Extensions of Positive Definite Functions on Amenable Groups M. Bakonyi and D. Timotin Abstract. Let S be a subset of an amenable group G such that $e \in S$ and $S^{-1} = S$. The main result of this paper states that if the Cayley graph of G with respect to S has a certain combinatorial property, then every positive definite operator-valued function on S can be extended to a positive definite function on G. Several known extension results are obtained as corollaries. New applications are also presented. ## 1 Introduction Let G be a group. A function $\Phi \colon G \to \mathcal{L}(\mathcal{H})$ is called *positive definite* if, for every $g_1,\ldots,g_n \in G$, the operator matrix $\{\Phi(g_i^{-1}g_j\}_{i,j=1}^n$ is positive semidefinite. Let $S \subset G$ be a *symmetric* set; that is, $e \in S$ and $S^{-1} = S$. A function $\phi \colon S \to \mathcal{L}(\mathcal{H})$ is called (partially) positive definite if, for every $g_1,\ldots,g_n \in G$ such that $g_i^{-1}g_j \in S$ for all $i,j=1,\ldots,n$, $\{\phi(g_i^{-1}g_j\}_{i,j=1}^n$ is a positive semidefinite operator matrix. Extensions of positive definite functions on groups have a long history, starting with the Trigonometric Moment Problem of Carathéodory and Fejér and Krein's Extension Theorem. Recently, it has been proved in [1] that every positive definite operator-valued function on a symmetric interval in an ordered abelian group can be extended to a positive definite function on the whole group. By different techniques, the same extension property was shown to be true in [3] for functions defined on words of length $\leq m$ in the free group with n generators. In this paper, we extend the result to a class of subsets of amenable groups that satisfy a certain combinatorial condition. The result turns out to be more general than the main result in [1], and it is obtained by much simpler means. Our main result was also influenced by [5], where a version of Nehari's Problem was solved for operator functions on totally ordered amenable groups. Let G be a locally compact group. A right invariant mean m on G is a state on $L^{\infty}(G)$ that satisfies $$m(f) = m(f_x)$$ for all $x \in G$, where $f_x(y) = f(yx)$. In case there exists a right invariant mean on G, G is called *amenable*. We will occasionally write $m^x(f(x))$ for m(f). There exist many other equivalent characterizations of amenability [4]. For graph theoretical notions, we refer the reader to [7]. By a *graph* we mean a pair G = (V, E) in which V is a set called the *vertex set* and E is a symmetric nonreflexive Received by the editors January 14, 2008. Published electronically August 3, 2010. This work was partially supported by NSF Grant 12-21-11220-N65 and by Grant 2-Cex06-11-34/2006 of the Romanian Government. A visit of the first author to Bucharest was supported by SOFTWIN. AMS subject classification: **43A35**, 47A57, 20E05. binary relation on V, called the *edge set*. We consider in general the vertex set to be infinite. A graph is called *chordal* if every finite simple cycle $[v_1, v_2, \ldots, v_n, v_1]$ in E with $n \ge 4$ contains a chord, *i.e.*, an edge connecting two nonconsecutive vertices of the cycle. Chordal graphs play an important role in the extension theory of positive definite matrices ([8, 10]). Let *G* be a group. If $S \subset G$ is symmetric, we define the *Cayley graph* of *G* with respect to *S* (denoted $\Gamma(G, S)$) as the graph whose vertices are the elements of *G*, while $\{x, y\}$ is an edge if and only if $x^{-1}y \in S$. ### 2 The Main Result The basic result of the paper is the following. **Theorem 2.1** Suppose G is amenable, and $S \subset G$. If $\Gamma(G, S)$ is chordal, then any positive definite function ϕ on S admits a positive definite extension Φ on G. **Proof** Consider the partially positive semidefinite kernel $k: G \times G \to \mathcal{L}(\mathcal{H})$, defined only for pairs (x, y) for which $x^{-1}y \in S$, by the formula $$k(x, y) = \phi(x^{-1}y).$$ Since the pattern of specified values for this kernel is chordal by assumption, it follows from [10] that k can be extended to a positive semidefinite kernel $K: G \times G \to \mathcal{L}(\mathcal{H})$. Note that K(x, y) has no reason to depend only on $x^{-1}y$. For any $x, y \in G$, the operator matrix $$\begin{pmatrix} \phi(e) & K(x,y) \\ K(x,y)^* & \phi(e) \end{pmatrix}$$ is positive semidefinite, whence it follows that $K(x, y)^*K(x, y) \le \phi(e)^2$. In particular, all operators $K(x, y), x, y \in G$, are bounded by a common constant. Fix then $\xi, \eta \in \mathcal{H}$, and $x \in G$. The function $F_{x;\xi,\eta} \colon G \to \mathbb{C}$, defined by $$F_{x;\xi,\eta}(y) = \langle K(yx,y)\xi,\eta\rangle$$ is in $L^{\infty}(G)$. Define then $\Phi \colon G \to \mathcal{L}(\mathcal{H})$ by $\langle \Phi(x)\xi, \eta \rangle = m(F_{x;\xi,\eta})$. We claim that Φ is a positive definite function. Indeed, take arbitrary vectors $\xi_1, \dots, \xi_n \in \mathcal{H}$. We have $$\sum_{i,j=1}^{n} \langle \Phi(g_i^{-1}g_j)\xi_i, \xi_j \rangle = \sum_{i,j=1}^{n} m(F_{g_i^{-1}g_j;\xi_i,\xi_j}) = \sum_{i,j=1}^{n} m^{\gamma} \left(\langle K(yg_i^{-1}g_j, y)\xi_i, \xi_j \rangle \right).$$ Consider one of the terms in the last sum; the mean m is applied to the function $y \mapsto \langle K(yg_i^{-1}g_j, y)\xi_i, \xi_j \rangle$. The right invariance of m implies that we may apply the change of variable $z = yg_i^{-1}$, $y = zg_i$, and thus $$m^{y}\left(\langle K(yg_{i}^{-1}g_{j},y)\xi_{i},\xi_{j}\rangle\right)=m^{z}\left(\langle K(zg_{j},g_{i}z)\xi_{i},\xi_{j}\rangle\right).$$ Therefore $$\sum_{i,j=1}^{n} \langle \Phi(g_i^{-1}g_j)\xi_i, \xi_j \rangle = \sum_{i,j=1}^{n} m(\langle K(zg_j, g_iz)\xi_i, \xi_j \rangle) = m(\sum_{i,j=1}^{n} \langle K(zg_j, g_iz)\xi_i, \xi_j \rangle).$$ But the positivity of *K* implies that, for each $z \in G$, $$\sum_{i,j=1}^{n} \langle K(zg_j, g_i z) \xi_i, \xi_j \rangle \ge 0.$$ Since m is a positive functional, it follows that Φ is indeed positive definite. On the other hand, for $x \in S$, the function $F_{x,\xi,\eta}$ is constant, equal to $\langle \phi(x)\xi, \eta \rangle$. Therefore, Φ is indeed the desired extension of ϕ . **Remark 2.2** The chordality of $\Gamma(G, S)$ is equivalent to the fact that for every finite cycle $[g_1, \ldots, g_n, g_1]$, $n \ge 4$, at least one $\{g_i, g_{i+2}\}$ (with $g_{n+1} = g_1$ and $g_{n+2} = g_2$) is an edge. Setting $\xi_k = g_k g_{k+1}^{-1}$, the condition is equivalent to $\xi_1, \ldots, \xi_n \in S$, $\xi_1 \xi_2 \cdots \xi_n = e$, $n \ge 4$, implying that there exist $i = 1, \ldots, m$ such that $\xi_i \xi_{i+1} \in S$ (here $\xi_{n+1} = \xi_1$). **Remark 2.3** Let $\Lambda \subset G$ be such that $e \in \Lambda$, and e cannot be written as a product of elements in Λ different from e, and let $S = \Lambda \Lambda^{-1}$. Assume we have that $S = \Lambda \cup \Lambda^{-1}$. Then $\xi_1 \xi_2 \cdots \xi_n = e$, with $\xi_1, \ldots, \xi_n \in S$, implies the existence of k such that $\xi_k \in \Lambda$ and $\xi_{k+1} \in \Lambda^{-1}$, thus $\xi_k \xi_{k+1} \in S$, implying $\Gamma(G, S)$ is chordal. We conjecture the following reciprocal of Theorem 2.1. **Conjecture 2.4** For every $S \subset G$ such that $\Gamma(G, S)$ is not chordal, there exists a positive definite function $\phi \colon S \to \mathcal{L}(\mathcal{H})$ that does admit a positive definite extension to G. The following examples strongly suggest that the above conjecture has a positive answer. Let $G = \mathbb{Z}^2$ and let $S = \mathbb{Z}^2 - \{(1,1),(-1,-1)\}$, the minimal number of points that can be excluded. Then (0,0), (0,1), (1,1), and (-1,0) form a chordless cycle of length 4 in $\Gamma(G,S)$. Define $\phi \colon S \to M_2(\mathbb{C})$ by $$\phi((0,0)) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \phi((1,0)) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \phi((0,1)) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$ and $\phi(g') = 0$, for every $g' \in S - \{(0,0), (1,0), (-1,0), (0,1), (0,-1)\}$. Let K be a maximal clique of $\Gamma(G,S)$. We may assume that $(0,0) \in K$, in which case $(1,1) \notin K$. This fact implies that the matrix $\{\phi(x-y)\}_{x,y\in K}$ can be written as a direct sum of copies of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, so ϕ is positive definite. Assume that ϕ admits a positive definite extension Φ to G. Then, since $$\begin{pmatrix} \Phi((0,0)) & \Phi((1,0))^* & \Phi((1,1))^* \\ \Phi((1,0)) & \Phi((0,0)) & \Phi((0,1))^* \\ \Phi((1,1)) & \Phi((0,1)) & \Phi((0,0)) \end{pmatrix} \ge 0$$ and $$\begin{pmatrix} \Phi((0,0)) & \Phi((0,1))^* & \Phi((1,1))^* \\ \Phi((0,1)) & \Phi((0,0)) & \Phi((1,0))^* \\ \Phi((1,1)) & \Phi((1,0)) & \Phi((0,0)) \end{pmatrix} \geq 0,$$ it follows that $\Phi((1,1))=\left(\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right)$. Since $$\begin{pmatrix} \Phi((0,0)) & \Phi((1,1))^* & \Phi((2,1)))^* \\ \Phi((1,1)) & \Phi((0,0)) & \Phi((1,1))^* \\ \Phi((2,1)) & \Phi((1,1)) & \Phi((0,0)) \end{pmatrix} \ge 0$$ the (2,1) entry of $\Phi((2,1))$ equals 1, contradicting the fact that $\Phi((2,1)) = \phi((2,1)) = 0$. This implies that ϕ does not admit a positive definite extension to \mathbb{Z}^2 . Let $\Lambda \subset \mathbb{Z}^d$ be a finite set. By the definition introduced in [9], a sequence $\{c_k\}_{k\in\Lambda-\Lambda}$ of complex numbers is called *positive definite with respect to* Λ if the matrix $\{c_{k-l}\}_{k,l\in\Lambda}$ is positive definite. This definition is weaker than the one used in this paper, since it requires only a single matrix built on the given data to be positive definite. A finite subset $\Lambda \subset \mathbb{Z}^d$ is said to posses the *extension property* if every sequence $\{c_k\}_{k\in\Lambda-\Lambda}$ admits a positive extension to \mathbb{Z}^d . A finite subset $S \subset \mathbb{Z}$ has the extension property if and only if it is an arithmetic progression [6]. Let $R(0,n) = \{0\} \times \{0,1,\ldots,n\}, R(1,n) = \{0,1\} \times \{0,1,\ldots,n\}, \text{ and } S(1,n) = R(1,n) - \{(1,n)\}.$ The following is the main result of [2]. **Theorem 2.5** A finite $\Lambda \subset \mathbb{Z}^2$ has the extension property if and only if Λ is the translation by a vector in \mathbb{Z}^2 of a set isomorphic to one of the following sets: R(0, n), R(1, n), or S(1, n), $n \geq 0$. Let $\Lambda = R(1, n)$ when $S = \Lambda - \Lambda = \{-1, 0, 1\} \times \{-n, \dots, 0, \dots, n\}$. By the previous theorem, every scalar positive definite sequence with respect to Λ on S admits a positive definite extension to \mathbb{Z}^2 . The points (0, 0), (-1, n), (0, 2n), and (1, n) form a chordless cycle in $\Gamma(\mathbb{Z}^2, S)$, and for every Hilbert space \mathcal{H} with dim $\mathcal{H} \geq 2$, there exists a sequence $\{C_k\}_{k\in S}$ of operators on \mathcal{H} that is positive definite (in the stronger sense), but does not admit a positive definite extension to \mathbb{Z}^2 . The same is true for the sets S(1, n) as well. We will present next the details concerning the different behaviour of scalar and operator sequences for a subset of \mathbb{Z}^2 not covered by Theorem 2.5. Let $G = \mathbb{Z}^2$, $m, n \in \mathbb{N}$, $m, n \ge 2$, and let S consist of the points (k, 0), $|k| \le m$ together with the points (0, l), $|l| \le n$. Let $\{C_{kl}\}_{(k,l) \in S}$ be a positive definite sequence of operators. The positive definiteness condition is equivalent to (2.1) $$\begin{pmatrix} C_{00} & C_{10}^* & \cdots & C_{m0}^* \\ C_{10} & C_{00} & \cdots & C_{m-1,0}^* \\ \vdots & \ddots & \ddots & \vdots \\ C_{m0} & C_{m-1,0} & \cdots & C_{00} \end{pmatrix} \geq 0$$ and (2.2) $$\begin{pmatrix} C_{00} & C_{01}^* & \cdots & C_{0n}^* \\ C_{01} & C_{00} & \cdots & C_{0,n-1}^* \\ \vdots & \ddots & \ddots & \vdots \\ C_{0n} & C_{0,n-1} & \cdots & C_{00} \end{pmatrix} \geq 0.$$ In case $\{c_{kl}\}_{(k,l)\in S}$ is the sequence defined by $c_{k0}=e^{ik\alpha}$ and $c_{0l}=e^{il\beta}$, the matrices in (2.1) are rank 1 positive definite Toeplitz matrices, and $c_{kl}=e^{ik\alpha}e^{il\beta}$, $(k,l)\in\mathbb{Z}^2$ is a positive definite extension to \mathbb{Z}^2 of the initial sequence. It is a classical result of Carathéodory and Fejér that every positive definite Toeplitz matrix is a positive linear combination of rank 1 positive definite Toeplitz matrices. This implies that the positive semidefiniteness of the matrices in (2.1) guarantees the existence of a positive definite extension to \mathbb{Z}^2 of every positive definite sequence $\{c_{kl}\}_{(k,l)\in S}$ of complex numbers. Let U_1 and U_2 be two noncommuting unitary operators on a Hilbert space \mathcal{H} with $\dim \mathcal{H} \geq 2$. Defining $C_{00} = I$, $C_{k0} = U_1^k$, and $C_{0l} = U_2^l$, the matrices in (2.1) and (2.2) are positive semidefinite. Assuming the sequence $\{C_{kl}\}_{(k,l)\in S}$ admits a positive definite extension to \mathbb{Z}^2 , the operator C_{11} has to simultaneously verify the conditions $$\begin{pmatrix} C_{00} & C_{01}^* & C_{11}^* \\ C_{01} & C_{00} & C_{10}^* \\ C_{11} & C_{10} & C_{00} \end{pmatrix} \ge 0 \quad \text{and} \quad \begin{pmatrix} C_{00} & C_{10}^* & C_{11}^* \\ C_{10} & C_{00} & C_{01}^* \\ C_{11} & C_{01} & C_{00} \end{pmatrix} \ge 0.$$ For our data, the above conditions are equivalent to $C_{11} = U_2U_1$, respectively $C_{11} = U_2U_1$, which is false, since U_1 and U_2 do not commute. Thus $\{C_{kl}\}_{(k,l)\in S}$ does not admit any positive definite extension to \mathbb{Z}^2 . **Proposition 2.6** Let $0 \in S = -S$ be a finite subset of \mathbb{Z}^2 such that $\Gamma(\mathbb{Z}^2, S)$ is chordal and S spans \mathbb{Z}^2 . Then S is infinite. **Proof** Suppose $S \subset \mathbb{Z}^2$ is finite and $\Gamma(\mathbb{Z}^2, S)$ is chordal. There are a finite number of directions among the elements of S; suppose the elements of maximum length in each of these directions, together with their inverses, are enumerated s_1, s_2, \ldots, s_{2n} in the order of their arguments. For a positive integer N, consider the cycle $[x_0, x_2, \dots, x_{2nN-1}, x_0]$ in $\Gamma(\mathbb{Z}^2, S)$, defined as follows: $x_0 = 0$, $x_k - x_{k-1} = s_j$ if $(j-1)N < k \le jN$. We claim that, if N sufficiently large, this is a cycle with no chords. Indeed, suppose $\{x_k, x_l\}$ is an edge with $l - k \ge 2$. The points x_0, \dots, x_{2nN-1} form a polygon P with 2n sides A_j parallel to s_j respectively, each side containing N points x_k . We have the following possibilities: - If x_k and x_l are on the same side A_j of P, then $x_l x_k = (l k)s_j$ would be an element of S colinear with s_j , but longer, which is not possible. - If $x_k \in A_j$, $x_l \in A_{j+1}$, then the argument of $x_l x_k$ would be strictly between the arguments of s_i and s_{j+1} : again a contradiction. - Finally, we may chose N sufficiently large such that, if x_k and x_l are on nonconsecutive sides of P, then $x_l x_k$ has length larger than any element of S. So the cycle obtained has no chords, contrary to the chordality assumption in the hypothesis. Thus *S* must be infinite. **Remark 2.7** If Conjecture 2.4 is true, then Lemma 2.6 would imply that for every finite $S \subset \mathbb{Z}^2$ such that $0 \in S = -S$ and S spans \mathbb{Z}^2 , there exists a positive definite function on S that does not admit a positive definite extension to \mathbb{Z}^2 . # 3 Applications ## 3.1 Ordered Groups and Related Questions Suppose G is a (left or right) totally ordered group. Take $a \in G$, $a \ge e$, and define $\Lambda = [e, a)$, and $S = (a^{-1}, a)$. Then e cannot be written as a product of elements in Λ and $S = \Lambda\Lambda^{-1} = \Lambda \cup \Lambda^{-1}$. Then, by Remark 2.3, the graph $\Gamma(G, S)$ is chordal. Thus, in an amenable totally ordered group, any positive definite function defined on a symmetric interval can be extended to the whole group. The same argument yields the following more general result. **Proposition 3.1** Suppose G is amenable, while G' is a totally ordered group, with unit e'. Let $g: G \to G'$ be a group morphism. Take $a' \in G'$, $a' \ge e'$, and $S = g^{-1}((a'^{-1}, a'))$. Then any positive definite operator function on S can be extended to a positive definite function on the whole group. The above proposition has the following consequence that represents the main result of [1]. The proof derived here is much simpler. **Corollary 3.2** Let G_1 be a totally ordered abelian group, $a \in G_1$, a > 0, and let G_2 be an abelian group. Then any positive definite operator function on $(-a, a) \times G_2$ can be extended to a positive definite function on $G_1 \times G_2$. Several well-known results, such as the Classical Trigonometric Moment Problem and Krein's Extension Theorem, are particular cases of Corollary 3.2. Another simple application of Corollary 3.2 is the following. Take $\alpha, \beta \in \mathbb{R}$, and define $g \colon \mathbb{Z}^2 \to \mathbb{R}$ by $g(m,n) = \alpha m + \beta n$. Thus, all positive definite functions defined on the strip $|\alpha m + \beta n| < a$ can be extended to a positive definite function on \mathbb{Z}^2 . A more interesting example for Proposition 3.1 is given by the Heisenberg group *H* over the integers. This is the group of matrices of the form $$X_{m,n,p} = \begin{pmatrix} 1 & m & p \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$ for $m, n, p \in \mathbb{Z}$. It is an amenable group, and for any $\alpha, \beta \in \mathbb{R}$, we can consider the morphism $g \colon H \to \mathbb{R}$, given by $g(X_{m,n,p}) = \alpha m + \beta n$. Thus any positive definite function defined on the set $\{X_{m,n,p} : |\alpha m + \beta n| < a\}$ can be extended to a positive definite function on H. ## 3.2 Trees and Cayley Graphs For this application, we need some supplementary preliminaries. If $\Gamma = (V, E)$ is a graph, the distance d(v, w) between two vertices is defined as $$d(v, w) = \min\{n : \exists v = v_0, v_1, \dots, v_n = w, \text{ such that } \{v_i, v_{i+1}\} \in E(\Gamma)\}.$$ We define the graph $\hat{\Gamma}_n$ that has the same vertices as Γ , while $\{v, w\}$ is an edge of $\hat{\Gamma}_n$ if and only if $d(v, w) \leq n$. A graph without any simple cycle is called a *tree*. If x and y are two distinct vertices of a tree, then P(x, y) denotes the unique simple path joining x and y. **Lemma 3.3** If Γ is a tree, then $\hat{\Gamma}_n$ is chordal for any $n \geq 1$. **Proof** Take a minimal cycle C of length > 3 in $\hat{\Gamma}_n$. Suppose $x, y \in C$ maximize the distance between any two points of C. If $d(x, y) \leq n$, then C is a clique, which is a contradiction. Thus x and y are not adjacent in $\hat{\Gamma}_n$. Suppose v, w are the two vertices of $\hat{\Gamma}_n$ adjacent to x in the cycle C. Now P(x, v) has to pass through a vertex that is on P(x, y), since otherwise the union of these two paths would be the minimal path connecting y and v, and it would have length strictly larger than d(x, y). Denote by v_0 the element of $P(x, v) \cap P(x, y)$ that has the largest distance to x. Since $$d(y, v) = d(y, v_0) + d(v_0, v) < d(y, x) = d(y, v_0) + d(v_0, x),$$ it follows that $d(v_0, v) \leq d(v_0, x)$. Similarly, if w_0 is the element of $P(x, w) \cap P(x, y)$ that has the largest distance to x, it follows that $d(w_0, w) \le d(w_0, x)$. Suppose now that $d(v_0, x) \leq d(w_0, x)$. Then $$d(v, w) = d(v, v_0) + d(v_0, w_0) + d(w_0, w)$$ $$< d(x, v_0) + d(v_0, w_0) + d(w_0, w) = d(x, w) < n,$$ since w is adjacent to x. Then $(v, w) \in E$, and C is not minimal: a contradiction. Thus $\hat{\Gamma}_n$ is chordal. It is worth mentioning that Γ chordal does not necessarily imply $\hat{\Gamma}_n$ chordal. For instance, the graph Γ in Figure 1 is chordal, but $\hat{\Gamma}_2$ is not, since it has $[\nu_1, \nu_3, \nu_5, \nu_7]$ as a 4-minimal cycle. Suppose now that the group *G* is finitely generated by a set *A* with $A = A^{-1}$. The length of an element $x \in G$ is defined by $$l(x) = \min\{n : x = b_1 \cdots b_n, b_i \in A\};$$ it is equal to the distance between x and e in the Cayley graph $\Gamma(G, A)$. If $\Gamma(G, A)$ is a tree, then Lemma 3.3 and Theorem 2.1 yield the following result. **Proposition 3.4** Suppose that G is amenable and $\Gamma(G, A)$ is a tree. If $S = \{x \in \gamma : l(x) \le n\}$, then any positive definite function on S can be extended to the whole of G. Figure 1 The proposition applies to the free product $G = \mathbb{Z}_2 \star \mathbb{Z}_2$. It is easily seen that, if A is formed by the two generators, then $\Gamma(G, A)$ is order isomorphic to \mathbb{Z} , and is thus a tree. So any positive definite function defined on words of length smaller than or equal to n extends to the whole group. Unfortunately, there seem not to be many amenable graphs whose Cayley graph with respect to some set of generators is a tree. Note first the following simple lemma. **Lemma 3.5** Suppose G is a group, $A \subset G$ is a set of generators, and $\Gamma(G, A)$ is a tree. - (i) For every $x \in G$, there is a unique way of writing $x = a_1 \cdots a_n$, with $a_i \in A$, and $a_i a_{i+1} \neq e$; moreover, l(x) = n. (We call a_1, a_2, \ldots, a_n the letters of x.) - (ii) Take $x \in G$, with a_x the first letter of x. If $y \in G$, and the last letter of y is not a_x^{-1} , then l(yx) = l(x) + l(y). We can then obtain the following proposition. **Proposition 3.6** Suppose that G is a discrete amenable group, and $A \subset G$ is a subset of generators, such that $\Gamma(G, A)$ is a tree. Then either $G = \mathbb{Z}$, or $G = \mathbb{Z}_2 \star \mathbb{Z}_2$. **Proof** Note first that *G* cannot be finite, since then we may take an element $a \in A$ with finite order *p*, and construct the cycle $[e, a, a^2, \ldots, a^{p-1}]$ in $\Gamma(G, A)$, which has no chords. One of the alternate definitions of an amenable group is the Følner condition, which, in the case of discrete groups, can be stated as follows: given any finite set $F \subset G$ and any $\epsilon > 0$, there exists a finite subset $K \subset G$, such that $$\frac{\operatorname{card}(K \triangle FK)}{\operatorname{card} K} < \epsilon$$ $(K \triangle FK)$ is the symmetric difference). Using a translation, if necessary, we may assume $e \in K$. Denote also $S_n = \{x \in G : l(x) = n\}$. Suppose that $x \in G$; Lemma 3.5 implies that there is at most one element $a \in A$ with the property that $l(ax) \neq l(x) + 1$ (otherwise there would exist a cycle in $\Gamma(G, A)$). Therefore, if $x \in S_n$, there is at most one $a \in A$ such that $ax \notin S_{n+1}$. Moreover, if $x, y \in S_n$, $x \neq y$, $a, b \in A$ with $ax, by \in S_{n+1}$, then $ax \neq by$ (otherwise we obtain again a cycle in $\Gamma(G, A)$). It follows then that, if *A* has at least 3 elements, then, for any finite set $E \subset S_n$, $AE \cap S_{n+1}$ has at least twice more elements than *E*. Therefore (3.1) $$\operatorname{card} K = \sum_{n} \operatorname{card}(K \cap S_n) \le 2 \sum_{n} \operatorname{card}(AK \cap S_{n+1}) \le 2 \operatorname{card}(AK).$$ Thus $card(K \triangle AK) \ge card K$, and the Følner condition cannot be satisfied. Therefore A has at most two elements. If it has only one element, then, being infinite, it is \mathbb{Z} . Suppose it has two elements. If $a^2 \neq e$ and $x \in G$, then, applying Lemma 3.5 again, we have that $l(a'x) \neq l(x) + 2$ for at most one element a' in the set $A' = \{a^2, ab, ba\}$, and for $x, y \in S_n$, $x \neq y$, $a', b' \in A'$ with $a'x, b'y \in S_{n+2}$, we have $a'x \neq b'y$. Therefore, for any finite set $E \subset S_n$, $AE \cap S_{n+2}$ has at least twice more elements than E, and we obtain (3.1) with S_{n+1} replaced by S_{n+2} . Thus, again $\operatorname{card}(K \triangle AK) \geq \operatorname{card} K$, and the Følner condition cannot be satisfied. Since a similar argument applies in case $b^2 \neq e$, the only remaining possibility is $a^2 = b^2 = e$. Now if either ab or ba would have finite order, this would produce a cycle in $\Gamma(G, A)$. Thus, they are both of infinite order, and it follows easily that G is isomorphic to $\mathbb{Z}_2 \star \mathbb{Z}_2$. #### References - M. Bakonyi, The extension of positive definite operator-valued functions defined on a symmetric interval of an ordered group. Proc. Amer. Math. Soc. 130(2002), no. 5, 1401–1406. doi:10.1090/S0002-9939-01-06288-8 - [2] M. Bakonyi and G. Nævdal, *The finite subsets of Z*² *having the extension property.* J. London Math. Soc. **62**(2000), no. 3, 904−916. doi:10.1112/S0024610700001496 - [3] M. Bakonyi and D. Timotin, Extensions of positive definite functions on free groups. J. Funct. Anal. 246(2007), no. 1, 31–49. doi:10.1016/j.jfa.2007.01.015 - [4] J. Dixmier, C*-algebras. North-Holland Mathematical Library, 15, North Holland, Amsterdam-New York, 1977. - [5] R. Exel, Hankel matrices over right ordered amenable groups. Canad. Math. Bull. 33(1990), no. 4, 404–415. - [6] J.-P. Gabardo, Trigonometric moment problems for arbitrary finite subsets of \mathbb{Z}^n . Trans. Amer. Math. Soc., **350**(1998), no. 11, 4473–4498. doi:10.1090/S0002-9947-98-02091-1 - [7] M. C. Golumbic, Algorithmic graph theory and perfect graphs. Academic Press, New York, 1980. - [8] R. Grone, C. R. Johnson, E. M. de Sá, and H. Wolkowicz, Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58(1984), 109–125. doi:10.1016/0024-3795(84)90207-6 - [9] W. Rudin, The extension problem for positive-definite functions. Illinois J. Math. 7(1963), 532–539. - [10] D. Timotin, Completions of matrices and the commutant lifting theorem. J. Funct. Anal. 104(1992), no. 2, 291–298. doi:10.1016/0022-1236(92)90002-Z Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, U.S.A e-mail: mbakonyi@gsu.edu Institute of Mathematics of the Romanian Academy, Bucharest, Romania e-mail: Dan.Timotin@imar.ro