THE GEOMETRY OF FINITE MARKOV CHAINS
N. Pullman

(received March 30, 1963)

The purpose of this paper is to present a geometric
theorem which provides a proof of a fundamental theorem of
finite Markov chains.

The theorem, stated in matrix theoretic terms, concerns
the asymptotic behaviour of the powers of an n by n stochastic
matrix, that is, a matrix of non-negative entries each of whose
row sums is 4. The matrix might arise from a repeated
physical process which goes from one of n possible states to
another at each iteration and whose probability of going to a
state depends only on the state it is in at present and not on its
more distant history. The entry aij of the matrix A (called

the one step transition matrix) is the probability that the process
goes from state i to state j in one step. The ij-th entry in
(m)
1)
from i to j in m steps. For example the process might
consist of shuffling a deck of n cards by means of a machine
which puts the i-th card from the top into the j-th from the top

(m)

1
the i-th card in the j-th position at the m-th shuffle.

Am, which is denoted by a s 1is the probability of going

with probability a.,.. Then a is the probability of finding
1)

For each m > 0, we say that i leads to j in m steps
(m)

iff a >0. We write i~nj iff i leadsto j in m steps

ij
for some m.
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It is easy to see that ~* is an equivalence relation on the
set of those states on which ~» is symmetric, i.e. on

n

E=() {i:i ~*j implies j ~ni}. E is called the set of
j=1

ergodic states. E is partitioned by ~* into v equivalence

classes Ei’ EZ, Ceey Ev called ergodic classes. The states

not in E are called transient.

Theorems I and Il below are respectively probabilistic and
matrix theoretic statements of the fundamental theorem of finite
Markov chains. We shall provide a geometric proof at the con-
clusion of the paper. For probabilistic proofs we refer the
reader to [1], [2], [3], and [4]. An algebraic proof can be
found in [5].

THEOREM 1. If A =(a.) is the one step transition
1)

matrix of a Markov chain with n states then:

(Ia) lim affn) =0 whenever j is transient.
1

m —>00

There is a partition of each ~” equivalence class Er into c

non-empty subsets (called cyclically moving classes)

ErO’ Eri’ RN Erc 1 with the following properties:
r
(Ib) If ice Ers and i leads to j in one step then
je Er, sl (the second subscript is read modulo cr).

(Ic) To each Ers corresponds an n-tuple krs of non-

negative numbers whose sum is 1 for which the j-th component,

kfr’ S), is zero iff j§ E and such that:
j r
(mc +1t) (r,s')
lim a,, | =k’ for all j
1) J
7 >0 .
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and all t=0, 1, ..., ¢ -1 whenever i€ E and
r ' rs

s' =s +t (mod cr).

THEOREMII. If A =(aij) is an n by n stochastic

matrix then there is a permutation matrix P (i.e. a matrix
of zeroes and ones which has only one non-zero entry in each
row and each column) such that:

A00 A01 Aoz AOr AO,v-i A0
0 A, 0 0 0 0
PAP’1= 0 0 0o ... Ar ... 0 o| (if E£9),
0 0 0 0 A 0
v-1
0 0 0 0 0 A
v
A 0
\ 0
0 0
A,
-1 .
PAP =|0 . . .Ar. ) 0 (if E=9),
0 0 A
v
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ri
0 0 A 0 0 0
r2
A = 0 0 0 0 A 0 ,
r rs

rc -1

where the Ar and AOO are square matrices and:

(Ila) lim A™

=0,
00

m —>00

(IIb) the entries of Ar which are in no Ars are zero,

(IIc) for each r =1, 2, ..., v there are stochastic
matrices § ., I ., ..., 0 , ..., I such that for each
r0 r1 rs r,cr-1
t=0,1, ..., c -1:
r
348
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0 0 I 0 . 0
rt
0 0
nr,t+1 0
0
0 r,c -1
r
mcr+t
Iim A = |II 0 0
r r0
m —>00
0 Hri 0 0
0 ... O 0 0
I-Ir,t—i

The entries in this matrix are zero if and only if they are in no

II , there are as many rows in II s as there are rows in
rs r

(second subscript modulo c ), and all of the rows

Ar s=-t+1
’ (r,s)

of 11 s are the same vector
r

The method we shall use to prove the fundamental theorem
and related theorems is briefly this: we identify the n by n
stochastic matrix A with a linear operator f on the simplex, S,
spanned by the basis vectors of Euclidean n-space. The inter-
section, K, of all the images f(S) is a simplex whose
vertices are permuted by f. The position of K in S and this

m
permutation determine the behaviour of the agj ) for large m
and also locate the vertices of the simplex of its stochastic

eigenvectors.

Before going further we shall state a few definitions and
preliminary remarks for the reader's convenience.
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A convex polytope P 1is the convex hull of finitely many
points t

1 t?, sy tm in some Euclidean n-space. The point

(.

'ci is a vertex of P iff the convex hull of the others doesn't

contain it. The convex hull of any subset of the vertices of P
is called a sub-polytope of P. A linear function f mapping

P into P is called a linear operator on P. A convex polytope
P is a simplex iff none of its vertices is in the flat determined
by the remai;;g vertices. If S is a simplex, each subpolytope
is called a subsimplex. The subsimplices of S are themselves
simplices. T If A is a subset of the convex polytope P, a car-
rier of A in P is a subpolytope with fewest vertices, contain-
ing A. I P is a simplex then each non empty subset has a
unique carrier in P.

Three direct consequences of these definitions which we
shall refer to in the sequel are:

(1) subsimplices without vertices in common are disjoint;

(2) if the carriers of m points in a simplex S are disjoint
then the convex hull of these points is a simplex;

(3) if f is a linear operator on a simplex S, then the
image of the carrier of a subset X of S 1is contained in the
carrier of f(X).

The method we use is based on a lemma which we couldn't
find in the literature:

LEMMA 1. The intersection K, of a nested sequence of
convex polytopes { PQ} each of which has n vertices is a

convex polytope.

Proof. It is possible to choose a subsequence, {P }

o
§)
and a vertex vB of Q[3 =P such that {VB} converges, to
o
g
k1 say. Next choose a subsequence {QB} of {QB} and a
Y
sequence of vertices w of R =Q with w # v such that
Y Y Yy P
Y Y
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,y ke, .., k.
2 1 2 n

This process must halt in n steps because the P have only
a

w converges, to k_ say. And so on, getting k

n vertices apiece. Let T be the convex hull of the k..
1

Clearly TC K. Suppose x¢ K~T. Let h be a hyperplane
separating x from T. Let ¢ be the distance from h to T.
For each i there are infinitely many « for which a vertex of

P is in the sphere of radius €/2 about k,. There is therefore
o i

a member of { P } on the side of h opposite x hence [ Pa
a

and {x} are disjoint. Thus K~ T =@ and hence K=T.

LEMMA 2. I f is a continuous function mapping the
compact set P into P and K=mQ1 f7(P) then f(K)=K .

Proof. It is sufficient to show that KC f(K). If xe¢ K

m
then x€f (P) for all m > 0 and hence x=f(xn'1 1) for some

-1
x e 7 (P). The x have a convergent subsequence
m-1 m

{x } convergingto a point y of P. If we can show that
m,
i
y € K then we are through because x =lim f(x ) ={(y).
. m,
1—+ 1

If y were not in K then, for some N, y would not be
N
in f (P). The complement of fN(P) contains no xm for
i
m, > N. But the complement of fN(P) is an open neighborhood

i
of y. Therefore ye¢ K.

THEOREM 1. If f is a linear operator on a simplex S
then

(i) the intersection, K, of the iterates fm(S) is a
simplex, and

(ii) the vertices of K are permuted by f and hence fall
into v disjoint classes on each of which f is a cyclic permuta-
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tion so that for r=1, 2, ..., v and s=0,1, ..., ¢ -1,
r
(where ¢ 1is the number of elements in the r-th class) we
r

have

(1i1) f(k s) =k (the second subscript is read modulo
r

r, s+1
c ).
r
If C is the carrier of k in S then
rs rs
(iv) the crs are disjoint,
(v) £(C_)cc and
v *rs' = r,s+1’
(vi) M fIn(C )=k__, when s' =t+ s (modc ).
rs rs r
m =t
If Kr is the subsimplex of K whose vertices are
k ,k , ..., k then
r0 ri

r,c -1
r
(vii) the Kr are disjoint and

(viii) the set of all f-fixed points in S is a simplex whose
vertices are the barycenters of the Kr.

Proof.

(a) IL.ernmas 1 and 2 establish that K 1is a convex polytope
and that f(K) = K.

(b) £ permutes the vertices of K.

Let k be a vertex of K, Xk=[f-1(k)] N K and CK(Xk) denote
a carrier of Xk in K. Then f(CK(Xk)) ={k} by remark (3)
dh X)=X.
and hence CK( k) "
as there are vertices of K, since the Xk are pairwise disjoint

Therefore there are as many CK(Xk)
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-1
and hence each carrier CK(Xk) has only one vertex. Thus f

and hence f permute the vertices of K.

The family of sets, { [ {fm(k)} : k is a vertex of K},
m>0
partition the vertices of K into v disjoint classes on each of
which f is a cyclic permutation. Denote the convex hulls of
these partitioning sets by K1. KZ' ceey Kv. Let kr() be any

vertex of K ; let k =fs(k ) for r=1,2,...,v and
r rs r0
s=0,1, 2, ..., c -1. Let C s denote the carrier in S of
r r

k .
rs

(c) Each C s meets K in only one point, namely k ,
r

rs

and hence C =C iff (r,s)=(r',s'). Inot C would
rs r's' rs

contain two distinct points k s and k' of K. The line they
r
determine would meet C S in a line segment contained in K
r
neither of whose endpoints is k s’ contradicting the assumption
r

that k is a vertex.
rs

(d) f(C )C C and hence f(C )C C . if
rs — r rs — r

, s+1 s!

s' =t + s (mod cr); because, by remark (3), f(Crs) is

contained in the carrier in S of f(k ) whichis C
rs r, s+1

by definition.

(e) mqt £C_)={k_,} if s =t+s(modc ).

To see why this is so we observe first that if m =t (mod cr),

then k€ £ (C_ ) because f (k_ )=k =k ; and
rs rs rs r,s+tm rs'

secondly that ( [ ) fm(CrS))C_K sothat {k_,}C N fm(crs)

mz=t mz=t

=xn N ec_oec N xnPc_Jc N rknc,

mz=t m=t m =t

s!
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According to (c), KﬁCr ={krs'} and hence m fm(crs)

m=t
}. An immediate consequence of this is:

s!

={krs'

(f) The crs are pairwise disjoint. Applying remarks
(2) and (1) we have:

(g) K is a simplex and the Kr are disjoint.

Evidently the set F of all fixed points is a convex subset
] cr-i
of K. By linearity, the barycenter b =— Z k of K
r rs r
r s=0
is fixed by f and hente F contains the convex hull of these

barycenters. Conversely, if x is fixed, then, since x¢€ K,

y c.-1
r
x= X T x k (where x >0 and ZZ x =1)
rs rs rs— rs
r=1 s=0
c -1
v by
and hence f(x)= Z Z x k =x. Therefore
rs r,s+1
r=1 s=0
X =X .where s' =s + 1 (mod ¢ ) and hence, given r,
rs rs! r y
either x =0 foreach 0<s<c orforall0<s<c :x =— ,
rs - r - r rs c¢

Consequently x is in the convex hull of the barycenters.
Therefore F is a convex polytope spanned by the v barycenters
of the K . The barycenters of the K are the vertices of F

r r

because the Kr are distinct. By applying remark (2) and (g)

we obtain:

(h) The set F of all f-fixed points is a simplex whose
vertices are the barycenters of the Kr'

This completes the proof of the theorem.
We shall present a proof of the probabilistic form of the
fundamental theorem (theorem I) after a few preliminary remarks

showing the correspondence between the pertinant geometric and
probabilistic ideas.
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Each state i=1, 2, ..., n of the Markov chain whose
one step transition matrix is A =(a, ) corresponds to the
1)

n-tuple v, whose only non-zero component, 1, is its i-th
i

component. Let f(x) =xA (i.e. the j-th component of f(x) is

n

= xi ai,) for each x in the convex hull S, of the vi. S is
i=1

a simplex and f is a linear operator on S. I XC S let C(X)
denote the carrier of X in S. We then have:

(4) i~nj iff v_e U C(fm(v_) because of the definitions
m>0 *
of ~» and C.

We shall show that

(5) i is ergodic iff v, is a vertex of C(K)
i

after we have established (5a) and (5b) below.

(5a) 1f E(K)= {i:v. € C(K)} then for each j there is
1

an i€ E(K) such that j ~*i.

Proof of (5a). Let D= C({fm(v,):m > 0} ) then, using

J
(3), we have f(D)g_ D and hence n fm (D) is a non-empty
m>0
subset of both K and D. There is, therefore, a vertex v,
i

of C(K) which is also a vertex of D. But the vertices of D

are also those of | C(fm(vi)). Consequently j~»ie E(K).
m>0

(5b) If i€ E(K) and i ~*j then j€ E(K) and j ~Ai.

Proof of (5b). i€ E(K) and i ~»j imply that \A is a
vertex of some Crs and vj is a vertex of some C(ft(vi)) by
t
(4). Therefore fi(v.)ef(C_). But £(C )C C . when
i rs rs — rs!

s' =s + t (mod cr) according to Theorem 1 part (v) and hence
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v, is a vertex of Crs' . Consequently je& E(K).
J

C(fm(vj)) =Crs for a sufficiently large mzs - s' (modc )
r
by parts (v) and (vi) of theorem 1, but v _¢ C s and hence
i r
j ~*1i by (4).
Proof of (5). E(K)C E by (5b) and the definition of E.

If j¢ E(K) then j ~»i€¢ E(K) by (5a) and i~"j by (5b).
Consequently jf E and hence EC E(K).

Proof of TheoremI.

(Ia) If i is any state let x(m) be the point of C(K)

m
closest to f (v,). Because of the definition of K the sequence
1

of distances dm between fm(vi) and x(m) converges to zero.
According to (5) xﬁm) =0 for all transient j; therefore

lim agn)=0 because the j-th component of fm(vi) is agn).
m=—> 00

lLet E ={i:v € C };then, evidently,
rs i rs

E = | E . The E g are pairwise disjoint and non-empty
r
because of parts (iii) and (iv) of Theorem 1.

(Ib) If ie E s and 1 leads to j in one step then
r

v.€C and v € C(f(vi)). But according to Theorem 1 part (v):
1 J

rs

f(v.)e C and hence v € C .
i r,s+1 j r, s+1

C ently je€ E .
onsequently ) r, s+1

(Ic) k is an n-tuple of non-negative numbers summing
rs
, 8
kgr ) of k

to 1 because k € 5. The j-th component,
rs rs

is 0 iff j¢ E because of the definitions of C and E .
rs rs rs
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(mc +t)
r

, 8! .
Iim a.. = kgr ) for all j and all
m—> o0 1) J
t=0,1, ..., ¢ -1 whenever i€ E and s' =s+t (modc )
r rs r
by (vi).

This completes the proof of theorem I.

Theorem II can be proven either directly from Theorem I
(their statements are equivalent) or from Theorem 1.

To obtain a proof of Theorem II the latter way let c(r, s)
be the number of vertices in C s and let P be the permutation
r

matrix which performs the change of basis mapping the first
¢ basis vectors (vertices) v , v_, ..., vc onto each of the

1" 2
c vertices not in C(K), mapping the next c(1,1) basis vectors
Vc+1, vc+2, e vc+c(1, 1) onto the vertices of Cii; and so

forth until all the last c(v, cv—'l) basis vectors are mapped

onto the vertices of C .
v,c -1
v

(IIa) is proven analogously to (Ia). (IIb) is a result of (v).

(r,s) (r,s)

To prove (IIc), define = by letting be the j-th
component of krs for each j=1, 2, ..., c(r,s); each

s=0, 1, ..., cr—i and each r=1, 2, ..., v. (llc) then
follows from (vi).

We have extended the techniques used here to study
inhomogeneous chains, that is, to study the asymptotic behaviour
of products A1 . A2 + ... A . ... of stochastic matrices

n
An which are not necessarily the same matrix and all of which

might be infinite. Some of these results are contained in a
forthcoming paper on infinite products of substochastic matrices [7].
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