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Abstract

Recent advancements in data science and artificial intelligence have significantly transformed
plant sciences, particularly through the integration of image recognition and deep learning
technologies. These innovations have profoundly impacted various aspects of plant research,
including species identification, disease detection, cellular signaling analysis, and growth
monitoring. This review summarizes the latest computational tools and methodologies used
in these areas. We emphasize the importance of data acquisition and preprocessing, discussing
techniques such as high-resolution imaging and unmanned aerial vehicle (UAV) photography,
along with image enhancement methods like cropping and scaling. Additionally, we review
feature extraction techniques like colour histograms and texture analysis, which are essential
for plant identification and health assessment. Finally, we discuss emerging trends, challenges,
and future directions, offering insights into the applications of these technologies in advancing
plant science research and practical implementations.

1. Introduction

In the digital age, large-scale plant image datasets are essential for advancing plant science, yet
their efficient processing remains challenging; artificial intelligence (AI) and deep learning (DL)
offer transformative solutions by enabling machines to simulate human intelligence in tasks like
image recognition and decision-making (Williamson et al., 2023). In plant research, machine
learning (ML), a subset of AI, enables automatic plant image analysis, allowing computers to
learn and improve without explicit programming by identifying patterns in data to predict
outcomes and make decisions through supervised, unsupervised, and reinforcement learning
approaches (Silva et al., 2019). DL, a specialized branch of ML, uses multi-layer neural networks
to process complex plant image data, automatically extract features, and perform tasks like
classification and prediction, driving significant advancements in plant image analysis, especially
in plant growth monitoring and disease detection (Saleem et al., 2019). Together, AI, ML, and
DL propel innovation in plant science – ML enables learning from data, while DL leverages deep
neural networks for advanced image analysis – driving transformative progress in plant research.

Processing and analyzing high-resolution plant images pose challenges for image processing
algorithms due to plant diversity in colour, shape, and size, with additional complications from
complex backgrounds and dense leaf structures affecting segmentation and feature extraction
(Sachar & Kumar, 2021). To tackle these challenges, tailored methods in preprocessing, feature
extraction, and data augmentation have been developed, showing strong effectiveness in plant
image processing (Barbedo, 2016). For example, data augmentation methods like random
rotation and flipping improve model adaptability to plant diversity by helping it learn more
robust features (Cap et al., 2020). Furthermore, targeted approaches like colour normalization
and background suppression improve feature recognition accuracy, reduce external interference,
and highlight plants’ distinct visual characteristics, optimizing workflows and enhancing plant
image analysis accuracy and efficiency (Petrellis, 2019).

Challenges like data acquisition and the lack of high-quality annotated data hinder the
widespread adoption of DL technologies in plant science. Image recognition, the first and
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crucial step in plant image processing, has been significantly
advanced by the rapid development of DL, particularly Convo-
lutional Neural Networks (CNNs) (Cai et al., 2023). CNNs are a
type of feedforward neural network and a representative algorithm
of DL, using convolutional calculations and possessing a deep
structure (Kuo et al., 2019). The performance of CNNs in plant
species recognition has been thoroughly evaluated on several
large public wood image datasets, consistently demonstrating high
accuracy. For example, CNN models achieved 97.3% accuracy
on the Brazilian wood image database (Universidade Federal
do Paraná, UFPR) and 96.4% on the Xylarium Digital Database
(XDD), clearly outperforming traditional feature engineering
methods. CNNs are both effective and generalizable for wood
image recognition tasks (Hwang & Sugiyama, 2021).

Large language models (LLMs), such as ChatGPT, are advanced
DL models that, when combined with domain-specific tools like
the Agronomic Nucleotide Transformer (AgroNT) – a novel
DNA-focused LLM – have demonstrated great potential in plant
genetics and stress response studies (Mendoza-Revilla et al., 2024).
By analyzing the genomes of 48 crop species and processing
over 10 million cassava mutations, the LLM-based tools offer
valuable insights into plant development, interactions, and traits,
advancing gene expression profiling and opening new research
possibilities (Agathokleousb et al., 2024). Notably, LLMs have
revealed new insights by uncovering non-obvious regulatory
patterns in promoter regions, predicting the functional impacts of
non-coding variants, and suggesting novel gene-stress associations
that were previously unrecognized using traditional bioinformatics
approaches (Mendoza-Revilla et al., 2024). For example, AgroNT
has been shown to predict transcription factor binding affinities
across diverse plant species with unprecedented accuracy, enabling
the discovery of conserved stress-responsive elements in divergent
genomes (Wang et al., 2025). Although still in its early stages,
the application of language models in plant biology holds great
potential to transform the field, despite currently lagging behind
advancements in other domains.

This review evaluates key technologies in plant image process-
ing, such as data acquisition, preprocessing, feature extraction,

and model training, examining their effectiveness, limitations, and
potential to advance plant science research. It also compares vari-
ous methodologies and ML models, highlighting their advantages,
limitations, and challenges, providing a detailed framework to help
researchers make informed decisions in plant image processing
studies and applications.

2. Data acquisition and preprocessing

2.1. Data acquisition and plant feature extraction

Data acquisition and preprocessing are vital for ML in image
processing, with high-resolution imaging, unmanned aerial
vehicle (UAV) photography, and 3D scanning providing detailed
morphological data for DL model foundation (Shahi et al., 2022)
(Table 1). While high-resolution devices offer superior quality,
regular cameras and smartphones provide greater accessibility
and scalability, enabling large-scale data collection and enhancing
dataset diversity and model robustness.

Feature extraction in plant image analysis integrates morphol-
ogy, physiology, genetics, and ecology, starting with colour features
(e.g., histograms, coherence vectors) and followed by morpholog-
ical features (e.g., area, perimeter, shape descriptors) to identify
plant traits (Mahajan et al., 2021). Texture features, capturing local
variations in images, are crucial for species differentiation and
disease detection, revealing surface structures like roughness and
contrast (Mohan & Peeples, 2024). CNNs have proven effective in
managing complex plant images, enhancing the classification and
detection of diseases through robust feature extraction methods
(Ahmad et al., 2022). Additionally, structural features, such as leaf
morphology and spatial arrangements, are extracted using tech-
niques like edge detection and shape description (Shoaib et al.,
2023). Lastly, physiological features, including leaf count, size, and
vein structure, provide valuable data on plant health and growth
dynamics (Bühler et al., 2015). These features can be obtained
manually or automatically through image processing, with recent
studies favoring automated methods like segmentation and mor-
phological analysis for high-throughput, objective phenotyping.

Table 1. Data acquisition techniques and their applications in plant sciences

Data acquisition

techniques Description Type of camera Type of platform Type of applications References

High-resolution
imaging

Using high-resolution cameras to capture
detailed images of plants.

Visual Indoor Plant growth dynamics, plant
diseases diagnosis

Duncan et al. (2022)

UAV
photography

Drone aerial photography provides
detailed insights into plant community
distribution and condition.

Visual UAV Monitoring crop growth in
fields, assessing vegetation
coverages, and observing
environmental changes.

Wu et al. (2022)

3D scanning
technology

Capturing plant spatial structure allows
the creation of detailed 3D models of plant
morphology.

Structured
Light Scanner

Indoor Plant morphology and growth Nguyen et al. (2016)

Light detection
and ranging
(LiDAR)

Utilizing LiDAR to capture detailed spatial
and structural data of plants.

LiDAR Outdoor Investigating plant morphol-
ogy and analyzing their growth
patterns.

Forero et al. (2022)

Spectral
imaging
technology

Capturing plant images in specific
wavelengths to gather critical information
about the health status of plants.

Multispectral Indoor & Outdoor Analyzing the photosynthetic
efficiency, water content, and
nutritional status of plants.

Zhang et al. (2022)

Public
databases
and resources

Collection of large-scale image datasets
from various platforms that are accessible
for research on plant species, health, and
environmental impact.

Multi-platform Expanding research datasets
for species recognition and
ecological studies.

Mano et al. (2009)
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A key advantage of CNNs is their ability to learn hierarchical
features from raw images, eliminating manual feature engineering
and enhancing model adaptability and performance in diverse
plant phenotyping tasks.

2.2. Preprocessing techniques

Data preprocessing in plant image analysis includes key steps like
cropping, resizing, enhancing, augmenting, and annotating to
optimize images for ML models. Cropping and resizing standardize
dimensions, enhancing computational efficiency and reducing
model complexity (Maraveas, 2024). Data augmentation modifies
original images to generate new datasets, with techniques like
contrast adjustment, denoising, and sharpening enhancing detail
visibility and accuracy (Abebe et al., 2023), while augmentation
strategies like rotation and flipping diversify the dataset to prevent
overfitting and improve model generalization (Syarovy et al., 2024).
Despite their benefits, preprocessing steps can cause information
loss, requiring a balance between simplifying the model and
preserving critical information. While most preprocessing is not
labor-intensive, annotating and labeling training data remains
highly labor-intensive, often becoming bottlenecks that hinder
project progress. Accurate annotation, often referred to as ‘ground
truth’, is essential for supervised learning, as it provides a reliable
benchmark for model training and evaluation. In both research and
practical applications – such as image recognition, natural language
processing, and predictive analytics – the quality of labelled data
directly influences model accuracy and reliability (Zhou et al.,
2018a, 2018b).

To achieve optimal results, recommended sizes of datasets vary
by task complexity. For binary classification, 1,000 to 2,000 images
per class are typically sufficient (Singh et al., 2020). Multi-class
classification requires 500 to 1,000 images per class, with higher
requirements as the number of classes increases (Mühlenstädt
& Frtunikj, 2024). More complex tasks, such as object detection,
demand larger datasets, often up to 5,000 images per object (Cai
et al., 2022). DL models like CNNs generally need 10,000 to 50,000
images, with larger models requiring 100,000+ images (Greydanus
& Kobak, 2020). Data augmentation can multiply dataset size by
2–5 times (Shorten & Khoshgoftaar, 2019). Additionally, Transfer
Learning, a machine-learning model, is effective for smaller
datasets, requiring as few as 100 to 200 images per class for
successful training (Zhu et al., 2021).

2.3. Commonly used public dataset

The Plant Village dataset is a widely used public resource for DL-
based plant disease diagnosis research (Mohameth et al., 2020).
It serves as a valuable tool in agricultural and plant disease research,
offering a comprehensive collection of labelled images essential for
developing and testing ML models for plant health monitoring
(Pandey et al., 2024). Its accessibility, diversity, and standardized
format make it a benchmark for algorithm development in
precision agriculture, contributing to early disease detection and
yield management, and addressing global challenges like food
security and sustainable farming (Majji & Kumaravelan, 2021).
Promoting the use of such datasets can enhance collaboration
among researchers, standardize methodologies, and support scal-
able solutions across various agricultural environments (Ahmad
et al., 2021).

Similar to the plant village dataset, other plant image datasets
include the plant doc dataset, which contains images from various

plant species for plant disease diagnosis (Singh et al., 2020).
The crop disease dataset features images of diseases in multiple
crops, making it suitable for training DL models, especially for
crop disease classification (Yuan et al., 2022). The tomato leaf
disease dataset focuses on disease images specific to tomato leaves,
supporting research in tomato disease recognition and detection
(Ahmad et al., 2020). These datasets are widely used in agriculture,
particularly for plant disease detection, crop growth studies, and
plant health management, driving the ongoing development of
intelligent agricultural technologies.

3. Model development and training

3.1. The selection of ML model

Image classification, used to categorize input images into prede-
fined groups, is commonly applied in plant identification and
disease diagnosis. CNNs, with their strong hierarchical feature
extraction abilities, excel in these tasks. Models like AlexNet and
ResNet are frequently used to classify plant species and develop-
mental stages (Zhu et al., 2018; Malagol et al., 2025). ResNet, by
incorporating residual learning and skip connections, addresses
gradient vanishing and degradation in deep networks. Its enhanced
model has been applied in high-throughput quantification of
grape leaf trichomes, supporting phenotypic analysis and disease
resistance studies. CNN-based models generally achieve over 90%
accuracy on public datasets, validating their ‘High’ performance in
comparative evaluations (Yu et al., 2021; Yao et al., 2024).

Simpler models like K-nearest neighbors (K-NN) and support
vector machines (SVMs) are ideal for smaller datasets with less
complex features. Though computationally efficient and easy to
implement, they are more sensitive to noise and tend to perform
less effectively on complex image data (Ghosh et al., 2022). K-NN,
for instance, classifies samples based on proximity in feature space
and can be enhanced using surrogate loss training (Picek et al.,
2022). SVMs utilize kernel functions like the Radial Basis Function
(RBF) to handle non-linear data and prevent overfitting (Sharma
et al., 2024). Both are typically rated as ‘Medium’ in performance
due to their limitations in handling large-scale, high-dimensional
data (Azlah et al., 2019).

For object detection tasks, which require both classification
and localization, models like Faster R-CNN (FRCNN) and You
Only Look Once version 5 (YOLOv5) offer high spatial accuracy.
FRCNN uses a region proposal network (RPN) and shared convo-
lutional layers to efficiently predict object categories and bound-
ing boxes (Deepika & Arthi, 2022). YOLOv5 enables real-time
detection and has been applied to UAV-based monitoring for early
detection of pine wilt disease (Yu et al., 2021). In dense slash pine
forests, improved FRCNN achieved 95.26% accuracy and an R2 of
0.95 in crown detection, showcasing the utility of deep learning for
woody plant monitoring (Cai et al., 2023).

Other advanced models include deep belief networks (DBNs),
which use stacked restricted Boltzmann machines (RBMs) for
unsupervised hierarchical learning and are fine-tuned via back-
propagation (Lu et al., 2022). Recurrent neural networks (RNNs),
particularly long short-term memory (LSTM) networks, are
effective for modeling temporal dependencies, such as plant growth
simulation using time-lapse imagery (Xing et al., 2023; Liu et al.,
2024a, 2024b). Graph neural networks (GNNs) are increasingly
used for modeling complex relationships in plant stress response
and gene regulation, although they require significant training
effort and parameter tuning (Chang et al., 2024).
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Table 2. A comparison of common ML models in plant recognition and classification

ML models Task Advantages Disadvantages Applications Performance score References

CNN Image
classification

Highly accurate and
suitable for complex
image recognition.

Requires a large
amount of data with
high computational
cost.

Recognizing and
categorizing complex
plant images

High Yu et al. (2021)

SVM Classification of
high-dimensional
data

Effectively handles
high-dimensional
data.

Sensitive to parameter
selection and long
training times.

Classifying small to
medium-sized plant
datasets.

Medium Ghosh et al. (2022)

RFs Multi-class
classification

Suitable for multi-class
classification tasks
and demonstrate
robust performance.

The model has high
complexity, resulting
in longer training
times.

Handling complex
feature plant
classification
problems.

High Pandey and Vir
(2024)

K-NN Instance-based
classification

Simple and easy to
implement, suitable
for small datasets.

Sensitive to noise;
classification
performance depends
on distance selection.

Analyzing small-scale
datasets or performing
preliminary plant
recognition.

Medium Azlah et al. (2019)

DBNs Deep feature
learning

Offers powerful
representation
capabilities through
deep feature learning.

Training is complex
and requires
adjustment
of multiple
hyperparameters.

Deep-level plant
feature learning
and classification

Medium Shoaib et al. (2023)

Transfer
Learning

Transfer
knowledge
from pre-trained
models

Using pre-trained
models reduces the
amount of training
data required.

Adequate pre-trained
models related to the
task are required.

Quickly applicable to
new plant
classification tasks

Medium to High Shahoveisi et al.
(2023)

In scenarios with limited labelled data or domain shifts, transfer
learning is particularly valuable. By leveraging pre-trained models,
it enables medium to high performance in plant classification and
disease recognition tasks (Wu et al., 2022). Advanced architectures
like GoogLeNet, with its multi-scale inception module, further
enhance classification accuracy. For instance, a GoogLeNet model
achieved F-scores of 0.9988 and 0.9982 in classifying broadleaf
and coniferous tree species, respectively, after 100 training epochs
(Minowa et al., 2022).

In summary, each model class exhibits distinct strengths. CNNs
specialize in image classification; SVMs and K-NN are optimal for
simpler datasets; FRCNN and YOLOv5 excel in object detection;
DBNs and RNNs support hierarchical and temporal modeling;
GNNs tackle high-dimensional interactions; and transfer learning
enhances adaptability across domains. The qualitative performance
ratings (High/Medium) presented in Table 2 synthesize evaluation
metrics like accuracy, precision, recall, and F1-score across repre-
sentative studies, enabling researchers to select appropriate models
based on task complexity and dataset characteristics.

3.2. The integration of language models

In recent years, with the widespread application of LLMs such as
BERT and the GPT series in natural language processing and cross-
modal learning, plant science research has also begun exploring the
integration of LLMs into areas such as gene function prediction,
literature-based knowledge mining, and bioinformatic inference.
For instance, LLMs can automatically extract potential functional
annotation information from a large body of plant gene literature,
aiding in the construction of plant gene regulatory networks. More-
over, due to their powerful contextual understanding capabilities,
LLMs demonstrate enhanced accuracy and generalizability in
predicting gene expression patterns across species (Zhang et al.,
2024). The application of LLMs in plant biology is beginning to

transform the field by driving advancements in chemical mapping,
genetic research, and disease diagnostics (Eftekhari et al., 2024).
For instance, by analyzing data from over 2,500 publications,
researchers have revealed the phylogenetic distribution of plant
compounds and enabled the creation of systematic chemical maps
with improved automation and accuracy (Busta et al., 2024).
LLMs and protein language models (PLMs) also enhance the
analysis of nucleic acid and protein sequences, advancing genetic
improvements and supporting sustainable agricultural systems
(Liu et al., 2024a, 2024b). In disease diagnostics, models like
contrastive language image pre-training (CLIP) utilize high-quality
images and textual annotations to improve classification accuracy
for plant diseases, achieving significant precision gains on datasets
such as plant village and field plant (Eftekhari et al., 2024).

Similarly, a CNN-based system combining InceptionV3 with
GPT-3.5 Turbo achieved 99.85% training accuracy and 88.75%
validation accuracy in detecting tomato diseases, providing
practical treatment recommendations (Madaki et al., 2024).
The feature fusion contrastive language-image pre-training (FF-
CLIP) model further enhances this approach by integrating visual
and textual data to identify complex disease textures, achieving
a 33.38% improvement in Top-1 accuracy for unseen data in
zero-shot plant disease identification (Liaw et al., 2025). These
advancements highlight the transformative potential of language
models in advancing plant biology research and driving sustainable
agricultural innovation.

In summary, two notable new insights brought by LLMs in plant
science include: (1) the ability to identify and summarize ‘potential
regulatory information within non-coding sequences’, which is
often overlooked by traditional models; and (2) the promotion of
holistic modeling of plant trait complexity through multimodal
integration – such as combining sequence, image, and textual data
– offering new avenues for complex trait prediction and breeding
design.
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Figure 1. CNN and data training process flowchart. A. DL-based image processing flowchart; B. Data training process elowchart.

3.3. Model training and evaluation methods

Effective ML model training relies on three key components: data
partitioning, loss functions, and optimization strategies. Properly
splitting the data (commonly 70:15:15 for training, validation, and
testing) ensures good generalization (Figure 1). The training set
fits model parameters, the validation set guides hyperparameter
tuning, and the test set evaluates final performance, enhancing
model robustness(Ghazi et al., 2017). For instance, Mohanty et al.
used the PlantVillage dataset (54,306 images), applied an 80:10:10
split and cross-entropy loss with SGD optimization, achieving over
99% accuracy and demonstrating the efficiency of deep learning

in plant disease identification (Mohanty et al., 2016). Similarly,
Ferentinos used a publicly available plant image dataset with 87,848
leaf images, splitting it into 80% for training and 20% for testing,
achieving 99.53% accuracy on the test set. This study highlights
the effectiveness of data partitioning and CNNs in plant species
classification and disease detection (Ferentinos, 2018).

The loss function quantifies the difference between predicted
and true values, minimized during training. For regression tasks,
common loss functions include mean squared error (MSE), root
mean squared error (RMSE), and mean absolute error (MAE),
with MSE penalizing larger errors, RMSE providing interpretable
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results, and MAE being more robust to outliers (Picek et al., 2022).
For classification tasks, binary classification problems often use
binary cross-entropy to measure the accuracy of predictions involv-
ing ‘yes/no’ or ‘true/false’ decisions (Bai et al., 2023). Custom loss
functions can also be defined to suit specific project needs. For
instance, Gillespie et al. developed a deep learning model called
‘Deepbiosphere’ and designed a sampling bias-aware binary cross-
entropy loss function, which significantly improved the model’s
performance in monitoring changes in rare plant species (Gillespie
et al., 2024).

Optimization algorithms are equally critical in DL. Common
optimizers include stochastic gradient descent (SGD), adaptive
moment estimation (ADAM) (Saleem et al., 2020), and RMSprop
(Kanna et al., 2023). SGD updates parameters using randomly
selected samples per iteration, ADAM combines momentum with
adaptive learning rates, and RMSprop adjusts the learning rate of
each parameter using moving averages, effectively reducing gra-
dient oscillation (Mokhtari et al., 2023). For example, Sun et al.
employed the SGD optimizer with momentum techniques in plant
disease recognition tasks, which improved the convergence speed
and stability of the model, thereby enhancing its accuracy (Sun
et al., 2021). In a similar vein, Kavitha et al. trained six ImageNet-
pretrained CNN models on an RMP dataset for rural medicinal
plant classification and reported that MobileNet, optimized with
SGD, achieved the best classification performance, highlighting its
effectiveness in medicinal plant recognition (Kavitha et al., 2023).
In another study, Labhsetwar et al. compared different optimizers
for plant disease classification and found that the Adam optimizer
achieved the highest validation accuracy of 98%, demonstrating
its strong performance in this context. (Labhsetwar et al., 2021).
Complementing these findings, Praharsha et al. evaluated multiple
optimizers in CNNs and found that RMSprop, with a learning
rate of 0.001 and L2 regularization of 0.0001, achieved the highest
validation accuracy of 89.09%, outperforming Adam and SGD,
and proving especially effective for plant pest classification tasks
(Praharsha et al., 2024).

Evaluation metrics like accuracy, recall, F1 score, and area under
the curve (AUC) are essential for assessing model performance,
with accuracy being effective for balanced datasets but poten-
tially misleading for imbalanced data.(Naidu et al., 2023). Recall
emphasizes the model’s ability to identify all relevant positive cases,
essential for tasks like plant species identification, while the F1
score, the harmonic mean of precision and recall, offers a balanced
evaluation, particularly for imbalanced datasets (Fourure et al.,
2021). AUC evaluates model classification ability across different
thresholds and is particularly useful in imbalanced classification
tasks (Vakili et al., 2020). For example, Tariku et al. developed an
automated plant species classification system using UAV-captured
Red, Green, Blue (RGB) images and transfer learning, achieving
0.99 accuracy, precision, recall, and 0.995 F1 score, highlighting the
effectiveness of these metrics in real-world tasks and the impor-
tance of recall and F1 score for handling diverse and imbalanced
datasets (Tariku et al., 2023). In another study, Sa et al. introduced
WeedMap, a large-scale semantic weed mapping framework using
UAV-captured multispectral imagery and deep neural networks,
achieving AUCs of 0.839, 0.863, and 0.782 for background, crop,
and weed classes, respectively, highlighting the role of AUC in
evaluating model performance across multiple categories in real-
world agricultural applications (Sa et al., 2018).

Evaluation should be conducted after training and before
deployment. Re-evaluation is also necessary when there are
changes in data distribution or environmental conditions (Reich

and Barai, 1999). For example, when encountering new plant
species or ecological conditions, retraining or fine-tuning may be
needed to maintain strong performance on novel inputs (Soares
et al., 2017).

4. The applications of ML in plant research

4.1. Biotic and abiotic stress management

DL models are instrumental in analysing plant leaf images to
detect diseases and pests, a vital component of plant protection
(Shoaib et al., 2023). For instance, a 2019 study developed a back
propagation neural network (BPNN) – a multilayer feedforward
model trained via backpropagation and optimized through one-
way ANOVA – that effectively identified rice diseases like blast and
blight, highlighting its strength in pattern recognition and classi-
fication (Chaudhari & Malathi, 2023). Additionally, hyperspectral
remote sensing combined with ML enables rapid detection of plant
viruses like Solanum tuberosum virus Y, enhancing early disease
identification (Polder et al., 2019). The YOLOv5s algorithm pro-
cesses RGBdrone images for real-time pine wilt disease detection,
suitable for large-scale monitoring (Du et al., 2024). Generative
adversarial networks (GANs), consisting of a generator and a
discriminator that improve through adversarial learning, have been
applied in plant science for tasks such as data augmentation, plant
disease detection, and growth simulation (Gandhi et al., 2018).

ML and DL advance abiotic stress management through sensors
and drones for early detection, precise predictions, and improved
plant resilience (Patil et al., 2024). These technologies also optimize
plant stress responses, with further advancements expected in
agricultural applications (Sharma et al., 2024). Hyperspectral
imaging aids early disease detection related to abiotic stresses
(Lowe et al., 2017). The ‘ASmiR’ framework predicts plant miRNAs
under abiotic stresses, supporting stress-resistant crop breeding
(Pradhan et al., 2023). GNN, a DL model tailored for graph-
structured data, learns node representations via relationships
and adjacency, and has been effectively used to predict miRNA
associations with abiotic stresses by capturing complex structural
patterns (Chang et al., 2024). Interested readers are encouraged to
refer to the cited review, which highlights the role of bioinformatics
and AI in managing abiotic stresses for food security, aiding stress
gene analysis, and improving crop resilience to drought and salinity
(Chang et al., 2024).

4.2. Plant species identification and classification

DL aids large-scale growth monitoring, identifying plant growth
patterns, health, and predicting yields. An intelligent greenhouse
management system uses ML and mobile networks for automated
phenotypic monitoring (Rahman et al., 2024). Shapley Additive
Explanations (SHAP), which quantifies each feature’s contribution
to model predictions, is commonly used to interpret and evaluate
the performance of yield prediction models (Sun et al., 2019).
Lightweight SegNet (LW-SegNet) is a CNN architecture tailored
for image segmentation tasks, designed to reduce network
parameters and computational demands, ensuring efficient and
accurate results, particularly in resource-limited environments.
Lightweight networks like LW-SegNet and Lightweight U-Net
(LW-Unet) enable efficient segmentation of rice varieties in
plant research (Zhang et al., 2023a, 2023b, 2023c). A hybrid
model combining RF regression and radiative transfer simulation
estimates wheat leaf area index (LAI) using UAV multispectral
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imaging (Sahoo et al., 2023). Self-supervised Learning (SSL) trains
models using patterns in unlabelled data without manual labeling,
accelerating the training process; while it speeds up plant breeding
with unlabelled datasets, supervised pre-training still generally
outperforms SSL, particularly in tasks like leaf counting (Ogidi
et al., 2023) .

CNNs enable fast and accurate plant species identification. In
sustainable agriculture, a CNN-based DL model was developed to
classify weeds, optimizing herbicide use for eco-friendly control
(Corceiro et al., 2023). CNNs (VGG-16, GoogleNet, ResNet-50,
ResNet-101) were employed to identify 23 wild grape species,
showcasing the effectiveness of DL in leaf recognition and crop
variety identification (Pan et al., 2024).

4.3. Plant growth simulation

ML explores complex molecular and cellular mechanisms in
plant growth and development, such as stem cell homeostasis
in arabidopsis shoot apical meristems (SAMs) (Hohm et al.,
2010), leaf development (Richardson et al., 2021), and sepal giant
cell development (Roeder, 2021), and the simulation of weed
growth in crop fields over decades (Zhang et al., 2023a, 2023b,
2023c).

Various algorithms have been applied to study plant develop-
ment. For example, image processing and ML using SVM and RF
were used to analyze Cannabis sativa callus morphology, with SVM
showing higher accuracy, while genetic algorithms optimized PGR
concentrations to validate the model (Hesami and Jones, 2021).
A microfluidic chip was created to simulate pollen tube growth,
and the ‘Physical microenvironment Assay (SPA)’ method was
established to study mechanical signal transmission during pollen
tube penetration of pistil tissues (Zhou et al., 2023).

Many groups are utilizing the latest computational technologies
and algorithms to develop tools that enhance the efficiency and
precision of plant biology research (Muller & Martre, 2019).
The virtual plant tissue (VPTissue) software simulates plant
developmental processes, facilitating the integration of functional
modules and cross-model coupling to efficiently simulate cellular-
level plant growth (De Vos et al., 2017). ADAM-Plant software
uses stochastic techniques to simulate breeding plans for self- and
cross-pollinated crops, tracking genetic changes across scenarios
and supporting diverse population structures, genomic models,
and selection strategies for optimized breeding design (Liu et al.,
2019). The L-Py framework, a Python-based L-system simulation
tool, simplifies plant architecture simulation and analysis, with
dynamic features that enhance programming flexibility, making
plant growth model development more convenient (Boudon et al.,
2012). Many groups are also developing advanced computational
tools to accurately simulate plant morphological changes at various
stages of growth (Boudon et al., 2015). A 3D maize canopy model
was created using a t-distribution for the initial model, treating
the maize whorl – leaves, stem segments, and buds – as an agent
to precisely simulate the canopy’s spatial dynamics and structure
(Wu et al., 2024).

Significant advancements from 2012 to 2023 have enhanced
our understanding of plant biology. In 2012, researchers used live
imaging combined with computational analysis to monitor cellular
and tissue dynamics in A. thaliana (Cunha et al., 2012). The intro-
duction of the Cellzilla platform in 2013 enabled simulation of plant
tissue growth at the cellular level (Shapiro et al., 2013). A pivotal
study in 2014 focused on the WOX5-IAA17 feedback loop, which

is essential for maintaining the auxin gradient in A. thaliana (Tian
et al., 2014). By 2016, research explored plant signaling pathways
and mechanical models to analyze sepal growth and morphology
(Hervieux et al., 2016). In 2018, studies delineated the expression
pattern of the CLV3 gene in SAMs (Zhou et al., 2018a, 2018b),
followed by 2019 research on leaf development and chloroplast
ultrastructure (Kierzkowski et al., 2019), and the TCX2 gene’s role
in maintaining stem cell identity (Clark et al., 2019). Research in
2020 focused on epidermis-specific transcription factors affecting
stem cell niches (Han et al., 2020), and 2021 introduced new
modeling techniques for root tip growth and stem cell division
(Marconi et al., 2021). In 2022, 3D bioprinting was used to study
cellular dynamics in both A. thaliana and Glycine max (Van den
Broeck et al., 2022). The latest studies in 2023 provided new insights
into weed evolution and applied advanced DL techniques for plant
cell analysis (Feng et al., 2023). These milestones demonstrate the
integration of computational tools and empirical datasets in plant
science, enabling innovative methods and applications that propel
the field forward.

4.4. Plant cell segmentation

Accurate cell segmentation is crucial for understanding plant cell
morphology, developmental processes, and tissue organization.
Recent advancements in DL and computer vision have led to the
development of various specialized tools for segmenting plant cell
structures from complex microscopy data. This section provides
an overview of key tools, highlighting their core methodologies,
applications, and advantages in plant research.

PlantSeg is a neural network-based tool designed for high-
resolution plant cell segmentation. It starts with image preprocess-
ing, including scaling and normalization, followed by U-Net-based
boundary prediction to identify cell boundaries (Wei et al., 2024).
The boundary map is transformed into a region adjacency graph
(RAG), where nodes represent image regions and edges represent
boundary predictions. Graph segmentation algorithms, such as
Multicut or GASP, partition the graph into individual cells, and
post-processing ensures the segmentations align with the original
resolution and corrects over-segmentation (Wolny et al., 2020). By
streamlining these processes, PlantSeg supports high-throughput
analysis of plant cell dynamics, particularly for confocal and light
sheet microscopy data (Vijayan et al., 2024). This tool not only
improves segmentation efficiency but also handles large-scale
datasets, providing robust support for long-term monitoring of
plant cell behavior.

Complementing PlantSeg, the Soybean-MVS dataset leverages
multi-view stereo (MVS) technology to provide a 3D imaging
resource, capturing the full growth cycle of soybeans and enabling
precise 3D segmentation of plant organs (Sun et al., 2023). This
dataset plays a significant role in plant growth and developmental
research, offering fine-grained data support for dynamic analysis of
long-term growth processes.

Other tools focus on generalizability and adaptability across
various plant species and imaging modalities. Cellpose utilizes
a convolutional neural network (CNN), which performs well in
segmenting different cell types and shapes, especially in dynamic
plant structures and large-scale image analysis, improving scalabil-
ity (Stringer et al., 2021). This feature enables Cellpose to maintain
high accuracy and robustness under diverse experimental condi-
tions when processing plant cells.

DeepCell uses CNNs for plant cell segmentation and supports
cell tracking and morphology analysis, offering robust tools
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for phenotype research. It excels in handling complex cellular
dynamics and large-scale datasets, making it ideal for long-term
monitoring of plant phenotypes (Greenwald et al., 2022).

Ilastik provides an interactive ML-based segmentation approach,
combining flexibility and accuracy. Its user-guided training enables
adaptation to diverse plant datasets and experimental conditions,
making it valuable for cross-species and multi-modal plant data
analysis (Robinson & Vink, 2024).

Finally, MGX (MorphoGraphX) specializes in 3D morpholog-
ical analysis of plant tissues by processing 3D microscopy data to
visualize and quantify cell shapes, sizes, and spatial patterns. It
supports studies on cell interactions and tissue growth, offering
precise tools for plant tissue development research (Kerstens et al.,
2020).

In conclusion, despite differences in algorithms and interfaces,
these tools collectively advance plant microscopy by minimiz-
ing manual segmentation, enhancing reproducibility, and enabling
high-throughput and multidimensional analysis. Their comple-
mentary strengths offer researchers diverse options, from 2D seg-
mentation to full 3D tissue modeling, tailored to specific experi-
mental needs, and significantly improve efficiency and precision in
plant cell and tissue analysis.

5. Summary

ML and image recognition technologies show great promise in
plant science, yet several challenges must be addressed for their
effective application (Xiong et al., 2021). Figure 2 illustrates the

Figure 2. A keyword network analysis of DL in plants. A keyword analysis of plant AI technologies reveals clear technological connections. Blue lines indicate image processing
technologies, and green lines represent plant phenotyping and growth analysis. At its core, ‘DL’ links to ‘ML’, ‘image processing,’ and ‘computer vision.’ Technologies such as
‘remote sensing’ and ‘precision agriculture’. The relationships between terms like ‘plant growth’, ‘diseases’, ‘phenomics’, and ‘smart agriculture’ indicate the growing integration
of AI and ML in improving plant practices.
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Table 3. Challenges and future trends of ML and image recognition technologies in plant science

Category Content References

Challenges Image quality and diversity Imaging variations, such as lighting, angle, and background, can signif-
icantly affect recognition accuracy.

Shoaib et al. (2023)

Inter-class similarity The similarity in appearance among different plant species can present
challenges to accurate classification.

Jeyapoornima et al.
(2023)

Intra-class variation Individuals of the same plant species can show significant variations in
appearance, including growth stages and seasonal changes.

Harris (1913)

Insufficient data Limited image data for rare or endangered plants makes training effec-
tive ML models challenging.

Cong and Zhou (2023)

Complexity of background Plant images often have complex backgrounds, such as soil and other
plants, which can interfere with recognition and feature extraction.

Wang et al. (2008)

Real-time processing requirements Real-time plant identification on mobile devices faces challenges due
to high demands on processing speed and resource consumption.

Padhiary et al. (2023)

The multi-label classification problem An individual plant image may require multiple labels, like species and
disease type, increasing classification complexity.

Anh et al. (2022)

Adaptability and scalability Identification systems need good adaptability and scalability to accom-
modate new species discoveries and updated classification standards.

Rao et al. (2022)

Future trends Further applications of DL DL, especially CNNs, is effective for image recognition and has potential
for optimizing plant sample identification and categorization.

Chen et al. (2023)

The application of weakly supervised
learning and unsupervised learning

Due to high annotation costs, weakly supervised and unsupervised
learning methods using unlabelled data are expected to be more widely
adopted as cost-effective solutions.

Adke et al. (2022)

The development of fine-grained image
recognition

Fine-grained image recognition targets distinguishing highly similar
species, with future research addressing high inter-class similarity.

Šulc and Matas (2017)

The exploration of cross-domain learning
techniques

Transferring advanced technologies from other domains to plant image
recognition may help overcome specific challenges.

Chulif et al. (2023)

Increasing interpretability and
transparency

As ML models gain prominence in plant science, their interpretability
and transparency are key to understanding decision-making processes.

Paudel et al. (2023)

The usage of mobile devices and edge
computing

Mobile devices and edge computing for image capture and initial pro-
cessing will enable real-time plant recognition and data collection in the
field.

Khan et al. (2023)

The application of multimodal learning The system’s accuracy and robustness can be improved by integrating
image data with genetic and ecological information through multi-
modal learning.

Zhou et al. (2021)

The integration of cloud computing and
big data technologies

Cloud computing and big data will increasingly manage large plant
image datasets, offering improved computational resources and stor-
age.

Singh (2018)

Sustainability and environmental
monitoring applications

ML and image recognition will support plant conservation, species
monitoring, and environmental assessments, aiding sustainable devel-
opment goals.

Wongchai et al. (2022)

keyword network analysis of DL in plant research publications,
while Table 3 outlines the challenges and future trends in ML and
image recognition technologies within plant science.

In summary, we examined the usage of DL-based image recog-
nition in plant science, covering plant feature extraction, classifi-
cation, disease detection, and growth analysis. We highlight the
importance of data acquisition and preprocessing methods like
high-resolution imaging, drone photography, and 3D scanning,
as well as techniques for improving data quality. Various feature
extraction methods – such as colour histograms, shape descrip-
tors, and texture features – are reviewed for plant identification.
The development of ML models, especially CNNs, is also dis-
cussed, alongside current challenges and future prospects. Despite
progress, challenges remain. Future research should aim to apply
methods across diverse plant systems, refine data acquisition, and
enhance algorithm efficiency. Advancements will likely improve
model generalization and interpretability, with interdisciplinary
collaboration in plant biology, mathematics, and computer science
being crucial to addressing upcoming challenges.
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