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The glucoincretins, glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), are intestinal peptides secreted in response to glucose or lipid

intake. Data on isolated intestinal tissues, dietary treatments and knockout mice strongly suggest that GIP and GLP-1 secretion requires glucose and

lipid metabolism by intestinal cells. However, incretin secretion can also be induced by non-digestible carbohydrates and involves the autonomic nervous

system and endocrine factors such as GIP itself and cholecystokinin. The classical pharmacological approach and the recent use of knockout mice for the

incretin receptors have shown that a remarkable feature of incretins is the ability to stimulate insulin secretion in the presence of hyperglycaemia only, hence

avoiding any hypoglycaemic episode. This important role is the basis of ongoing clinical trials using GLP-1 analogues. Since most of the data concern

GLP-1, we will focus on this incretin. In addition, GLP-1 is involved in glucose sensing by the autonomic nervous system of the hepato-portal vein con-

trolling muscle glucose utilization and indirectly insulin secretion. GLP-1 has been shown to decrease glucagon secretion, food intake and gastric emptying,

preventing excessive hyperglycaemia and overfeeding. Another remarkable feature of GLP-1 is its secretion by the brain. Recently, elegant data showed that

cerebral GLP-1 is involved in cognition and memory. Experiments using knockout mice suggest that the lack of the GIP receptor prevents diet-induced

obesity. Consequently, macronutrients controlling intestinal glucose and lipid metabolism would control incretin secretion and would consequently be

beneficial for health. The control of incretin secretion represents a major goal for new therapeutic as well as nutrition strategies for treating and/or reducing

the risk of hyperglycaemic syndromes, excessive body weight and thus improvement of well-being.

Diabetes: Insulin secretion: Incretins: Inulin-type fructans

At the beginning of the 20th century and already 20 years before the

discovery of insulin by Banting & Best (1922), Bayliss & Starling

(1902) and Moore et al. (1906) showed that gut extract could control

carbohydrate metabolism via the pancreas in response to factors

arising from the intestine which could be used for the treatment of

diabetes. In the late 1960s it was further demonstrated that an oral

glucose load induced a higher insulin secretion than intravenously

administered glucose while blood glucose levels were similar

between the two modes of delivery, suggesting that glucose clear-

ance was different and involved different mechanisms (Fig. 1;

Perley & Kpnis, 1967). These authors importantly showed the rel-

evance of the underlying mechanism in diabetic subjects which

led to the concept of incretins (Creutzfeldt, 1979), i.e. factors

secreted by the intestine in response to an oral load of glucose or

lipid that increase glucose-stimulated insulin secretion. This

important discovery was followed by the identification and the

characterization of intestinal peptides. First, in the 1970s, the gastric

inhibitory peptide (GIP) was uncovered by Brown and Pedersen as

being part of the incretin effect (Brown & Pederson, 1970; Brown,

1971). Ten years later it was evident that another intestinal peptide,

the glucagon-like peptide-1 (GLP-1), also participated in the incre-

tin effect (Holst, 1977; Ebert & Creutzfeldt, 1982; Ebert et al. 1983;

Holst et al. 1987).

GLP-1 has been named upon sequence analysis of the

proglucagon gene, which showed that this intestinal peptide has

a high degree of homology with pancreatic glucagon (Bell et al.

1983). Interestingly, the coding sequence of a second GLP,

named GLP-2, was also present on the same gene (Fig. 2). The

precursor peptide containing all three hormones was named the

pre-proglucagon or ‘big glucagon’. The corresponding gene is

expressed in the intestine (L cells), the pancreatic islets (a-cells)

and in the brain (Drucker, 1990; Creutzfeldt, 1992; Thorens &

Waeber, 1993; Holst, 1997; Blazquez et al. 1998; Nauck, 1998;

Goldstone et al. 2000). The tissue-specific release of intestinal

GLP and pancreatic glucagon is due to the combined action of

pro-convertases named PC1/3, PC2, furin and carboxypeptidases

(Orskov et al. 1987; Rouille et al. 1994, 1995; Fig. 2). A remarkable

feature of GLP-1 is to be entirely conserved among all

mammalian species where the corresponding gene has been cloned.

The GIP is also produced as a propeptide but the corresponding

gene codes for only one functional peptide, GIP (Moody et al.

1984; Takeda et al. 1987; Creutzfeldt, 1992).

The biological effects of incretins have mainly been focusing on

the increased responsiveness to glucose of pancreatic b-cells for the

secretion of insulin. A large number of review papers based on more

than 800 manuscripts report mechanisms underlying incretin-stimu-

lated insulin secretion. It is beyond the scope of this review to detail

all these papers. It will rather focus on evidences showing that the

incretins, and precisely GLP-1, could control glucose metabolism

throughout the regulation of the autonomic nervous system. The

data would be interpreted with regard to the putative role that the

non-digestible oligosaccharides including inulin-type fructans

may have on incretin’s secretion and actions.

Regulation of glucoincretin secretion

The L cells secreting GLP-1 are largely distributed in the lower

gut ileum, colon and even rectum (Holst, 1994; Orskov et al.
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1994). The biologically active GLP-1 is secreted as a 7–37 or

7–36 amide peptide while the K cells releasing GIP, as a 42

amino acid sequence, are present essentially in the duodenum

(Buchan et al. 1978). However, both peptides are inactivated

by an aminopeptidase, the dipeptidyl peptidase IV (DPPIV),

which is produced in high amounts by intestinal epithelial cells

(Deacon et al. 1995a). The enzyme removes the two first

amino acids histidine–alanine leaving a totally inactive form

of the circulating peptide (Fig. 2). Hence, the half-life of the bio-

logically active GLP-1 is of the order of 30 s. Consequently, a

small fraction, less than 10 %, of the active peptide reaches the

arterial blood stream to target the organs and an incretin gradient

exists between the mesenteric/hepato-portal veins and the hepatic

artery. The postprandial increase of incretin secretion is 5- to 10-

fold compared to the fasting levels. However, the amount of bio-

logically active peptide in the systemic blood is much lower than

the secreted amount (Orskov et al. 1994, 1996; Deacon et al.

1995b; Herrmann et al. 1995; Rocca & Brubaker, 1995; Schirra

et al. 1996). This already suggests that, since they are mostly

degraded as soon as they are produced, the incretins should

have a local role, i.e. at the vicinity of the mesenteric veins or

the portal vein. Moreover, modifying the half-life of incretins

(e.g. via changes in nutrition) could have significant effects.

For example, one could suggest that the known effect of

inulin-type fructans on intestinal epithelial growth could orig-

inate from a change in the cell composition of the intestinal

wall and hence of the relative proportion of the DPPIV expres-

sing cells. Consequently, the secreted incretins would be more

or less degraded. However, whether the rapid degradation of

incretins is an important regulatory mechanism avoiding their

excessive action remains to be determined. In addition, one

could also speculate that small molecules issued from inulin-

type fructans fermentation by the intestinal flora could release

Fig. 1. Oral glucose absorption induced higher plasma insulin levels than

intravenous glucose injection. (A) Plasma insulin and (B) plasma glucose

concentrations in mice injected with glucose orally or intravenously (personal

data). The data show that while the glycaemic levels were similar

in both groups of mice, the plasma insulin concentration was dramatically

higher in the mice receiving glucose orally. This effect is attributed to the

incretins glucagon-like peptide-1 and gastric inhibitory peptide being secreted

by the intestine in response to oral glucose only.

Fig. 2. Proglucagon processing leads to the secretion of glucagon-like peptide-1 (GLP-1) and other related peptides in intestinal L cells. The pre-proglucagon pep-

tide is composed of a signal peptide, a glicentin-related polypeptide (GRPP), glucagon, GLP-1, GLP-2, and intervening sequences (IP). The pre-proglucagon is

first matured into proglucagon when a peptidase removes the signal peptide sequence. The proglucagon is then matured into GLP-1, GLP-2 and glicentin by the

action of pro-convertases (ProC) and carboxypeptidases (CpE). The GLP-1 produced is then rapidly inactivated by the dipeptidyl peptidase IV (DPPIV) that

removes the His–Ala residue in the N-terminal.
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DPPIV inhibitors preventing the massive degradation of GLP-1

in the colon.

The incretin secretagogues are numerous, being nutrients, essen-

tially carbohydrates and lipids (Knapper et al. 1995; Ritzel et al.

1997), hormones, cholecystokinin, GIP itself (Fukase et al. 1992;

Roberge et al. 1996; Damholt et al. 1999), miscellaneous neur hor-

mones and neuromediators (Ikeda et al. 1993; Balks et al. 1997).

The most potent secretagogue seems to be a mix of fat and

carbohydrate (Nordt et al. 1991; Knapper et al. 1995). While the

metabolism of carbohydrate might be important for the secretion

of GLP-1, it is not considered essential. Indeed, even though numer-

ous carbohydrates including glucose, fructose and galactose induce

GLP-1 secretion (Ritzel et al. 1997), whereas inhibitors of glucose

metabolism such as 2-deoxyglucose and glucosamine inhibit GLP-1

secretion (Ritzel et al. 1997), still other data show that non-metab-

olized carbohydrate such as 3-O-methylglucose and methyl-a-D-

glucoside stimulates GLP-1 secretion (Ritzel et al. 1997). This

last piece of evidence suggests that other carbohydrate-derived

structures like non-digestible inulin-type fructans could control

GLP-1 secretion through a mechanism not involving their fermenta-

tion. Whether receptors at the luminal side of the intestinal cells

could be activated by inulin-type fructans remains to be determined.

The secretion of GLP-1 is, however, dependent upon the integrity of

the autonomic nervous system and essentially upon the signal sent

by the vagus nerve (Nauck et al. 1996; Wettergren et al. 1997). In

addition to nutrients, it has been shown, in a fetal rat intestinal

cell model, that the secretion of glucagon-like immunoreactive pep-

tides was stimulated by choleocystokinin-8 (Fehmann et al. 1990,

1991), a gastrin-releasing peptide, calcitonin gene-related peptide

and by GIP, with GIP being the most potent factor at least in rodents

(Brubaker, 1991). Similarly, in isolated rat intestinal tissues, the

cholinergic agonist betanechol stimulated the secretion of GLP-1

while atropin inhibited the effect, revealing the role of the auto-

nomic nervous system (Herrmann-Rinke et al. 1995). GLP-1

secretion was inhibited by somatostatin (Brubaker, 1991).

In addition, the activation of neuroendocrine factors and of the para-

sympathetic nervous system during intestinal glucose delivery has

been shown to stimulate GLP-1 secretion (Plaisancie et al. 1995;

Plant & Durrant, 1997; Rocca & Brubaker, 1999).

Effect of inulin-type fructans on secretion of glucagon-like

peptide-1

Few reports are available with regard to the role of inulin-type

fructans on the control of incretin secretion. It has been reported

that rats given a diet supplemented with 30 % inulin-type fruc-

tans for 2 weeks had significantly increased plasma GLP-1

and insulin levels following an oral glucose load (Reimer &

McBurney, 1996; Kok et al. 1998a,b). Consequently, the glycae-

mic level of the rats was lower. In addition, GIP and GLP-1

concentrations were significantly higher in the serum of oligo-

fructose-fed rats and the caecal GLP-1 pool was also higher.

This latter data was related to an increased GLP-1 positive

cell proliferation. Indeed, ileal proglucagon mRNA was

increased, suggesting an additional trophic effect of inulin-type

fructans on intestinal epithelial cells (Kok et al. 1998a). This

effect was proportional to the amount of oligofructose in the

diet. The improved glycaemic control could also be due to

increased insulin sensitivity or through mechanisms independent

of insulin action.

Incretins stimulate insulin secretion

Extended data show that incretins stimulate insulin secretion.

After the cloning of the corresponding receptors, it was shown

that the cellular mechanisms involve the intracellular increase

of cAMP and Ca fluxes (Goke et al. 1989; Fridolf & Ahrén,

1991, 1993; Gallwitz et al. 1993; Thorens & Waeber, 1993; Tho-

rens et al. 1993; van Eyll et al. 1994; Widmann et al. 1994; Holz

et al. 1995; Volz et al. 1995). The cAMP activates protein kinase

A that mediates numerous actions triggering the exocytosis of

insulin. The most remarkable effect of incretins is the ability

to stimulate insulin secretion only in the presence of glucose

stimulatory concentrations increasing b-cell glucose responsive-

ness. The number of reports detailing this observation is too

large to be uniformly cited and only major observations are

referred to (Kreymann et al. 1987; Mojsov et al. 1987; Orskov

et al. 1988, 1996; Shima et al. 1988; Nathan et al. 1991;

Goke et al. 1993; Holz et al. 1993; Nauck et al. 1993a; Zawalich

et al. 1993; Hargrove et al. 1995; Jehle et al. 1995; Kolligs et al.

1995; Qualmann et al. 1995; Volz et al. 1995; Wang et al. 1995;

Zawalich & Zawalich, 1996; Drucker, 1998; Ahrén & Pacini,

1999; Tseng et al. 1999). Consequently, insulin secretion

would stop when plasma glucose starts dropping below the phys-

iological concentration of approximately 5 mM, preventing the

occurrence of iatrogenic hypoglycaemia. This characteristic

makes incretins major candidates for the treatment of hypergly-

caemic syndromes (Nauck et al. 1993c; Byrne & Goke, 1996;

Holst, 1996; Nauck, 1996; Willms et al. 1996; Ahrén et al.

1997; Goke et al. 1997; Burcelin et al. 1999; Juhl et al. 2000).

Another strategy to improve the glycaemic control of

diabetic patients and which has been largely used is based

upon the inhibition of DPPIV (Ahrén et al. 2000). One would

suggest that due to the lack of specificity of the enzyme, the

inhibitor might affect a large number of other neuropeptides.

However, such secondary effects have not been reported and

hence the strategy seems promising for the treatment of non-

insulin dependent diabetes mellitus (NIDDM). No genetic

association has been observed with mutations in the GLP-1

receptor (Tanizawa et al. 1994; Zhang et al. 1994), suggesting

that compensatory mechanisms via the GIP secretion might

exist. Hence, studies with double mutations on both incretin

receptors should shed some light upon the important role of

the intestinal hormones for the control of glucose metabolism.

The secretion profiles of incretins during diabetes and obesity

have been reported but there are still discordant data. First

reports showed that in twins with NIDDM, GLP-1 secretion

was decreased during oral glucose ingestion (Vaag et al.

1996). However, the intensity of the diseases and the presence

of family members with diabetes were associated with the

impaired GLP-1 secretion. In this study GIP secretion was

normal. In obese patients, it has been reported that secretion of

both GIP and GLP-1 was excessive following an oral glucose

load. This impairment was more pronounced in obese diabetic

patients, suggesting that chronic hyperglycaemia would maintain

high levels of incretin delaying the appearance of diabetes

(Fukase et al. 1993). However, another report shows that

GLP-1 secretion is preserved during diabetes, while GIP is

reduced (Nauck et al. 1993b). The origin of these discrepancies

is not yet understood but could be related to the multiplicity of

the aetiology of diabetes.
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Incretins regulate glucose homeostasis through non-b-cell

mediated effects

In addition to the effects of incretins on insulin secretion, the

improved glycaemic control of GLP-1-treated NIDDM patients

is associated with a glucagonostatic effect of the intestinal hor-

mone. Indeed, glucagon secretion is reduced in hyperglycaemic

patients when infused with GLP-1 (Orskov et al. 1988; Komatsu

et al. 1989; Creutzfeldt et al. 1996). Similarly to insulin, the low-

ering of plasma glucagon level is stopped when glycaemia drops

below normal levels. However, it is unclear whether GLP-1

receptors are present at the surface of the a pancreatic cells

(Campos et al. 1994), which would suggest that the regulatory

effect of incretins would be on other cells connected to the a pan-

creatic cells such as brain cells (Shimizu et al. 1987; Kanse et al.

1988; Uttenthal et al. 1992; Campos et al. 1994; Goke et al. 1995;

Wei & Mojsov, 1995; Alvarez et al. 1996). Indeed, the glucagon

secretion is strongly dependent upon the autonomic nervous

system (Rizza et al. 1979; Cryer, 1981; Gerich et al. 1990).

Glucose sensors mostly located in the brain detect glycaemic vari-

ations and send a signal towards the pancreas to control glucagon

secretion (Oomura et al. 1969, 1974; Oomura, 1981; Biggers et al.

1989; Frizzell et al. 1993). We recently showed that this message

was dependent upon the expression of the extra-pancreatic glu-

cose transporter GLUT2 (Burcelin & Thorens, 2001).

The GLP-1 receptor has been described several times in cer-

ebral cells (Shimizu et al. 1987; Kanse et al. 1988; Uttenthal

et al. 1992; Campos et al. 1994; Goke et al. 1995; Wei &

Mojsov, 1995; Alvarez et al. 1996). Its functions have not been

elucidated but could, at least in part, be associated with cognition

and memory (During et al. 2003; Mattson et al. 2003). Indeed,

when GLP-1 was administered into the cerebral ventricle of

rats, the latency to a task was reduced as a matter of increased

spatial learning. The co-infusion of exendin 9–39 completely

blocked the effect of GLP-1. Interestingly, this effect was cholin-

ergic-dependent since the injection of the cholinergic receptor

agonist arecolin enhanced the effect of GLP-1. Similarly, the

latency to learning of GLP-1 receptor knockout mice was

increased when compared to control mice (During et al. 2003).

Since hippocampus regions control the learning and memory

mechanisms, this represents a target for memory-enhancing

drug development. Such brain location expresses GLP-1 receptor

and the reduced learning phenotype of the corresponding knock-

out mice could be rescued by the injection into the hippocampus

of an adeno-associated virus expressing the GLP-1 receptor

(During et al. 2003). Quantification by RT-PCR of GLP-1 recep-

tor gene expression also shows that there is an up-regulation of

the gene expression following training in an associative learning

paradigm. The GLP-1 receptor knockout mice were also more

sensitive to kainate administration induced seizure and neuronal

injury (During et al. 2003), suggesting a neuroprotective effect

of GLP-1. This new concept would be due to the stimulation of

the brain hippocampus regions by the intestine-released hormone

GLP-1. The subtlety of the interpretation resides in the fact that it

is probably not the GLP-1 released from the intestine that triggers

the hippocampus and increases learning but rather the GLP-1

released by some cerebral cells into the hippocampus that pro-

vides neural and social plasticity. Indeed, GLP-1 is present in

the brain (Kreymann et al. 1989; Yoshimoto et al. 1989; Blazquez

et al. 1998; Donahey et al. 1998; van Dijk & Thiele, 1999; Gold-

stone et al. 2000; Gulpinar et al. 2000; Rodriquez de Fonseca

et al. 2000). This incretin is mostly distributed in the brain

stem nucleus such as the nucleus solitarius (Goldstone et al.

2000) and its distribution seems not to change during streptozoto-

cin-induced diabetes. The GLP-1 receptor and the GLP-1 were

mostly localized in the same nuclei and induced cAMP formation

(Shimizu et al. 1987). GLP-1 in the brain has been proposed to

control water and food intake (Turton et al. 1996; Furuse et al.

1997; Donahey et al. 1998; Gulpinar et al. 2000; Rodriquez de

Fonseca et al. 2000) and taste aversion (Thiele et al. 1997).

The intracerebroventricular injection of GLP-1 powerfully inhi-

bits feeding in fasted rats (Turton et al. 1996). The injection of

exendin 9–39 blocks the inhibitory effect of GLP-1 and potenti-

ates the effect of orexigenic factors such as neuropeptide Y. To

determine the cerebral structures involved, the authors have quan-

tified c-fos as a marker of neuronal activation. Following GLP-1

injection, c-fos exclusively appeared in the paraventricular

nucleus of the hypothalamus and the central nucleus of the amyg-

dala. The labels were masked by the injection of exendin 9–39. In

addition, leptin injection increased GLP-1 production in the brain

stem (Goldstone et al. 2000); it was therefore suggested that part

of the anorectic effect of leptin could be mediated via the release

of GLP-1. Hence, inulin-type fructans activating the release of

GLP-1 into the brain by stimulating the vagus nerve signal

would enhance memory and cognition.

Incretins control the autonomic nervous system

During a meal, the intestine absorbs energetic nutrients, such as glu-

cose and lipids. While lipids reach the lymphatic stream and are

delivered to the systemic circulation, carbohydrates are delivered

directly to the hepato-portal vein. A positive gradient of carbo-

hydrate concentration between the hepato-portal vein and the arter-

ial blood is thus established (Fig. 3). Glucose-sensitive units present

in the hepato-portal vein detect this gradient (Niijima, 1969;

Pagliassotti et al. 1991, 1996) and send a signal through the hepatic

branch of the vagus nerve to target tissues such as the liver (Niijima,

1985; Gardemann et al. 1986; Moore & Cherrington, 1996; Moore

et al. 1996; Stumpel & Jungermann, 1997), the hypothalamus

(Schmitt, 1973; Shimizu et al. 1983), insulin-secreting b-cells

(Berthoud et al. 1983), the brain stem (Adachi et al. 1984) and the

adrenal glands (Hevener et al. 1997, 2000). The specific cellular

functions that are activated then participate to the adaptation of

the body to the new metabolic situation. We previously described

that one of the consequences of activating the hepato-portal glucose

sensor was to increase blood glucose clearance (Fig. 4) and utiliz-

ation in a subset of tissues, mostly heart, soleus and brown adipose

tissue (Burcelin et al. 2000b). The activation of whole body glucose

clearance induced a paradoxical hypoglycaemic state (Fig. 4). We

also showed that activation of this sensor was inhibited by somato-

statin and that it required the presence of the glucose transporter

GLUT2 (Burcelin et al. 2000a). Along the same line of investigation

we infused GLP-1 and glucose into the portal vein of normal mice

(Burcelin et al. 2001). The infusion of GLP-1 did not modify

portal glucose sensitivity. In the presence or absence of portal

GLP-1 infusion, plasma insulin levels and glucose clearance were

similarly increased by glucose, suggesting that portal GLP-1 has

no role on the nervous reflex stimulating insulin secretion and glu-

cose clearance. However, when the same experiment was performed

in GLP-1 receptor knockout mice, hyperglycaemia developed

during the portal glucose infusion suggesting that the receptor was

important (Fig. 5). We further identified the location where the
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GLP-1 receptor was important by infusing the inverse agonist exen-

din 9–39 via different routes. No effects were detected when the

exendin 9–39 was infused into the systemic circulation (i.e. through

the femoral vein). However, when the peptide was infused

along with glucose into the portal vein, hyperglycaemia rather

than hypoglycaemia developed suggesting that, in the portal vein,

the GLP-1 receptor provided the sensitivity to glucose (Fig. 5).

During the portal glucose infusion, plasma insulin did also increase.

Few reports suggest that sensory nerves could contribute to insulin

secretion via an indirect route involving the enteric autonomic

Fig. 3. Incretin-mediated effects. After oral glucose absorption, the incretins are released into the portal vein that then reach the systemic circulation and stimulate

insulin secretion. In addition, glucose is absorbed and accumulates into the hepato-portal vein. A glucose sensor detects the glycaemic variations and sends a sig-

nal mediated by the autonomic nervous system (ANS) to the peripheral tissues. The glucagon-like protein-1 receptor in the hepato-portal sensor is necessary for

the transmission of the glucose signal towards peripheral tissues. Consequently, hepatic glucose production, muscle glucose utilization, insulin and glucagon

secretions, memory and cognitive functions are controlled by endocrine and neural routes both dependent upon the release of incretins.

Fig. 4. Portal glucose infusion increased glucose clearance and induced a paradoxical hypoglycaemic state. Glucose or saline (S) was infused at a low rate into

the hepato-portal vein (P) to activate the corresponding sensor or into the femoral vein (F) as a negative control. (A) Glucose clearance was increased in mice

infused with glucose into the portal vein, while only a small effect was observed in the femoral infused mice. (B) The portal glucose infusion but not the femoral

glucose infusion induced hypoglycaemia. (C) Plasma insulin levels were increased by the portal glucose infusion despite hypoglycaemia, suggesting a reflex acti-

vated by the portal glucose sensor and independent of the peripheral glycaemic level. Plasma insulin concentration rose in the blood of femoral infused mice as a

consequence of hyperglycaemia. Adapted from Burcelin et al. (2000b).
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nervous system. It has been demonstrated that the augmentation of

glucose-stimulated insulin secretion induced by intraportal admin-

istration of GLP-1 is abolished by a ganglion blocker in

rats (Balkan & Li, 2000). Moreover, the intraportal administration

of GLP-1 activates electrical activity in hepatic afferents in rats

(Nakabayashi et al. 1996). It is suggested that GLP-1 may activate

afferent nerve endings that, through a neural effect, stimulate insulin

secretion elicited by the autonomic nervous system innervating the

islets. To test such hypothesis, it has been reported that the perma-

nent sensory inactivation by neonatal capsaicin injection blunted

the indirect stimulation of glucose-induced insulin secretion

(Ahrén, 2004). Similarly, we analysed insulin secretion in GLP-1

receptor knockout mice in response to oral or intraperitoneal

glucose load. The data showed that insulin secretion, 2 min after

the oral glucose load, was increased in control mice but strongly

reduced in mutant mice (Fig. 6). At this time point the mice were

still euglycaemic. The early insulin peak of secretion was not

observed in GIP receptor knockout mice, suggesting that the

neural control of the regulatory loop was restricted to the action of

GLP-1 on the autonomic nervous system. This is in agreement

with the very short half-life of GLP-1 and its release site, i.e. the

hepato-portal vein.

Another enteric born-regulatory loop is the inhibition of gastric

emptying. Human studies show that, when glucose was given

orally, gastric emptying was activated and that the emptying of

glucose was controlled by the release of GLP-1. This indeed

suggests that, while gastric emptying is controlled by GLP-1,

the hormone secretion is also controlled by gastric emptying

allowing the persistence of glucose into the gut and hence the

secretion of more GLP-1. This regulatory loop was, however,

not observed for GIP (Schirra et al. 1996). Gastric emptying

has been assessed in diabetic patients showing that GLP-1 inhi-

bits gastric emptying together with the stimulation of insulin

and the inhibition of glucagon secretion. These effects probably

contribute to the blood glucose-lowering action of GLP-1 when

studied after meal ingestion (Willms et al. 1996; Young et al.

1996). The role of GLP-1 in the control of gastric emptying, is

dependent upon the integrity of the vagus nerve. Indeed, the

vagal afferent enervation and the peripheral administration of

exendin 9–39 enhanced gastric emptying, suggesting a motor

role of the vagus nerve. This was confirmed by the cerebral

Fig. 5. The glucagon-like protein-1 (GLP-1) receptor is required for hepato-

portal vein glucose sensing. GLP-1 receptor knockout mice were infused with

glucose into the portal vein (Po in GLP-1 Rc KO). In these animals hypergly-

caemia rather than hypoglycaemia developed, suggesting a role of the GLP-1

receptor in the maintenance of glucose responsiveness. In control mice glu-

cose was infused in the presence of exendin 9–39 (the inverse agonist of the

GLP-1 receptor) into the portal vein (Po þ Ex in Cont) or into the femoral vein

(Po þ fEx in Cont). Hyperglycaemia developed with exendin 9–39 when

infused with glucose into the portal vein but not into the femoral vein, denoting

that the GLP-1 receptor in the portal vein was important to maintain the glu-

cose responsiveness of the sensor.

Fig. 6. The glucagon-like protein-1 (GLP-1) receptor is necessary for the early stimulation of insulin secretion during oral glucose absorption. Mice underwent an

oral glucose injection and plasma insulin levels were assessed 2 and 30 min later. The figure shows that the GLP-1 receptor and gastric inhibitory peptide (GIP)

receptor knockout mice are glucose-intolerant and that the double mutant is even more glucose-intolerant. Insulin secretion was not induced after 2 min in the

absence of the GLP-1 receptor only, showing the GLP-1-dependent regulatory reflex. The GIP receptor was not involved in this process. In addition, plasma insu-

lin concentration was reduced after 30 min in all mutant mice showing the role of the incretin receptor at the level of the b-cell. The inset of (A) shows the area

under the curve (AUC) of the glucose tolerance test.
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injection of GLP-1 which could delay gastric emptying while no

effect was observed when the vagal nerve was cut earlier (Imer-

yuz et al. 1997).

Lessons from genetically engineered mice

The incretin receptors have been knocked out in the mouse.

The first study on the GLP-1 receptor knockout reported that

the mice developed normally, but exhibited increased levels of

blood glucose following oral glucose challenge (Scrocchi et al.

1996). This was associated with a reduced circulating insulin

level. The intracerebroventricular administration of GLP-1 did

not produce its satiating effect in the mutant mice, but no differ-

ence in body weight or feeding behaviour was noticed. Similarly,

mice with a targeted mutation of the GIP receptor have higher

blood glucose and impaired initial insulin response after oral glu-

cose load although glycaemia was normal after a meal (Miyawaki

et al. 1999). When fed a high-fat diet, the knockout mice were still

normoglycaemic but with dramatically increased insulin secretion

as a compensatory mechanism. The GIP receptor is more widely

expressed in the body than the GLP-1 receptor. Noteworthy, it is

expressed in adipose tissue, which is now considered as an import-

ant regulator of glucose homeostasis. In addition to the action of

incretin on insulin secretion, the present study shows that the use

of mutant mice for the corresponding receptors has uncovered

the major role of GLP-1 in the activation of extra-pancreatic

glucose sensors for the control of glucose metabolism. However,

due to the multicellular distribution of the incretin receptors,

tissue-specific deletion would nail down the role of each receptor

for the control of nutritional homeostasis.

Conclusion

The secretion of incretins in response to nutrients leads to:

(1) the control of pancreatic insulin and glucagon secretions;

(2) the maintenance of extra-pancreatic glucose sensitivity;

(3) the regulation of gastric emptying and food intake;

(4) the maintenance of cognitive functions and memory.

Consequently, all these effects are major regulators of glucose

and lipid homeostasis affecting secondarily body weight. Whether

nutrients like inulin-type fructans can positively interfere with the

incretin system remains to be assessed using appropriate analyses

in adapted animal models of nutritional diseases and genetically

engineered mice to bring out the molecular bases of the action

of inulin-type fructans on digestive functions.
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