
Canad. Math. Bull. Vol. 54 (1), 2011 pp. 3–11
doi:10.4153/CMB-2010-081-0
c©Canadian Mathematical Society 2010

Extensions of Positive Definite Functions on
Amenable Groups

M. Bakonyi and D. Timotin

Abstract. Let S be a subset of an amenable group G such that e ∈ S and S−1 = S. The main result

of this paper states that if the Cayley graph of G with respect to S has a certain combinatorial prop-

erty, then every positive definite operator-valued function on S can be extended to a positive definite

function on G. Several known extension results are obtained as corollaries. New applications are also

presented.

1 Introduction

Let G be a group. A function Φ : G → L(H) is called positive definite if, for ev-

ery g1, . . . , gn ∈ G, the operator matrix {Φ(g−1
i g j}

n
i, j=1 is positive semidefinite. Let

S ⊂ G be a symmetric set; that is, e ∈ S and S−1
= S. A function φ : S → L(H) is

called (partially) positive definite if, for every g1, . . . , gn ∈ G such that g−1
i g j ∈ S for

all i, j = 1, . . . , n, {φ(g−1
i g j}

n
i, j=1 is a positive semidefinite operator matrix. Exten-

sions of positive definite functions on groups have a long history, starting with the

Trigonometric Moment Problem of Carathéodory and Fejér and Krein’s Extension

Theorem. Recently, it has been proved in [1] that every positive definite operator-

valued function on a symmetric interval in an ordered abelian group can be extended

to a positive definite function on the whole group. By different techniques, the same

extension property was shown to be true in [3] for functions defined on words of

length ≤ m in the free group with n generators. In this paper, we extend the result to

a class of subsets of amenable groups that satisfy a certain combinatorial condition.

The result turns out to be more general than the main result in [1], and it is obtained

by much simpler means. Our main result was also influenced by [5], where a version

of Nehari’s Problem was solved for operator functions on totally ordered amenable

groups.

Let G be a locally compact group. A right invariant mean m on G is a state on

L∞(G) that satisfies

m( f ) = m( fx)

for all x ∈ G, where fx(y) = f (yx). In case there exists a right invariant mean on

G, G is called amenable. We will occasionally write mx( f (x)) for m( f ). There exist

many other equivalent characterizations of amenability [4].

For graph theoretical notions, we refer the reader to [7]. By a graph we mean a pair

G = (V, E) in which V is a set called the vertex set and E is a symmetric nonreflexive
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binary relation on V, called the edge set. We consider in general the vertex set to be

infinite. A graph is called chordal if every finite simple cycle [v1, v2, . . . , vn, v1] in E

with n ≥ 4 contains a chord, i.e., an edge connecting two nonconsecutive vertices of

the cycle. Chordal graphs play an important role in the extension theory of positive

definite matrices ([8, 10]).

Let G be a group. If S ⊂ G is symmetric, we define the Cayley graph of G with

respect to S (denoted Γ(G, S)) as the graph whose vertices are the elements of G,

while {x, y} is an edge if and only if x−1 y ∈ S.

2 The Main Result

The basic result of the paper is the following.

Theorem 2.1 Suppose G is amenable, and S ⊂ G. If Γ(G, S) is chordal, then any

positive definite function φ on S admits a positive definite extension Φ on G.

Proof Consider the partially positive semidefinite kernel k : G×G → L(H), defined

only for pairs (x, y) for which x−1 y ∈ S, by the formula

k(x, y) = φ(x−1 y).

Since the pattern of specified values for this kernel is chordal by assumption, it follows

from [10] that k can be extended to a positive semidefinite kernel K : G×G → L(H).

Note that K(x, y) has no reason to depend only on x−1 y.

For any x, y ∈ G, the operator matrix

(

φ(e) K(x, y)

K(x, y)∗ φ(e)

)

is positive semidefinite, whence it follows that K(x, y)∗K(x, y) ≤ φ(e)2. In particular,

all operators K(x, y), x, y ∈ G, are bounded by a common constant.

Fix then ξ, η ∈ H, and x ∈ G. The function Fx;ξ,η : G → C, defined by

Fx;ξ,η(y) = 〈K(yx, y)ξ, η〉

is in L∞(G). Define then Φ : G → L(H) by 〈Φ(x)ξ, η〉 = m(Fx;ξ,η).

We claim that Φ is a positive definite function. Indeed, take arbitrary vectors

ξ1, . . . , ξn ∈ H. We have

n
∑

i, j=1

〈Φ(g−1
i g j)ξi , ξ j〉 =

n
∑

i, j=1

m(Fg−1
i g j ;ξi ,ξ j

) =

n
∑

i, j=1

my
(

〈K(yg−1
i g j , y)ξi , ξ j〉

)

.

Consider one of the terms in the last sum; the mean m is applied to the function

y 7→ 〈K(yg−1
i g j , y)ξi , ξ j〉. The right invariance of m implies that we may apply the

change of variable z = yg−1
i , y = zgi , and thus

my
(

〈K(yg−1
i g j , y)ξi , ξ j〉

)

= mz
(

〈K(zg j , giz)ξi , ξ j〉
)

.
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Therefore

n
∑

i, j=1

〈Φ(g−1
i g j)ξi , ξ j〉 =

n
∑

i, j=1

m
(

〈K(zg j , giz)ξi , ξ j〉
)

= m
(

n
∑

i, j=1

〈K(zg j , giz)ξi , ξ j〉
)

.

But the positivity of K implies that, for each z ∈ G,

n
∑

i, j=1

〈K(zg j , giz)ξi , ξ j〉 ≥ 0.

Since m is a positive functional, it follows that Φ is indeed positive definite. On the

other hand, for x ∈ S, the function Fx;ξ,η is constant, equal to 〈φ(x)ξ, η〉. Therefore,

Φ is indeed the desired extension of φ.

Remark 2.2 The chordality of Γ(G, S) is equivalent to the fact that for every finite

cycle [g1, . . . , gn, g1], n ≥ 4, at least one {gi , gi+2} (with gn+1 = g1 and gn+2 = g2) is an

edge. Setting ξk = gkg−1
k+1, the condition is equivalent to ξ1, . . . , , ξn ∈ S, ξ1ξ2 · · · ξn =

e, n ≥ 4, implying that there exist i = 1, . . . , m such that ξiξi+1 ∈ S (here ξn+1 = ξ1).

Remark 2.3 Let Λ ⊂ G be such that e ∈ Λ, and e cannot be written as a product of

elements in Λ different from e, and let S = ΛΛ
−1. Assume we have that S = Λ∪Λ

−1.

Then ξ1ξ2 · · · ξn = e, with ξ1, . . . , ξn ∈ S, implies the existence of k such that ξk ∈ Λ

and ξk+1 ∈ Λ
−1, thus ξkξk+1 ∈ S, implying Γ(G, S) is chordal.

We conjecture the following reciprocal of Theorem 2.1.

Conjecture 2.4 For every S ⊂ G such that Γ(G, S) is not chordal, there exists a positive

definite function φ : S → L(H) that does admit a positive definite extension to G.

The following examples strongly suggest that the above conjecture has a positive

answer. Let G = Z
2 and let S = Z

2 − {(1, 1), (−1,−1)}, the minimal number of

points that can be excluded. Then (0, 0), (0, 1), 1, 1), and (−1, 0) form a chordless

cycle of length 4 in Γ(G, S). Define φ : S → M2(C) by

φ((0, 0)) =

(

1 0

0 1

)

, φ((1, 0)) =

(

0 0

1 0

)

, φ((0, 1)) =

(

0 1

0 0

)

and φ(g ′) = 0, for every g ′ ∈ S − {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}. Let K be a

maximal clique of Γ(G, S). We may assume that (0, 0) ∈ K, in which case (1, 1) 6∈ K.

This fact implies that the matrix {φ(x − y)}x,y∈K can be written as a direct sum of

copies of
(

1 0
0 1

)

, and
(

1 1
1 1

)

, so φ is positive definite. Assume that φ admits a positive

definite extension Φ to G. Then, since





Φ((0, 0)) Φ((1, 0))∗ Φ((1, 1))∗

Φ((1, 0)) Φ((0, 0)) Φ((0, 1))∗

Φ((1, 1)) Φ((0, 1)) Φ((0, 0))



 ≥ 0
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and




Φ((0, 0)) Φ((0, 1))∗ Φ((1, 1))∗

Φ((0, 1)) Φ((0, 0)) Φ((1, 0))∗

Φ((1, 1)) Φ((1, 0)) Φ((0, 0))



 ≥ 0,

it follows that Φ((1, 1)) =
(

1 0
0 1

)

. Since





Φ((0, 0)) Φ((1, 1))∗ Φ((2, 1)))∗

Φ((1, 1)) Φ((0, 0)) Φ((1, 1))∗

Φ((2, 1)) Φ((1, 1)) Φ((0, 0))



 ≥ 0

the (2, 1) entry of Φ((2, 1)) equals 1, contradicting the fact that Φ((2, 1)) =

φ((2, 1)) = 0. This implies that φ does not admit a positive definite extension to

Z
2.

Let Λ ⊂ Z
d be a finite set. By the definition introduced in [9], a sequence

{ck}k∈Λ−Λ of complex numbers is called positive definite with respect to Λ if the ma-

trix {ck−l}k,l∈Λ is positive definite. This definition is weaker than the one used in

this paper, since it requires only a single matrix built on the given data to be posi-

tive definite. A finite subset Λ ⊂ Z
d is said to posses the extension property if every

sequence {ck}k∈Λ−Λ admits a positive extension to Z
d. A finite subset S ⊂ Z has

the extension property if and only if it is an arithmetic progression [6]. Let R(0, n) =

{0}×{0, 1, . . . , n}, R(1, n) = {0, 1}×{0, 1, . . . , n}, and S(1, n) = R(1, n)−{(1, n)}.

The following is the main result of [2].

Theorem 2.5 A finite Λ ⊂ Z
2 has the extension property if and only if Λ is the trans-

lation by a vector in Z
2 of a set isomorphic to one of the following sets: R(0, n), R(1, n),

or S(1, n), n ≥ 0.

Let Λ = R(1, n) when S = Λ − Λ = {−1, 0, 1} × {−n, . . . , 0, . . . , n}. By the

previous theorem, every scalar positive definite sequence with respect to Λ on S ad-

mits a positive definite extension to Z
2. The points (0, 0), (−1, n), (0, 2n), and (1, n)

form a chordless cycle in Γ(Z
2, S), and for every Hilbert space H with dim H ≥ 2,

there exists a sequence {Ck}k∈S of operators on H that is positive definite (in the

stronger sense), but does not admit a positive definite extension to Z
2. The same is

true for the sets S(1, n) as well. We will present next the details concerning the dif-

ferent behaviour of scalar and operator sequences for a subset of Z
2 not covered by

Theorem 2.5.

Let G = Z
2, m, n ∈ N, m, n ≥ 2, and let S consist of the points (k, 0), |k| ≤ m

together with the points (0, l), |l| ≤ n. Let {Ckl}(k,l)∈S be a positive definite sequence

of operators. The positive definiteness condition is equivalent to

(2.1)











C00 C∗

10 · · · C∗

m0

C10 C00 · · · C∗

m−1,0

...
. . .

. . .
...

Cm0 Cm−1,0 · · · C00











≥ 0
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and

(2.2)











C00 C∗

01 · · · C∗

0n

C01 C00 · · · C∗

0,n−1

...
. . .

. . .
...

C0n C0,n−1 · · · C00











≥ 0.

In case {ckl}(k,l)∈S is the sequence defined by ck0 = eikα and c0l = eilβ , the matrices

in (2.1) are rank 1 positive definite Toeplitz matrices, and ckl = eikαeilβ , (k, l) ∈ Z
2

is a positive definite extension to Z
2 of the initial sequence. It is a classical result of

Carathéodory and Fejér that every positive definite Toeplitz matrix is a positive lin-

ear combination of rank 1 positive definite Toeplitz matrices. This implies that the

positive semidefiniteness of the matrices in (2.1) guarantees the existence of a posi-

tive definite extension to Z
2 of every positive definite sequence {ckl}(k,l)∈S of complex

numbers.

Let U1 and U2 be two noncommuting unitary operators on a Hilbert space H with

dim H ≥ 2. Defining C00 = I, Ck0 = U k
1 , and C0l = U l

2, the matrices in (2.1) and

(2.2) are positive semidefinite. Assuming the sequence {Ckl}(k,l)∈S admits a positive

definite extension to Z
2, the operator C11 has to simultaneously verify the conditions





C00 C∗

01 C∗

11

C01 C00 C∗

10

C11 C10 C00



 ≥ 0 and





C00 C∗

10 C∗

11

C10 C00 C∗

01

C11 C01 C00



 ≥ 0.

For our data, the above conditions are equivalent to C11 = U2U1, respectively C11 =

U2U1, which is false, since U1 and U2 do not commute. Thus {Ckl}(k,l)∈S does not

admit any positive definite extension to Z
2.

Proposition 2.6 Let 0 ∈ S = −S be a finite subset of Z
2 such that Γ(Z

2, S) is chordal

and S spans Z
2. Then S is infinite.

Proof Suppose S ⊂ Z
2 is finite and Γ(Z

2, S) is chordal. There are a finite number

of directions among the elements of S; suppose the elements of maximum length in

each of these directions, together with their inverses, are enumerated s1, s2, . . . , s2n in

the order of their arguments.

For a positive integer N, consider the cycle [x0, x2, . . . , x2nN−1, x0] in Γ(Z
2, S),

defined as follows: x0 = 0, xk − xk−1 = s j if ( j − 1)N < k ≤ jN. We claim that, if N

sufficiently large, this is a cycle with no chords.

Indeed, suppose {xk, xl} is an edge with l−k ≥ 2. The points x0, . . . , x2nN−1 form

a polygon P with 2n sides A j parallel to s j respectively, each side containing N points

xk. We have the following possibilities:

• If xk and xl are on the same side A j of P, then xl − xk = (l − k)s j would be an

element of S colinear with s j , but longer, which is not possible.
• If xk ∈ A j , xl ∈ A j+1, then the argument of xl − xk would be strictly between the

arguments of s j and s j+1: again a contradiction.
• Finally, we may chose N sufficiently large such that, if xk and xl are on nonconsec-

utive sides of P, then xl − xk has length larger than any element of S.

https://doi.org/10.4153/CMB-2010-081-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-081-0


8 M. Bakonyi and D. Timotin

So the cycle obtained has no chords, contrary to the chordality assumption in the

hypothesis. Thus S must be infinite.

Remark 2.7 If Conjecture 2.4 is true, then Lemma 2.6 would imply that for every

finite S ⊂ Z
2 such that 0 ∈ S = −S and S spans Z

2, there exists a positive definite

function on S that does not admit a positive definite extension to Z
2.

3 Applications

3.1 Ordered Groups and Related Questions

Suppose G is a (left or right) totally ordered group. Take a ∈ G, a ≥ e, and define

Λ = [e, a), and S = (a−1, a). Then e cannot be written as a product of elements in

Λ and S = ΛΛ
−1

= Λ ∪ Λ
−1. Then, by Remark 2.3, the graph Γ(G, S) is chordal.

Thus, in an amenable totally ordered group, any positive definite function defined on

a symmetric interval can be extended to the whole group.

The same argument yields the following more general result.

Proposition 3.1 Suppose G is amenable, while G ′ is a totally ordered group, with

unit e ′. Let g : G → G ′ be a group morphism. Take a ′ ∈ G ′, a ′ ≥ e ′, and S =

g−1((a ′−1, a ′)). Then any positive definite operator function on S can be extended to a

positive definite function on the whole group.

The above proposition has the following consequence that represents the main

result of [1]. The proof derived here is much simpler.

Corollary 3.2 Let G1 be a totally ordered abelian group, a ∈ G1, a > 0, and let G2 be

an abelian group. Then any positive definite operator function on (−a, a) × G2 can be

extended to a positive definite function on G1 × G2.

Several well-known results, such as the Classical Trigonometric Moment Problem

and Krein’s Extension Theorem, are particular cases of Corollary 3.2. Another simple

application of Corollary 3.2 is the following. Take α, β ∈ R, and define g : Z
2 → R

by g(m, n) = αm + βn. Thus, all positive definite functions defined on the strip

|αm + βn| < a can be extended to a positive definite function on Z
2.

A more interesting example for Proposition 3.1 is given by the Heisenberg group

H over the integers. This is the group of matrices of the form

Xm,n,p =





1 m p

0 1 n

0 0 1





for m, n, p ∈ Z. It is an amenable group, and for any α, β ∈ R, we can consider the

morphism g : H → R, given by g(Xm,n,p) = αm + βn. Thus any positive definite

function defined on the set {Xm,n,p : |αm + βn| < a} can be extended to a positive

definite function on H.
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3.2 Trees and Cayley Graphs

For this application, we need some supplementary preliminaries. If Γ = (V, E) is a

graph, the distance d(v, w) between two vertices is defined as

d(v, w) = min{n : ∃v = v0, v1, . . . , vn = w, such that {vi , vi+1} ∈ E(Γ)}.

We define the graph Γ̂n that has the same vertices as Γ, while {v, w} is an edge of Γ̂n

if and only if d(v, w) ≤ n.

A graph without any simple cycle is called a tree. If x and y are two distinct vertices

of a tree, then P(x, y) denotes the unique simple path joining x and y.

Lemma 3.3 If Γ is a tree, then Γ̂n is chordal for any n ≥ 1.

Proof Take a minimal cycle C of length > 3 in Γ̂n. Suppose x, y ∈ C maximize the

distance between any two points of C . If d(x, y) ≤ n, then C is a clique, which is a

contradiction. Thus x and y are not adjacent in Γ̂n. Suppose v, w are the two vertices

of Γ̂n adjacent to x in the cycle C . Now P(x, v) has to pass through a vertex that is

on P(x, y), since otherwise the union of these two paths would be the minimal path

connecting y and v, and it would have length strictly larger than d(x, y). Denote by

v0 the element of P(x, v) ∩ P(x, y) that has the largest distance to x. Since

d(y, v) = d(y, v0) + d(v0, v) ≤ d(y, x) = d(y, v0) + d(v0, x),

it follows that d(v0, v) ≤ d(v0, x).

Similarly, if w0 is the element of P(x, w) ∩ P(x, y) that has the largest distance to

x, it follows that d(w0, w) ≤ d(w0, x).

Suppose now that d(v0, x) ≤ d(w0, x). Then

d(v, w) = d(v, v0) + d(v0, w0) + d(w0, w)

≤ d(x, v0) + d(v0, w0) + d(w0, w) = d(x, w) ≤ n,

since w is adjacent to x. Then (v, w) ∈ E, and C is not minimal: a contradiction.

Thus Γ̂n is chordal.

It is worth mentioning that Γ chordal does not necessarily imply Γ̂n chordal. For

instance, the graph Γ in Figure 1 is chordal, but Γ̂2 is not, since it has [v1, v3, v5, v7]

as a 4-minimal cycle.

Suppose now that the group G is finitely generated by a set A with A = A−1. The

length of an element x ∈ G is defined by

l(x) = min{n : x = b1 · · · bn, bi ∈ A};

it is equal to the distance between x and e in the Cayley graph Γ(G, A). If Γ(G, A) is a

tree, then Lemma 3.3 and Theorem 2.1 yield the following result.

Proposition 3.4 Suppose that G is amenable and Γ(G, A) is a tree. If S = {x ∈ γ :

l(x) ≤ n}, then any positive definite function on S can be extended to the whole of G.
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v1

v2

v3

v4

v5

v6

v7

v8

Figure 1

The proposition applies to the free product G = Z2 ⋆ Z2. It is easily seen that, if A

is formed by the two generators, then Γ(G, A) is order isomorphic to Z, and is thus

a tree. So any positive definite function defined on words of length smaller than or

equal to n extends to the whole group.

Unfortunately, there seem not to be many amenable graphs whose Cayley graph

with respect to some set of generators is a tree. Note first the following simple lemma.

Lemma 3.5 Suppose G is a group, A ⊂ G is a set of generators, and Γ(G, A) is a tree.

(i) For every x ∈ G, there is a unique way of writing x = a1 · · · an, with ai ∈ A, and

aiai+1 6= e; moreover, l(x) = n. (We call a1, a2, . . . , an the letters of x.)

(ii) Take x ∈ G, with ax the first letter of x. If y ∈ G, and the last letter of y is not a−1
x ,

then l(yx) = l(x) + l(y).

We can then obtain the following proposition.

Proposition 3.6 Suppose that G is a discrete amenable group, and A ⊂ G is a subset

of generators, such that Γ(G, A) is a tree. Then either G = Z, or G = Z2 ⋆ Z2.

Proof Note first that G cannot be finite, since then we may take an element a ∈ A

with finite order p, and construct the cycle [e, a, a2, . . . , ap−1] in Γ(G, A), which has

no chords.

One of the alternate definitions of an amenable group is the Følner condition,

which, in the case of discrete groups, can be stated as follows: given any finite set

F ⊂ G and any ǫ > 0, there exists a finite subset K ⊂ G, such that

card(K △ FK)

card K
< ǫ

(K △ FK is the symmetric difference). Using a translation, if necessary, we may

assume e ∈ K. Denote also Sn = {x ∈ G : l(x) = n}.

Suppose that x ∈ G; Lemma 3.5 implies that there is at most one element a ∈
A with the property that l(ax) 6= l(x) + 1 (otherwise there would exist a cycle in
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Γ(G, A)). Therefore, if x ∈ Sn, there is at most one a ∈ A such that ax 6∈ Sn+1.

Moreover, if x, y ∈ Sn, x 6= y, a, b ∈ A with ax, by ∈ Sn+1, then ax 6= by (otherwise

we obtain again a cycle in Γ(G, A)).

It follows then that, if A has at least 3 elements, then, for any finite set E ⊂ Sn,

AE ∩ Sn+1 has at least twice more elements than E. Therefore

(3.1) card K =

∑

n

card(K ∩ Sn) ≤ 2
∑

n

card(AK ∩ Sn+1) ≤ 2 card(AK).

Thus card(K △ AK) ≥ card K, and the Følner condition cannot be satisfied.

Therefore A has at most two elements. If it has only one element, then, being

infinite, it is Z.

Suppose it has two elements. If a2 6= e and x ∈ G, then, applying Lemma 3.5 again,

we have that l(a ′x) 6= l(x) + 2 for at most one element a ′ in the set A ′
= {a2, ab, ba},

and for x, y ∈ Sn, x 6= y, a ′, b ′ ∈ A ′ with a ′x, b ′y ∈ Sn+2, we have a ′x 6= b ′y.

Therefore, for any finite set E ⊂ Sn, AE∩Sn+2 has at least twice more elements than E,

and we obtain (3.1) with Sn+1 replaced by Sn+2. Thus, again card(K △AK) ≥ card K,

and the Følner condition cannot be satisfied.

Since a similar argument applies in case b2 6= e, the only remaining possibility is

a2
= b2

= e. Now if either ab or ba would have finite order, this would produce a

cycle in Γ(G, A). Thus, they are both of infinite order, and it follows easily that G is

isomorphic to Z2 ⋆ Z2.
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