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Extensions of Positive Definite Functions on
Amenable Groups

M. Bakonyi and D. Timotin

Abstract. Let S be a subset of an amenable group G such that e € Sand S~! = S. The main result
of this paper states that if the Cayley graph of G with respect to S has a certain combinatorial prop-
erty, then every positive definite operator-valued function on S can be extended to a positive definite
function on G. Several known extension results are obtained as corollaries. New applications are also
presented.

1 Introduction

Let G be a group. A function ®: G — L(H) is called positive definite if, for ev-
erygi,...,g: € G, the operator matrix {®(g; ' 8j}! 1 is positive semidefinite. Let
S C G be a symmetric set; thatis, e € Sand S™! = S. A function ¢: S — L(H) is
called (partially) positive definite if, for every gy, ..., g, € G such that g;' gj € Sfor
alli,j=1,...,n {6(g 'g}! j=1 s a positive semidefinite operator matrix. Exten-
sions of positive definite functions on groups have a long history, starting with the
Trigonometric Moment Problem of Carathéodory and Fejér and Krein’s Extension
Theorem. Recently, it has been proved in [1] that every positive definite operator-
valued function on a symmetric interval in an ordered abelian group can be extended
to a positive definite function on the whole group. By different techniques, the same
extension property was shown to be true in [3] for functions defined on words of
length < m in the free group with n generators. In this paper, we extend the result to
a class of subsets of amenable groups that satisfy a certain combinatorial condition.
The result turns out to be more general than the main result in [1], and it is obtained
by much simpler means. Our main result was also influenced by [5], where a version
of Nehari’s Problem was solved for operator functions on totally ordered amenable
groups.

Let G be a locally compact group. A right invariant mean m on G is a state on
L*>(G) that satisfies

m(f) = m(fy)

for all x € G, where f.(y) = f(yx). In case there exists a right invariant mean on
G, G is called amenable. We will occasionally write m*(f(x)) for m(f). There exist
many other equivalent characterizations of amenability [4].

For graph theoretical notions, we refer the reader to [7]. By a graph we mean a pair
G = (V,E) in which V is a set called the vertex set and E is a symmetric nonreflexive
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binary relation on V, called the edge set. We consider in general the vertex set to be
infinite. A graph is called chordal if every finite simple cycle [vi,v,,...,v,,»1] In E
with # > 4 contains a chord, i.e., an edge connecting two nonconsecutive vertices of
the cycle. Chordal graphs play an important role in the extension theory of positive
definite matrices ([8,10]).

Let G be a group. If S C G is symmetric, we define the Cayley graph of G with
respect to S (denoted I'(G, S)) as the graph whose vertices are the elements of G,
while {x, y} is an edge if and only if x ™'y € S.

2 The Main Result
The basic result of the paper is the following.

Theorem 2.1 Suppose G is amenable, and S C G. If I'(G,S) is chordal, then any
positive definite function ¢ on S admits a positive definite extension ® on G.

Proof Consider the partially positive semidefinite kernel k: Gx G — L(J{), defined
only for pairs (x, y) for which x~'y € S, by the formula

k(x,7) = o(x""y).

Since the pattern of specified values for this kernel is chordal by assumption, it follows
from [10] that k can be extended to a positive semidefinite kernel K: Gx G — L(H).
Note that K(x, y) has no reason to depend only on x~'y.

For any x, y € G, the operator matrix

((b(e) K(x,y)>
K(x,y)*  ¢le)

is positive semidefinite, whence it follows that K (x, y)*K(x, y) < ¢(e)?. In particular,
all operators K(x, y), x, y € G, are bounded by a common constant.
Fix then £, 1 € H, and x € G. The function F,¢ ,: G — C, defined by

Fx;E.n(}’) - <K(yxv )’)5777>

is in L°°(G). Define then ®: G — L(H) by (®(x)&, 1) = m(Fye ).
We claim that ® is a positive definite function. Indeed, take arbitrary vectors
&, ...,& € H. We have

n n n

DB Gy =D mF e )= > m ((Kyg g 1)) -

i,j=1 i,j=1 i,j=1

Consider one of the terms in the last sum; the mean m is applied to the function
y — (K(yg'gj,y)&, ;). The right invariance of m implies that we may apply the
change of variable z = yg; ', y = zg;, and thus

m’ ((K(yg 'gj, )&, &) = m* ((K(zgj,82)&,€))) -
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Therefore

n n n

S (@G )6 €)= S m((Keg; 596, 67)) = m( D (Kzgj, 526,63}

i,j=1 i,j=1 i,j=1

But the positivity of K implies that, for each z € G,

n

Z(K(nggﬂ)fi,fj) > 0.

ij=1

Since m is a positive functional, it follows that ® is indeed positive definite. On the
other hand, for x € S, the function Fy , is constant, equal to (¢(x)§, 7). Therefore,
® is indeed the desired extension of ¢. [ |

Remark 2.2 The chordality of I'(G, S) is equivalent to the fact that for every finite
cycle [g1,...,gn, 1], n > 4, atleast one {g;, gi+2 } (with g,y; = g1 and g,4» = &) isan
edge. Setting & = gkg,;rll, the condition is equivalent to &y, ...,,&, € $,£,& -+ &, =
e, n > 4, implying that there existi = 1, ..., m such that &,y € S (here &,y = &).

Remark 2.3 Let A C Gbesuchthate € A, and e cannot be written as a product of
elements in A different from e, and let S = AA~'. Assume we have that S = AUA L.
Then £,&, - -+ &, = e, with &), ..., &, € S, implies the existence of k such that & € A
and &41 € AL thus &y € S, implying T'(G, S) is chordal.

We conjecture the following reciprocal of Theorem[2.1]

Conjecture 2.4 ForeveryS C Gsuchthat'(G, S) is not chordal, there exists a positive
definite function ¢: S — L(IH) that does admit a positive definite extension to G.

The following examples strongly suggest that the above conjecture has a positive
answer. Let G = 7% and let S = 7% — {(1,1),(—1,—1)}, the minimal number of
points that can be excluded. Then (0,0), (0,1), 1,1), and (—1,0) form a chordless
cycle of length 4 in I'(G, S). Define ¢: S — M,(C) by

¢((0,0)):((1) ‘f) ¢<<1,o>)=((1’ 8) ¢<<o,1)>=(8 é)

and ¢(g’) = 0, for every g’ € S — {(0,0),(1,0),(—1,0),(0,1),(0,—1)}. Let Kbe a
maximal clique of I'(G, S). We may assume that (0,0) € K, in which case (1,1) € K.
This fact implies that the matrix {¢(x — y)}« ek can be written as a direct sum of
copiesof (§9),and (11),s0 ¢ is positive definite. Assume that ¢ admits a positive
definite extension ® to G. Then, since

®((0,0)) @((1,0)" @((1,1))"

®((1,0))  @((0,0)) @((0,1))* ] =0
®((1,1))  @((0,1))  ©((0,0))
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and
®((0,0)) @®((0,1))* @((1,1))"
®((0,1))  @((0,0)) @((1,0)" | >0,
®((1,1))  @((1,0)) @((0,0))

it follows that ®((1,1)) = ( 0 ?) . Since

®((0,0)) @((1,1))" @((2,1)))"
®((1,1))  @©((0,0)) @((1,1)" | =0
®((2,1)) @((1,1))  ©((0,0))

the (2,1) entry of ®((2,1)) equals 1, contradicting the fact that ®((2,1)) =
¢((2,1)) = 0. This implies that ¢ does not admit a positive definite extension to
72,

Let A C 79 be a finite set. By the definition introduced in [9], a sequence
{ck}ren—n of complex numbers is called positive definite with respect to A if the ma-
trix {ck—;}r1ea is positive definite. This definition is weaker than the one used in
this paper, since it requires only a single matrix built on the given data to be posi-
tive definite. A finite subset A C 7% is said to posses the extension property if every
sequence {cktkea—a admits a positive extension to 74. A finite subset S C 7 has
the extension property if and only if it is an arithmetic progression [6]. Let R(0, n) =
{0} x{0,1,...,n},R(1,n) = {0,1} x{0,1,...,n},and S(1,n) = R(1,n)—{(1,n)}.
The following is the main result of [2].

Theorem 2.5 A finite A C 72 has the extension property if and only if A is the trans-
lation by a vector in 7* of a set isomorphic to one of the following sets: R(0, n), R(1, n),
orS(1,n), n > 0.

Let A = R(1,n) when S = A — A = {-1,0,1} x {—n,...,0,...,n}. By the
previous theorem, every scalar positive definite sequence with respect to A on S ad-
mits a positive definite extension to 72. The points (0, 0), (—1, n), (0,2#), and (1, 1)
form a chordless cycle in T'(7%,S), and for every Hilbert space H with dim 3 > 2,
there exists a sequence {Cy}res of operators on J that is positive definite (in the
stronger sense), but does not admit a positive definite extension to 72. The same is
true for the sets S(1, n) as well. We will present next the details concerning the dif-
ferent behaviour of scalar and operator sequences for a subset of 7 not covered by
Theorem 2.5

Let G = 72, m,n € N, m,n > 2, and let S consist of the points (k,0), [k| < m
together with the points (0, 1), |/| < n. Let {Cu }kes be a positive definite sequence
of operators. The positive definiteness condition is equivalent to

Co Cih -+ Chu
Coo Coo - Ch_ip

(2.1) ) ) ) . >0
Cuwo Cm—1o - Coo
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and
C00 C[)kl C(Tn
Co  Co - Cguy

(2.2) . . . i > 0.
Con Con-1 Coo

In case {cu }pes is the sequence defined by ¢y = ek and ¢y = €%, the matrices
in are rank 1 positive definite Toeplitz matrices, and ¢y = e*e%, (k,1) € 7?
is a positive definite extension to 7 of the initial sequence. It is a classical result of
Carathéodory and Fejér that every positive definite Toeplitz matrix is a positive lin-
ear combination of rank 1 positive definite Toeplitz matrices. This implies that the
positive semidefiniteness of the matrices in (2.1 guarantees the existence of a posi-
tive definite extension to 77 of every positive definite sequence {cx } (x1yes of complex
numbers.

Let U; and U, be two noncommuting unitary operators on a Hilbert space JH with
dimH > 2. Defining Cog = I, Cyp = U{‘, and Cy = Ué, the matrices in (2.I) and
([Z.2) are positive semidefinite. Assuming the sequence {Cy}«nes admits a positive
definite extension to 72, the operator Cy; has to simultaneously verify the conditions

Co Cg Ci Cow Cjy Cp
Coi Coo Ci| >0 and | Cyp Co Ci | >0.
Cu Cu Coo Cii Coi Coo

For our data, the above conditions are equivalent to Cy; = U,Uj, respectively Cy; =
U,U,, which is false, since U; and U, do not commute. Thus {Ci}es does not
admit any positive definite extension to 7>.

Proposition 2.6 Let0 € S = —S be a finite subset of 7> such that T'(7%,S) is chordal
and S spans 7%. Then S is infinite.

Proof Suppose S C 72 is finite and I'(72, S) is chordal. There are a finite number
of directions among the elements of S; suppose the elements of maximum length in

each of these directions, together with their inverses, are enumerated s, s, . . . , S, in
the order of their arguments.
For a positive integer N, consider the cycle [xg, X2, . .., XuN_1,%] in T'(72,5),

defined as follows: xg = 0, x; — xx—; = s;if (j — 1)N < k < jN. We claim that, if N
sufficiently large, this is a cycle with no chords.

Indeed, suppose {x, x;} is an edge with [ — k > 2. The points x, . . . , X2,n—1 form
a polygon P with 21 sides A parallel to s; respectively, each side containing N points
xx. We have the following possibilities:

* If x; and x; are on the same side A; of P, then x; — x; = (I — k)s; would be an
element of S colinear with s;, but longer, which is not possible.

* Ifx; € Aj, x; € Ajyy, then the argument of x; — x; would be strictly between the
arguments of s; and s;,;: again a contradiction.

* Finally, we may chose N sufficiently large such that, if x; and x; are on nonconsec-
utive sides of P, then x; — x; has length larger than any element of S.
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So the cycle obtained has no chords, contrary to the chordality assumption in the
hypothesis. Thus S must be infinite. ]

Remark 2.7 If Conjecture[2.4]is true, then Lemma 2.6l would imply that for every
finite S C 72 such that 0 € S = —S and S spans 72, there exists a positive definite
function on S that does not admit a positive definite extension to 7.

3 Applications
3.1 Ordered Groups and Related Questions

Suppose G is a (left or right) totally ordered group. Take a € G, a > e, and define
A = [e,a),and S = (a~ !, a). Then e cannot be written as a product of elements in
Aand S = AA™! = AU A~'. Then, by Remark 23] the graph I'(G, S) is chordal.
Thus, in an amenable totally ordered group, any positive definite function defined on
a symmetric interval can be extended to the whole group.

The same argument yields the following more general result.

Proposition 3.1 Suppose G is amenable, while G’ is a totally ordered group, with
unit e’. Let g: G — G’ be a group morphism. Takea’ € G',a’ > ¢, and S =
¢ '((a’"',a")). Then any positive definite operator function on S can be extended to a
positive definite function on the whole group.

The above proposition has the following consequence that represents the main
result of [1]. The proof derived here is much simpler.

Corollary 3.2 Let Gy be a totally ordered abelian group, a € Gy, a > 0, and let G, be
an abelian group. Then any positive definite operator function on (—a, a) x G, can be
extended to a positive definite function on Gy X G,.

Several well-known results, such as the Classical Trigonometric Moment Problem
and Krein’s Extension Theorem, are particular cases of Corollary[3.2 Another simple
application of Corollary[32]is the following. Take o, 3 € R, and define g: 7> — R
by g(m,n) = am + On. Thus, all positive definite functions defined on the strip
|am + Bn| < a can be extended to a positive definite function on 72.

A more interesting example for Proposition 3.1]is given by the Heisenberg group
H over the integers. This is the group of matrices of the form

1 m
Xmnp =10 1
0 0

—

for m,n, p € Z. It is an amenable group, and for any «, 3 € R, we can consider the
morphism ¢g: H — R, given by ¢(X,,,,) = am + Bn. Thus any positive definite
function defined on the set {X,, ., : |am + Bn| < a} can be extended to a positive
definite function on H.
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3.2 Trees and Cayley Graphs

For this application, we need some supplementary preliminaries. If I' = (V,E) is a
graph, the distance d(v, w) between two vertices is defined as

d(v,w) = min{n : Iv = vy, v1, ..., v, = w, such that {v;,viy1} € E(I')}.

We define the graph I, that has the same vertices as I, while {v, w} is an edge of T',
if and only if d(v, w) < n.

A graph without any simple cycle is called a tree. If x and y are two distinct vertices
of a tree, then P(x, y) denotes the unique simple path joining x and y.

Lemma 3.3 IfT isa tree, then T, is chordal for any n > 1.

Proof Take a minimal cycle C of length > 3 in I',.. Suppose x, y € C maximize the
distance between any two points of C. If d(x, y) < n, then C is a clique, which is a
contradiction. Thus x and y are not adjacent in T,.. Suppose v, w are the two vertices
of I, adjacent to x in the cycle C. Now P(x,v) has to pass through a vertex that is
on P(x, y), since otherwise the union of these two paths would be the minimal path
connecting y and v, and it would have length strictly larger than d(x, y). Denote by
vo the element of P(x, v) N P(x, y) that has the largest distance to x. Since

d(y,v) = d(y,vo) + d(vo,v) < d(y,x) = d(y, o) + d(v, x),

it follows that d(vy, v) < d(vy, x).

Similarly, if wy is the element of P(x, w) N P(x, y) that has the largest distance to
x, it follows that d(wq, w) < d(wy, x).

Suppose now that d(vp, x) < d(wy, x). Then

d(v,w) = d(v,v) + d(vo, wo) + d(wo, w)
< d(x,vo) +d(vo, wo) + d(wo, w) = d(x,w) < n,
since w is adjacent to x. Then (v,w) € E, and C is not minimal: a contradiction.
Thus I, is chordal. [ |

It is worth mentioning that T’ chordal does not necessarily imply I", chordal. For
instance, the graph I" in Figure[Ilis chordal, but I, is not, since it has [v, , V3, Vs, V7]
as a 4-minimal cycle.

Suppose now that the group G is finitely generated by a set A with A = A~!. The
length of an element x € G is defined by

l(x) =min{n:x=>by---b,, b € A};

it is equal to the distance between x and e in the Cayley graph I'(G, A). If ['(G, A) is a
tree, then Lemma[3.3]and Theorem[2.I]yield the following result.

Proposition 3.4 Suppose that G is amenable and T'(G,A) is a tree. If S = {x € v :
I(x) < n}, then any positive definite function on S can be extended to the whole of G.
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The proposition applies to the free product G = 7, x 7,. It is easily seen that, if A
is formed by the two generators, then I'(G, A) is order isomorphic to Z, and is thus
a tree. So any positive definite function defined on words of length smaller than or
equal to n extends to the whole group.

Unfortunately, there seem not to be many amenable graphs whose Cayley graph
with respect to some set of generators is a tree. Note first the following simple lemma.

Lemma 3.5 Suppose G is a group, A C G is a set of generators, and I'(G, A) is a tree.

(i) Forevery x € G, there is a unique way of writing x = a, - - - a,, with a; € A, and
aiaiy1 7# e moreover, I(x) = n. (Wecall ay, a, . .., a, the letters of x.)

(i) Takex € G, with ay the first letter of x. If y € G, and the last letter of y is not a; !,
then I(yx) = I(x) + I(y).

We can then obtain the following proposition.

Proposition 3.6 Suppose that G is a discrete amenable group, and A C G is a subset
of generators, such that I'(G, A) is a tree. Then either G =7, or G = 7 x 7.

Proof Note first that G cannot be finite, since then we may take an element a € A
with finite order p, and construct the cycle [e, a,a?, ...,a’~!] in T'(G, A), which has
no chords.

One of the alternate definitions of an amenable group is the Folner condition,
which, in the case of discrete groups, can be stated as follows: given any finite set
F C Gand any € > 0, there exists a finite subset K C G, such that

card(K A FK)
card K

(K A FK is the symmetric difference). Using a translation, if necessary, we may
assume e € K. Denote also S, = {x € G : I(x) = n}.

Suppose that x € G; Lemma 3.5 implies that there is at most one element a €
A with the property that I(ax) # I(x) + 1 (otherwise there would exist a cycle in
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I'(G,A)). Therefore, if x € S, there is at most one a € A such that ax & S,1.
Moreover, ifx, y € S, x # y,a,b € Awith ax, by € S,41, then ax # by (otherwise
we obtain again a cycle in I'(G, A)).

It follows then that, if A has at least 3 elements, then, for any finite set E C S,,,
AE N S,.41 has at least twice more elements than E. Therefore

(3.1) cardK = Z card(KNS,) <2 Z card(AK N S,41) < 2 card(AK).

Thus card(K A AK) > card K, and the Fglner condition cannot be satisfied.

Therefore A has at most two elements. If it has only one element, then, being
infinite, it is 7.

Suppose it has two elements. If a> # eand x € G, then, applying Lemmal[3.5lagain,
we have that /(a’x) # I(x) + 2 for at most one element a’ in the set A’ = {a?, ab, ba},
and for x,y € S,, x # y,a’,b’ € A’ with a’x,b’y € S,;», we have a’x # b'y.
Therefore, for any finite set E C S,,, AENS,4, has at least twice more elements than E,
and we obtain (3.I)) with S,.;; replaced by S,1,. Thus, again card(K A AK) > card K,
and the Fglner condition cannot be satisfied.

Since a similar argument applies in case b* # e, the only remaining possibility is
a’> = b* = e. Now if either ab or ba would have finite order, this would produce a
cycle in I'(G, A). Thus, they are both of infinite order, and it follows easily that G is
isomorphic to 7, % 7. [ |
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