous on (0, n] and
integrable on [0, n]. Thus the spectral measure associated with the station-
ary process {Wt} is absolutely continuous with the density function con-
tinuous except possibly at the origin. (In fact, the same is true knowing
only that {pn} is monotonic decreasing to zero, but the proof is more delicate
and not directly relevant here.)

We shall show in Section 6 below that in Af/M/1, {pn} is a completely
monotonic sequence, that is, {—)rArpn S; 0 for all non-negative integers
r and n, where AT+1pn = Arpn+1—Arpn.

PROOF. The functions y>n(0) = E[Woe-9W«] exist for all Rl(6) ̂  0,
and
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V.+i(0) = E[W0e-ew'^] = E[Woexp (-6(Wn+Sn-Tn)+)]

= E[E[Woexp (-8(Wn+Sn-Tn)+)\W0> Wn> S J ]
) - X Wo

0-A

where we have used the fact that Tn is negative exponential,

P[Tn ^ x] = e~x* (x ^ 0).
Thus

Introduce the generating function W(d,z) = 2~=oV«(e)z" (lzl < x ) ; t h e n

for all Rl(6) > 0, 6 ^ X, we deduce from (22) that

( 2 3 )

Now

Cn(x) = C,(0) = Cn (say),

so putting C(0,z) = 2~ 1 C n 2" ( |*|< 1). it follows from (23) that
C(0, 2) = z (̂A)!P(A, «). Also, rpo(6) = E[Woe-ew«] = -<p'(e), with Co = 0.
We therefore obtain from (23) that for all Rl{6) ^ 0 (including 0 = X),

(24) (e-A+^/3(0))ff(e, z) = ec(o, «)-(fl-AV(e).

(There is an alternative procedure available to deduce (24). Formally, it
consists in defining the generating function

and forming from (4) the equation for C(x, z)

C(x, z)-C0(x) = z J~ U(x-y)dyC(y, z),

which, assuming the differentiations below are justified, yields

U- ^j (C(x, z)-C0(x)) =XzjX B{x-y)dyC{y, z),

and hence (24) by taking Laplace transforms.)
For fixed z in (0, 1), the function /(0) = 0+Az/3(0)— X is a strictly

monotonic increasing continuous function of 6 on 8 S; 0, with

/(0) = - A ( l - * ) < 0 and /(A) = A*/J(A) > 0,
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so for each z in (0, 1), there is exactly one zero of f(6) = 0 such that
0 < 6 < X. Denote this zero by 0 = u(z). Setting z = {X— 0)M/S(0) = g{0)
say, this function u(z) is the inverse function g'1, mapping 0 < z < 1
one-one onto X > 0 > 0, with u(z) \ X for z j 0 and M(Z) j 0 for z f 1. Also,
g(d) is analytic for i?/(0) > 0 and for 0 < d < X it has a non-vanishing
derivative, so u(z) is an analytic function of z for z in (0, 1) and since
jM3 = —limfl|O/3"'(0) is assumed finite, it follows that lim!!^1u'"(z) exists
and is finite.

For 0 > 0 and z in (0, 1), W(6, z) is finite, and its coefficient in (24)
vanishes for 0 = u(z) when z is in (0, 1). So for 0 < z < 1,

(25) C(0,z)=(u(z)-X)<p'(u(z))lu(z).

Set F(z) = 2^L07n2"(lzl < 1); then using generating functions, and
recalling the definition of y(d, z) after (22) above, equation (3) can be
written as

The evaluation of this limit (which exists for z in (0, 1) because

is finite) leads to

7 ^'+ I3
that is

(26)
{z)
W l-z X(l-

Recall that ^=0Cnz
n = C(0, z), that is
Cn = Cn(0) =

and set ^Lopnz
n = r(z)/a2. Then (26) yields (18) by equating coefficients

of powers of z. It thus remains only to demonstrate (19), which we now do
by means of the general form of Lagrange's equation for the reversion of
series (e.g. [5] p. 125).

First, note that the function %(Q) = (0—X)<p'(d)l6 is an analytic
function of 0 in a neighbourhood of d = X with %(X) = 0. Next, the function
g(6) = (k—O)IXf}(d) is an analytic function of 6 in a neighbourhood of
0 = X, and its derivative there is g'(X) = —ljXfi{X) ̂  0. Therefore the
inverse function v{z) such that v(0) = X and z = g(v(z)) for z in a neighbour-
hood ^Vo of z — 0 exists and is unique; since v(z) = u(z) for real positive z
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and z in ^Vo, v(z) is the analytic continuation of u(z) to the whole of ^r o .
Since C{0, z) — %{u{z)), Lagrange's formula yields for all z in some
neighbourhood of z = 0

J;cn*" = qo, z) =J; J [ D - ^
Substituting for %{B), equating coefficients of powers of z, and simplifying,
yields (19) and completes the proof of the theorem.

We remark that, apart from (19) (and hence Theorem 5 below), the
present results are obtained by real variable arguments.

It may also be noted that the same method can be used to deduce
comparable results for higher moments. For example, with 0 < z < 1, if
r<2>(z) = 2"=o7i2)^. where y<,2) + (<r2+/*2)2 = E[W2

0W*}, then setting

equations analogous to (23), (24) and (25) follow, with q>'(6) replaced by
—q>"(6). It is of course now required to assume that £[55] is finite, while
the analogue of Theorem 4 (and presumably of Theorem 2 also, if such an
analogous representation can be found) would speak of the finiteness of the
sixth moment.

Similarly, the same techniques can be used to develop comparable
formulae for the system EJG/1.

The next theorem gives an exact expression for 2»£=oPn in the system
M/G/l; the result given in (28) should be compared with the approximation
at (14) above, noting that in (28) E[—U] = (1—T)/A.

THEOREM 4. 2£L0PniS /*'m'*e */ an^ onty */ /*4 = -^T^4] < oo. / / /% < oo,
then

( 2 7 )

PROOF. The first part of the theorem is known via Theorem 2, but it
can also be established by finding the conditions under which

f ,,n = n
n=0

is finite. Replacing C(0,z) in (26) by (25) and applying FHopital's rule
three times we find (essentially) equation (27), provided that

limzncp"-{u(z))=limH0<p"'(d)

is finite. The algebraic details are omitted.
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We observe that by the Cauchy-Schwartz inequality, the second term
in (28) is non-negative, and therefore the first term in (28) is a lower bound
for the left hand side of (27).

COROLLARY 4.1. / / {wlt • • •, wN) is an observed sequence of waiting times
in an M/G/l queueing system in equilibrium, and if /ni < oo, then for N large,

i N

N-1 var I
(1-T)

PROOF, var (^=1 wn) =No2 + 2 ]££* (N-n)Pna
2 ~No*(l + 22?Pn),

the approximation holding provided the infinite series converges, which is
the case when ftt < oo.

m
COROLLARY 4.2 For r near 1,

i ( 1 — T ) 2 1 — T 3/*2(l— T)

PROOF. From the Pollaczek-Khintchine equation (16) we deduce that

Recalling (17) and substituting in (28) leads to (29).
In passing we note that (15) in the case of an M/G/l system yields

in which the leading term agrees with that of (29) for 1—t = o(l).
These corollaries are important in indicating the relative sizes of samples

required for a Monte Carlo simulation study of the mean waiting time in an
M/G/l queue (cf. [6] and [10]). In particular, in order to obtain the same
accuracy (without taking into consideration the changing variance) the
sample size should vary as (1—T)~2 (approximately), while in order to
estimate the mean to the same absolute accuracy the size should vary as
(1— T)~4. Presumably the orders of magnitude are similar for many server
systems, but these questions lie beyond this paper.

5. Behaviour of pn in M/G/l with r near 1

The main object of this section is to use (18) and (19) (which otherwise
do not appear to have any particular advantage to offer over (25) and (26))
to establish
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THEOREM 5. For the family of stable Af/G/1 queueing systems with given
service time distribution B(-) and arrival rate X such that 0 < 1—x < b < 1
and [i3 = ^xsdB(x) < oo, the serial correlation coefficients pn of a stationary
sequence of waiting times satisfy

(30) \l-An[l-r)'-Pn\<K{l-T)*

for any finite set of integers n = 1, • • -,nx, where A = 2/A2//2 and K is a
constant depending on n^.

Before proving this theorem, we note that in Af/Af/1 A = T~2, SO for
T near 1, (30) reduces to (1) as conjectured by Craven [6]. By comparing
(30) with known ([12], [13]) heavy traffic results for the stationary GJ/G/1
queue, we in turn are led to conjecture that in G//G/1 the coefficients pn

satisfy

(31) Pn = 1-n var ( [ 7 ^ / 2 + 0 (^)

for a finite set of integers n, where K = 2£[—f/(]/var (£/,) and Ut = St—Tt

as defined at the outset; the approximation should hold provided that
K.E[—Ut] is small.

PROOF of Theorem 5. We have to establish that (30) is true for r
arbitrarily close to one. Comparing (30) with (18) and (17), the coefficient
of — n in the exact expression for pn in (18) is

so (30) will be proved if we can show that for appropriate n and A,
(2r=iCr)M<*2 = O((l—T)3). Since <r2 = O ( ( 1 - T ) 2 ) , it suffices to show that
2 T C r = O ( l - r ) .

Referring to (19), Cr is a function of q>'(0) and fi(d) and of their deriva-
tives at d = X: consider in particular the function

Q)(O, A) = —
0(1—r)

the former equality defining a function a>(. , .) for all 0 and A in a range
X1 5S 0, X tSt X2, the latter equality holding by the Pollaczek-Khintchine
equation (16) above only for A such that 0 < 1—T < 1. For e > 0, provided
0 < A < (1+e)/^ = A2 say, co(d, X) is analytic in Rl(d) > 0O = 0o(e), and
/3(0) is analytic in Rl(6) > 0. Further, e can be chosen so small that
0o(e) < X1 = (1—6)1/1!. Then the set Z. = {(0, A) : 0 = A, Aj ^ A ^ A2} is
a compact subset of the (open) domain on which a>(. , .) and/?(-) are analytic,
and therefore on L, a finite set of derivatives of finite order of finite products
of co and /? is uniformly bounded. {Cr/(1—T), r = 1, • • •, M} is such a set,

https://doi.org/10.1017/S1446788700006509 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006509


696 D. J. Daley [14]

defined on a subset of L, so Cr = 0(1—T) as required, and this proves the
theorem.

In discussing the transient behaviour of a queue in heavy traffic,
Kingman ([12], p. 386) notes that K~2 is a measure of the time required for
a GIjGjl system to settle down to its equilibrium state. (30) is a special case
of (31) and shows that for M/G/l a similar conclusion is reached by exam-
ining the serial correlation coefficients.

6. The nature of pn in the queue M/M/l

Application of the results of the foregoing sections to the simple queue
M/M/l with B{x) = l—e-"x, v > 0 such that r = X\v < 1, gives moderately
tractable formulae. We list the results of the algebra below, and then after
numerical illustrations, find a representation for pn.

The coefficient of — n in (18) is (1— T ) 2 / T ( 2 — T ) .

ere a ^ %
T) / / 1—T\

so
1 — -I-2

(32)
1 + 2T(3-T)1+2 2 A. = 7^-

n=l -I —
T + ( 2 _ T ) ( l _ T ) 2

The table below contains values of pn for n = 0(1)10, with T = 0.5, 0.8,
and 0.9. For the last value, the approximation from (1) is also given.

In a remark following Theorem 3 we noted that {/>„} is a convex se-
quence in M/Gjl, and asserted that in M/M/l it is completely monotonic,
a necessary and sufficient condition for which is that the terms pn be
expressible

(33)

where m(-) is a bounded non-negative measure on [0, 1] (e.g. [19] p. 108).
This assertion about {pn} will be proved by finding such a measure m(-).

Recall from Lemma 1 that Cn f /uW(0) = ^(1—T), SO it suffices to
consider the second differences of {Cn} which are expressible (from (32)) as

https://doi.org/10.1017/S1446788700006509 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006509


[15] Stationary single server queue 697

TABLE 1

Some serial correlation coefficients of waiting times in Af/Af/1

0.5 T = 0.8
0.9

Exact Approx.

0
1
2
3
4
5
6
7
8
9
10

•OPn

'0° Pn

1.00000
.77778
.61728
.49657
.40345
.33032
.27214
.22536
.18745
.15650
.13110

4.59794

5.33333

1.00000
.96296
.92913
.89778
.86850
.84098
.81499
.79037
.76696
.74467
.72323

9.33957

41.66667

1.00000
.99043
.98125
.97237
.96376
.95539
.94722
.93924
.93144
.92381
.91630

10.52122

181.81818

1.000
.990
.980
.970
.960
.950
.940
.930
.920
.910
.900

-. 2

r(n+Z)

= — f tn+i(a—t)idt.
2JIJ0

Thus, since 0 < a < 1, we find

(.T(-) now denoting the gamma function)

= • un+Ul—u)kdu
2n Jo

(34) Pn =
2nrs(2-r) (1-t

dt

which is of the required form (33).

By using (34) to form the spectral density function we can show that

it is monotonic decreasing on (0, n).

Substituting t = au in (34), we readily deduce that

( 6 ^ - v ;

and since the gamma function has the property that for fixed b,

nT(n)ir{n+b) -> 1 (« - > oo)
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(e.g. [5] p. 212), it follows that

pn — O(ann-i) (n -+ oo).

Thus the power series ^pnz
n has radius of convergence I/a, which is the

same as the radius of convergence of 2 {Wn(x) — W(x))z", where

(this is proved in [4]). Presumably this observation is a special case of a
similar property of the more general system GIjGjl, namely, we suggest
that the radii of convergence of

^ cow {W0,Wn)z
n

and of
£ (Wn(x)-W(x))z"

are the same.
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