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Abstract. Since Kripke, philosophers have distinguished a priori true statements from
necessarily true ones. A statement is a priori true if its truth can be established before experience,
and necessarily true if it could not have been false according to logical or metaphysical laws.
This distinction can be captured formally using two-dimensional semantics.

There is a natural way to extend the notions of apriority and necessity so they can also
apply to questions. Questions either can or cannot be resolved before experience, and either
are or are not about necessary facts. Classical two-dimensionalism has no account of question
meanings, so it has to be combined with a framework for question semantics in order to capture
these observations. It is shown in [14] how two-dimensional semantics can be combined with
inquisitive semantics, in which questions are analyzed in terms of information. The present
paper investigates the logic of two-dimensional inquisitive semantics, and provides a complete
proof system.

§1. Introduction.

1.1. A priori and necessary truth. An adequate analysis of the meaning of sentences
has to make a distinction between a priori and necessary truths [11]. A statement is
called a priori true if its truth can be established before experience, which means it is
true irrespective of the situation in which it is used. An example is (1):

(1) I am here now.

Although every context may provide different referents for ‘I’, ‘here’ and ‘now’,
whatever the statement expresses in a context will always be true in that context.
This is why we don’t need to have information about what the world is like to know
that it is true.

In contrast, a statement is necessarily true if what it expresses could not have been
false, according to logical or metaphysical laws. An example is (2):

(2) Hesperus is Phosphorus.

Given that ‘Hesperus’ and ‘Phosphorus’ both refer to Venus, this identity statement
expresses that Venus is identical to itself, which Kripke considers to be a necessary
fact.1

A statement can be a priori true but fail to be necessarily true, for instance, because
of the indexicals it contains, as is the case in (1). We can tell, purely based on the
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meaning of the words, that this sentence can only be truthfully stated. On the other
hand, the fact that is expressed here might have been false, as the speaker could have
been somewhere else at this time.

Conversely, a necessary truth like (2) can fail to be true a priori: without knowledge
of what the world is like, we can fail to know that these names refer to the same object,
and thus we cannot be certain it is true.

Several authors (Stalnaker [13] and Kaplan [9], among others) have used a two-
dimensional semantics in order to formally capture the distinction between necessity
and apriority. In a two-dimensional semantics, statements are not evaluated relative
to a single index but to a pair of indices. The first index provides the referents for
indexicals (and in some cases proper names), while we check whether the sentence is
true or false relative to the second index. Although these indices are not always (both)
viewed as possible worlds, we will for the sake of simplicity refer to the first index as
the actual world and to the second index as the evaluation world.

To check if a statement is necessarily true in a world, we keep the actual world
fixed, while varying only the evaluation world. In other words, we check whether the
proposition expressed by the statement in the actual world is true in all worlds. To
check whether a statement is a priori true, we vary both worlds, but we only look at
those pairs in which the actual world and the evaluation world are the same. In this
way, we check whether the proposition expressed by the statement in a world is true in
that world itself.

We say that a statement is a posteriori if neither the statement itself nor its negation
is a priori, and contingent if neither the statement itself nor its negation is necessary.

1.2. A priori and necessary questions. There is a natural way to extend the notions
of apriority and necessity so they can also apply to questions. Questions either can or
cannot be resolved without knowledge about the world, and either are or are not about
necessary facts. For instance, (3) is intuitively a priori:

(3) Am I here now?

This question can be resolved without any knowledge of what the world is like, or even
who asks the question. But at the same time we would say that, given a context that
provides referents for the indexicals, the question whether this person is at that place at
that time is contingent, because it can be resolved in more than one way. Now consider
(4). Unlike (3), this question cannot be resolved without knowledge of the world:

(4) Who am I?

We might fail to have enough information to resolve (4), because we might not know
who is speaking. Therefore this question is not a priori. But in this case, given a referent
for ‘I’, the question is (on Kripke’s understanding of these notions) about a necessary
fact: if identity is necessary, then it is not contingent who I am.2

Standard two-dimensional semantics cannot capture these facts, because apriority
and necessity are defined in terms of truth and questions lack a truth value. In order to
overcome this, Van Gessel [14] develops a combination of two-dimensional semantics

2 Note that contingency and aposteriority apply naturally to questions as well: it is a posteriori,
but not contingent, who I am (we can fail to know who speaks, but identity is necessary), and
it is contingent, but not a posteriori, whether I am here now (I could have been somewhere
else, but I always have enough information to resolve this question).
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and inquisitive semantics [3], in which questions are analyzed directly in terms of
resolution conditions: the meaning of a question is equated with the set of information
states in which it is resolved. In inquisitive semantics, it is natural to generalize the
notions of apriority and necessity that already exist in the literature in such a way that
they can apply to questions and statements uniformly. While necessary truth and a
priori truth are formalized as truth relative to some particular pairs, in two-dimensional
inquisitive semantics sentences can be necessarily resolved or a priori resolved, which
means being resolved relative to some particular information states.

The present paper is concerned with the logic that this combination gives rise to,
which we will call two-dimensional inquisitive logic (Inq2D). For simplicity, we will
work with the propositional variant here. The main ingredients of this system are an
operator with which questions can be formed, as well as three modal operators: apart
from apriority and necessity, it has a modal operator for actuality, which plays the role
of an indexical.3

The ‘classical’ (that is, non-inquisitive) variant of this logic is the one described
in [6, 7]. I will generalize this system to the inquisitive setting in order to be able to
express statements about the necessity and apriority of questions, such as (5), as well
as questions about the necessity and apriority of statements and questions, as in (6).4

(5) It is a priori whether ϕ.

(6) a. Is it a priori that ϕ?
b. Is it a priori whether ϕ?

The rest of this paper is set up as follows. In Section 2 I will introduce the semantics of
Inq2D. I will then give an alternative completeness proof for the classical fragment of
Inq2D in Section 3. The details of the completeness proof for the full language will be
given in Section 4.

§2. Two-dimensional inquisitive logic.

2.1. Language. The language of Inq2D is defined as follows:

Definition 2.1 (Logical language).

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ �

ϕ | ϕ → ϕ | �ϕ | Aϕ | �ϕ.
We define the usual abbreviations:

¬ϕ := ϕ → ⊥ ϕ ∨ � := ¬(¬ϕ ∧ ¬�) ?ϕ := ϕ

� ¬ϕ.
In short, we extend the basic inquisitive logic InqB (following the notation conven-

tions of [1]) with operators to express necessity (�), actuality (A) and apriority (�).
Necessity and apriority operate on different levels: the former is a property of

propositions, while the latter is a property of propositional concepts (or, in Kaplanian
terms, of content and of character, respectively). However, there are reasons for

3 In a first-order setting, other indexicals like ‘I’ and ‘here’ can be considered, but these are
not available in a propositional language.

4 Strictly speaking, (5) can also be expressed in the classical variant, because it admits a
paraphrase in which no questions occur. For instance, assuming ϕ is classical itself, (5) can
be paraphrased as ‘either ϕ is a priori or ¬ϕ is’. Such a paraphrase is not available for the
examples in (6).
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considering apriority as part of the logical language rather than as a meta-logical
notion, and therefore operating on the same level in the formalization as necessity.
First, it is interesting to study the interactions between apriority and necessity (see,
for instance, the analysis of the nesting problem in [6]). Second, it makes sense to
embed claims about apriority of sentences under logical operators, like negation and
question-forming operators.

2.2. Semantics. Our semantics will operate on the same models as the ones used in
[6, 7].5

Definition 2.2 (Matrix frame). A matrix frame is a structure 〈W,R�, RA,R�〉, where:

• W =W ′ ×W ′ for some set of worldsW ′;
• 〈w, v〉R�〈w ′, v′〉 ⇐⇒ w = w ′;
• 〈w, v〉RA〈w ′, v′〉 ⇐⇒ w = w ′ = v′;
• 〈w, v〉R�〈w ′, v′〉 ⇐⇒ w ′ = v′.

We define: D = {〈w, v〉 ∈W | w = v}.
We can think of matrix frames as diagrams in which the elements ofW ′ are both on

the vertical and the horizontal axis, and the pairs in W are coordinates. A pair 〈w, v〉
is an evaluation point that takes w to be the world considered as actual and v to be the
world of evaluation.

If w and v are the same, then the actual world is the evaluation world, which can
be considered the normal situation. However, we also need pairs in which w and v are
different, namely to evaluate expressions in a different world than the one in which
they are uttered. As we will see, this is the case only if we are evaluating expressions
embedded under �. For example, it is true in w that John could have been somewhere
else than where he actually is, if there is a pair 〈w, v〉 such that John is in a different
place in v than where he is in w.

The relation R� connects a pair to all the pairs on the same row. This means that
it considers other worlds of evaluation, while keeping the actual world constant. The
relation RA looks at the unique ‘actual pair’ within the row. That is, it connects any
〈w, v〉 to 〈w,w〉.

D is the set of all these ‘actual pairs’: pairs in which the same world is contained
twice. It is also called the diagonal because of the position these pairs are in when we
draw a matrix. D will be the set of distinguished elements on which consequence and
validity will be defined. R� connects each pair simply to all pairs on the diagonal. See
Figure 1 for an illustration of the relations in a matrix frame.

As usual in inquisitive semantics, we will evaluate sentences not relative to single
points in the model but relative to sets of them—in this case, not sets of worlds but sets
of pairs of worlds. We will call any subset of W an information state and use the term
diagonal information state for subsets of D.

We can think of an information state s as something that gives us incomplete
information about what the actual world is (namely, it is one of the worlds w such
that 〈w, v〉 ∈ s for some v). In a similar way, it gives us information about what the

5 There are some notational differences between Fritz’ papers and the present one: Fritz uses
A for apriority and @ for actuality. I use � for apriority and A for actuality. Also the order of
the elements in the pairs is reversed: in the pair 〈w, v〉 the actual world is w and the evaluation
world is v.
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A
Fig. 1. Relations in matrix frames (transitive arrows omitted).

world of evaluation is (namely, one of the worlds v such that 〈w, v〉 ∈ s for some w).
On top of this, it also gives us information about how the two relate: for instance, the
information state {〈w,w〉, 〈v, v〉} also tells us that the actual world and the evaluation
world are the same.

Not all information states in the model represent natural states of information for a
person to be in. In fact, a person can be assumed to always be in a diagonal information
state: we might not know what the actual world is or what the evaluation world is, but we
can always know that these two are the same. Like non-diagonal pairs, non-diagonal
information states are only present in the model to evaluate expressions embedded
under �.

A matrix model is any matrix frame extended with a valuation function V, which
will be defined as follows: instead of assigning a set of worlds to each propositional
atom, it assigns a set of pairs of worlds, so a set of elements of W.

Whenever p represents a sentence with an indexical, like ‘I am hungry’, its truth
will depend not only on the world of evaluation (which determines whether the person
denoted by ‘I’ is indeed hungry), but also on what the actual world is (which determines
how the indexical is resolved). Therefore, the valuation may make it true in 〈w, v〉 but
false in 〈w′, v〉. Atoms whose truth does not at all depend on the left element of pairs
can be considered to represent sentences without indexicals or proper names.

We are now ready to give the semantics for Inq2D, which is a special case of inquisitive
Kripke modal logic (InqBK) as presented in [1].6

Definition 2.3 (Support conditions). For � ∈ {�, A,�} : let ��(x) = {y | xR�y}.

• s |= p ⇐⇒ s ⊆ V (p);
• s |= ⊥ ⇐⇒ s = ∅;
• s |= ϕ ∧ � ⇐⇒ s |= ϕ and s |= �;
• s |= ϕ �

� ⇐⇒ s |= ϕ or s |= �;
• s |= ϕ → � ⇐⇒ for all t ⊆ s : t |= ϕ implies t |= �;
• s |= �ϕ ⇐⇒ for all 〈w, v〉 ∈ s : ��(w, v) |= ϕ;
• s |= Aϕ ⇐⇒ for all 〈w, v〉 ∈ s : �A(w, v) |= ϕ;
• s |= �ϕ ⇐⇒ for all 〈w, v〉 ∈ s : ��(w, v) |= ϕ.

We write s |= ϕ for ‘s supports ϕ’, which means that the information in s already
contains the information conveyed by ϕ and settles the issue raised by ϕ. The issue

6 The generalized notions of necessity and apriority in this state-based semantics also allow for
a uniform definition of contingency and aposteriority: a sentenceϕ (whether it is a statement
or a question) is contingent in s iff s �|= �?ϕ and a posteriori in s iff s �|= �?ϕ.

https://doi.org/10.1017/S1755020321000186 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000186


864 THOM VAN GESSEL

that a formula raises is trivial if there is only one maximal supporting state, while the
information a formula conveys is trivial if the supporting states together cover the
entire logical space.

We can define the notion of truth with respect to an evaluation pair as support in
the corresponding singleton state:

Definition 2.4 (Truth).

〈w, v〉 |= ϕ ⇐⇒ {〈w, v〉} |= ϕ.
This notion of truth relative to a pair allows us to give the derived support conditions
for the abbreviations in the following way:

Fact 2.1 (Derived support conditions for ¬, ∨ and ?).

• s |= ¬ϕ ⇐⇒ for all 〈w, v〉 ∈ s : 〈w, v〉 
|= ϕ;
• s |= ϕ ∨ � ⇐⇒ for all 〈w, v〉 ∈ s : 〈w, v〉 |= ϕ or 〈w, v〉 |= �;
• s |= ?ϕ ⇐⇒ s |= ϕ or for all 〈w, v〉 ∈ s : 〈w, v〉 
|= ϕ.

For some formulas, being supported in s simply amounts to being true relative to all
pairs in s. These formulas are called truth-conditional.

Definition 2.5 (Truth-conditionality). A formula ϕ is truth-conditional iff

s |= ϕ ⇐⇒ for all 〈w, v〉 ∈ s : 〈w, v〉 |= ϕ.
The operator

�

(inquisitive disjunction) can be used to construct formulas that are
not truth-conditional, such as p

�

q. For this formula to be supported in s, it is not
enough if all pairs in s make it true—it is required that they either all make p true or
all make q true. Formulas that are not truth-conditional will be called questions.

2.3. State-based actuality. Two facts about the modalities should be highlighted.
First, any formula of the form �ϕ, �ϕ or Aϕ is by definition a truth-conditional
formula (this can be seen from the support conditions, which operate on individual
pairs). For necessity and apriority this is as it should be, since ‘it is necessary whether
ϕ’ and ‘it is a priori whether ϕ’ are indeed statements, not questions. Second, sinceRA
connects every pair only to one single pair, the truth conditions ofAϕ are not sensitive
to the issue raised by ϕ.7 Thus, what Aϕ expresses can be phrased as ‘in the actual
world, the information conveyed by ϕ is true’.8

From a logical perspective it makes sense to consider an alternative actuality
operatorAA, which is sensitive to issues:9

s |= AAϕ ⇐⇒ {〈w,w〉 | 〈w, v〉 ∈ s} |= ϕ.

A formula AAϕ is supported by an information state s just in case the information in
s about what the actual world is settles the issue expressed by ϕ. Unlike Aϕ,AAϕ is
sensitive to the inquisitive content of ϕ and can be a question itself.

7 This means, for instance, that A(p

�

q) expresses the same as A(p ∨ q), even thoughp

�

q
raises the issue whether p or q holds and p ∨ q does not.

8 This is the standard logical analysis of the actuality operator as a device that can be used (in
the scope of a necessity operator) to shift evaluation back to the actual world, as defined in
[4, 9]. This is not the same as what ‘actually’ means in natural language, see [15].

9 This is the semantic clause for the actuality operator used in [14].
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However, addingAA does not make the language more expressive, and since it will be
easier for us to work with A in our completeness proof, we will consider A as primitive
and defineAA by the following recursive definition:10

• AAϕ := Aϕ whenever ϕ is atomic or of the form ��, A� or ��;
• AA(ϕ ∧ �) := AAϕ ∧ AA�;
• AA(ϕ

�

�) := AAϕ

�

AA�;
• AA(ϕ → �) := AAϕ → AA�.

With this recursive definition, the support conditions forAA given above follow as a fact.
Whenever ϕ is truth-conditional, Aϕ andAAϕ are equivalent. For questions �,AA� is
always equivalent to some formula withoutAA’s.

2.4. Consequence relations. Following the terminology of Crossley & Humberstone
[4], we can distinguish two relations of consequence in two-dimensional logic: the
general consequence relation looks at all evaluation pairs of the model, while the real-
world consequence relation only looks at diagonal pairs (elements of D). Both of these
notions can be generalized to information states.

Definition 2.6 (General consequence). Φ |=g � iff for all models M and information
states s: ifM, s |= ϕ for all ϕ ∈ Φ thenM, s |= �.

Intuitively, we want our consequence relation to be such that �ϕ |= ϕ. This is not
satisfied in the general consequence relation, because it considers all information states.
There are information states that support �ϕ but notϕ, namely ones that contain non-
diagonal pairs. Therefore it makes more sense to restrict the consequence relation to
diagonal information states (subsets of D):

Definition 2.7 (Real-world consequence). Φ |=r � iff for all models M and diagonal
information states s: ifM, s |= ϕ for all ϕ ∈ Φ thenM, s |= �.

This restriction can be motivated by viewing real-world consequence as a specific
case of contextual entailment [1]: we are interested in entailment in a specific context,
namely the state in which everything which is a priori is supported, and this state is
exactly the diagonal D in our models.11

Notice that this does not mean that information states that are not diagonal should
be disregarded altogether, as they still come into play whenever a �-operator is used.
They are essential to capture the distinction between necessity and apriority.

For each information state s there is a diagonal information state s ′ consisting of all
the 〈w,w〉 such that 〈w, v〉 ∈ s . As we have seen,AA is defined in such a way that we
have s |=g AAϕ ⇐⇒ s ′ |=g ϕ. This can be used to connect the notions of general and
real-world consequence by the following fact:

Fact 2.2. ϕ |=r � ⇐⇒ AAϕ |=g AA�.

As we will see later, this connection will be exploited by our inference relation.

10 AA is not uniformly definable in terms of the other connectives.
11 However, although contextual entailment is defined with respect to a specific information

state, the notion of real-world consequence is defined with respect to all diagonal states
across all models.
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The notions of general consequence and real-world consequence come with their
corresponding notions of validity. The latter is more restricted than the former: the
real-world validities include sentences which are valid by virtue of their indexicals, such
as ‘Am I here now?’ or ?(Ap → p), while the general validities are only those sentences
that are purely logically resolved (such as ?(p → p)).

Notice that apriority is not the same as real-world validity: although all real-world
validities are a priori, the converse is not the case. For instance, p can be a priori in
some model, but it is not valid.

2.5. Questions and apriority. Classically, what it means for a formula to be valid
is that it is true in any possible world in any model. In inquisitive logics, a formula is
valid if it is supported in any state in any model.

Normally, this definition makes sure that inquisitive disjunction does not introduce
any new validities to the logic. That is, inquisitive logics usually satisfy the disjunction
property, which says that the validity of an inquisitive disjunction can be traced back
to the validity of one of the disjuncts:

|= ϕ �
� ⇐⇒ |= ϕ or |= �.

The intuitive idea behind this property is as follows. An inquisitive disjunction puts
forward a request to choose between two alternatives. If this disjunction is valid—
which means that this choice can be made purely by logic—then one of the suggested
alternatives should be valid [8].

An interesting observation we can make here is that this property does not hold for
Inq2D.12 A counterexample is the following:

|= �p � ¬�p, but 
|= �p and 
|= ¬�p.
It is easy to see why this disjunction is valid: it is supported if either p is true in all pairs
on the diagonal or p is false in at least one pair on the diagonal. Clearly, in all models
one of the two must be the case. So the failure of the disjunction property is due to the
global nature of R�.13

Intuitively, this result seems to be correct: the only situation in which we can be
uncertain as to whether some statement p is a priori is if we do not really grasp what
it means—but this is like not knowing in which model we are. Given some model that
defines what sentences mean (by means of its valuation function), the question ?�p
should always be resolved.14

While ?�p is valid, the same does not hold for �?p, which expresses something else.
The former expresses the question ‘whether it is a priori that p’ while the latter expresses
the statement ‘it is a priori whether p’, which is false if the pairs on the diagonal do not
agree on the truth value of p.

12 It does not matter which consequence relation we consider here, both |=r and |=g lack this
property.

13 This phenomenon is similar to what occurs in first-order inquisitive logic (InqBQ) if identity
is rigid: in that case ?(a = b) becomes a validity. However, in InqBQ, identity is an equivalence
relation that may vary between worlds. See [1].

14 Note that, strictly speaking, ?�p is not a question, since it is truth-conditional.
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§3. Completeness proof for the classical fragment. We start by giving a completeness
proof for the non-inquisitive fragment of the language. This language L! will simply be
the

�

-free fragment, generated by the following grammar:15

Definition 3.1 (Classical fragment).

α ::= p | ⊥ | α ∧ α | α → α | �α | Aα | �α.
The classical fragment of the system consists only of truth-conditional formulas.

That is, the support relation between states and formulas can be reduced to the relation
of truth between worlds and formulas.

Fact 3.1 (Truth conditions of classical fragment). The truth conditions of the
classical fragment are as follows:

• 〈w, v〉 |= p ⇐⇒ 〈w, v〉 ∈ V (p);
• 〈w, v〉 
|= ⊥;
• 〈w, v〉 |= α ∧ � ⇐⇒ 〈w, v〉 |= α and 〈w, v〉 |= � ;
• 〈w, v〉 |= α → � ⇐⇒ 〈w, v〉 
|= α or 〈w, v〉 |= � ;
• 〈w, v〉 |= �α ⇐⇒ 〈w, v〉R�〈w ′, v′〉 implies 〈w ′, v′〉 |= α;
• 〈w, v〉 |= Aα ⇐⇒ 〈w, v〉RA〈w ′, v′〉 implies 〈w ′, v′〉 |= α;
• 〈w, v〉 |= �α ⇐⇒ 〈w, v〉R�〈w ′, v′〉 implies 〈w ′, v′〉 |= α.

The truth conditions are indeed the same as the ones given in [7].16 The completeness
proof for the classical fragment in the present paper is also similar to the one given
there. I will first explain in which steps the proof in the present paper proceeds.

Although we are ultimately interested in the logic of real-world consequence, we
start by proving completeness for the logic of general consequence. We will do this
by constructing a canonical model for two-dimensional logic. However, this canonical
model is itself not a matrix model. We will therefore first introduce a more general class
of models, which we will call sliced matrix models.

We will then show that the canonical model of two-dimensional logic is a sliced
matrix model, and use this canonical model to prove completeness with respect to
sliced matrix frames.

Completeness with respect to regular matrix frames then follows from the fact that
sliced matrix models and regular matrix models share the same general consequence
relation.

We then have a complete proof system for the general consequence relation, but not
yet for the real-world consequence relation. We define the latter in terms of the former
and prove completeness.

The strategy in this section is similar to the one in [7], but slightly more direct: a
canonical model is given which is not itself a matrix model, but from which a matrix
model can be constructed. In [7], this construction takes place in two steps: first, from
a point-generated subframe of the canonical model a Restall frame is constructed [12].
Second, it is shown that every Restall frame is a bounded morphic image of a matrix
frame. In the present paper, the canonical model is a sliced matrix model, and only one
step is needed to construct a matrix model.

15 In what follows we will use α, � , � for classical formulas and ϕ, � for arbitrary formulas.
16 Note that�α is equivalent to FAα in [5]: in their semantics, the F (fixedly) operator quantifies

over other worlds as the actual world (it is, in a sense, the vertical variant of �) and the A
operator then considers this world as evaluation world too.
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Table 1. Proof system �g of general consequence, where α ranges only over classical formulas.
Some modal rules and axioms apply to � ∈ {�, A,�}
Axioms Rules

A1 ϕ → (� → ϕ)
A2 (ϕ→(�→�))→((ϕ→�)→(ϕ→�))
A3 ϕ → (� → (ϕ ∧ �))
A4 (ϕ ∧ �) → ϕ, (ϕ ∧ �) → �

R1 ϕ,ϕ → � / �
R2 ϕ /�ϕ
R3 �(ϕ → �) /�ϕ → ��

A5 ⊥ → ϕ
A6 ¬¬α → α
A7 ϕ → (ϕ

�

�),� → (ϕ

�

�)
A8 (ϕ→�)→((�→�)→((ϕ

�

�)→�))
A9 (α → (ϕ

�

�)) → ((α → ϕ)

�

(α → �))
A10 �(ϕ

�

�) → (�ϕ ∨��)
A11 �α → α (R� is reflexive)
A12 �α → ��α (R� is euclidean)
A13 Aα ↔ ¬A¬α (RA is serial and

functional)
A14 �α → Aα (RA ⊆ R�)
A15 Aα → �Aα (RA ◦R� ⊆ RA)
A16 �α → ��α (R� is transitive)
A17 �α → ��α (R� is euclidean)
A18 �α → Aα (RA ⊆ R�)
A19 �(Aα → α) (RA is reflexive on

the image of R�)

3.1. Proof system. The proof system for general consequence is displayed in
Table 1. It is a Hilbert-style proof system that consists of the standard axioms (A1–
A10) and rules (R1–R3) for inquisitive modal logic, extended with the axioms of
two-dimensional modal logic (A11–A19) [7]. The axioms for inquisitive disjunction
(A7–A10) are not relevant for the classical fragment, but we will need them when we
consider the full language in Section 4. We will denote the proof system of general
consequence by �g.

The soundness of this proof system can be shown by checking that all individual
rules and axioms are sound. For (A1–A10, R1–R3), proofs can be found in [1].17 As
for (A11–A19), it is easy to see how the properties of the respective relations in the
model make them valid (e.g., �α → α and �α → ��α are valid because R� is an
equivalence relation).

3.2. Sliced matrix model. In a regular matrix model, the relationR� connects every
pair in the domain with every pair on the diagonal D. In contrast, in a sliced matrix
model, R� relates all pairs to some (not necessarily all) pairs on the diagonal.

17 The proof system for inquisitive modal logic is presented as a natural deduction system in
[1], but it can be shown that the differences are immaterial. A Hilbert-style proof system for
InqB is introduced in [2].
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Fig. 2. Example of a sliced matrix model. The arrows representR� (transitive arrows omitted).

Definition 3.2 (Sliced matrix model). A sliced matrix model M is a structure
〈W,R�, RA,R�, V 〉 where:

• R� connects pairs to some subset of D rather than to all of D:

〈w, v〉R�〈w ′, v′〉 ⇒ 〈w ′, v′〉 ∈ D.

• Pairs are at least related to the actual pair on their own row:

For any w, v : 〈w, v〉R�〈w,w〉.

• R� is transitive and euclidean (positive and negative introspection).
• All other elements of the structure are defined as in regular matrix models.

We can think of such a model as a matrix model which is divided into slices: within
a slice, R� can reach all pairs on the diagonal, but it cannot reach any pair outside
of the slice. Since � is the only modality that can be used to express what is true on
other rows, this means that what is true in pairs in one slice is completely independent
of what is true in other slices. See Figure 2 for a graphical representation of a sliced
matrix model.

We already introduced two consequence relations before, namely general conse-
quence (|=g) and real-world consequence (|=r). We will now introduce a third notion
of consequence, namely the one defined using sliced matrix models.

Definition 3.3 (Sliced consequence). Φ |=s � iff for all sliced models M and states s: if
M, s |= ϕ for all ϕ ∈ Φ, thenM, s |= �.

Note that a regular matrix model is by definition also a sliced matrix model, namely
one with exactly one slice.

3.3. Canonical model. We will now construct a canonical model for �g. To make
sure that this model has the shape of a matrix, the domain of this model will not be
the set of maximally consistent sets of formulas, but the set of all pairs of these. This
guarantees that there are just as many rows as there are columns, and that each row
has the same amount of elements.

Let us first go through some preliminary definitions. Let Tc be the set of maximally
�g-consistent sets of formulas of L!. Then we define Wc = Tc × Tc . For every set
of formulas Γ, let ΓA = {α | Aα ∈ Γ}. It is important to note that if Γ is maximally
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consistent, then so is ΓA. This is because by maximal consistency, Γ contains eitherAα
or ¬Aα. In the latter case, by axiom (A13) it must also contain A¬α. So ΓA contains
exactly one of α and ¬α.

As the points in the canonical model will not themselves be theories but pairs of
theories, we need to say which formulas are true at each point. Thus, we need to assign
a theory to each pair of theories 〈Γ,Δ〉. Clearly it cannot be Γ, for then all pairs on a
row would make the same formulas true. It can also not be Δ: in that case, the theory
of 〈Γ,Γ〉 would be Γ. Since 〈Γ,Γ〉 is on the diagonal, we want the theory of 〈Γ,Γ〉 to
be the set of formulas α such that Aα is in the theory of 〈Γ,Δ〉. But this is only the
case if Γ = ΔA, so it will not work for arbitrary Γ and Δ. Therefore, the theory of a
pair 〈Γ,Δ〉 must be a possibly distinct theory, determined by Γ and Δ. We will use the
following definition:

Definition 3.4. For each 〈Γ,Δ〉 ∈Wc , we define:

t(Γ,Δ) =

{
Δ if ΓA = ΔA and Γ 
= Δ,
ΓA otherwise.

The idea behind this definition is as follows. Any pair 〈Γ,Γ〉 must be the ‘actual pair’
in its row, but it is not guaranteed that Γ is a suitable theory for this: it may be the
case that Aα ↔ α 
∈ Γ. Therefore, ΓA will be the true theory assigned to this pair. Any
other element 〈Γ,Δ〉 on this row can have Δ as its true theory, but only if Δ contains
exactly the formulas Aα such that α is true in the actual pair. If this is not the case, we
reuse ΓA, which makes this element a dummy copy of the actual pair.

In this way, each pair in Wc is associated with a maximally consistent set. The
following lemma shows that the converse is also the case: each maximally consistent
set Γ is associated with at least one pair in the canonical model.

Lemma 3.1. For every maximally consistent set Γ:

t(ΓA,Γ) = Γ.

Proof. The following are theorems of �g and therefore members of any maximally
consistent set:

T1 Aα → AAα; (by A15 and A14)
T2 AAα → Aα. (by A19, A18 and R3)

From (T1) and (T2) it follows that AAα ∈ Γ just in case Aα ∈ Γ, so (ΓA)A = ΓA.
By Definition 3.4, t(ΓA,Γ) is either Γ or ΓA, but the latter can only be the case
if ΓA = Γ.

The following lemma shows that ΓA consists of all and only the A-formulas of any
pair, and will be important in what follows:

Lemma 3.2. For all maximally consistent sets Γ,Δ:

Aα ∈ t(Γ,Δ) ⇐⇒ α ∈ ΓA.

Proof. By Definition 3.4, t(Γ,Δ) is either ΓA or Δ. In the former case, Aα ∈ ΓA iff
AAα ∈ Γ iff (by T1 and T2) Aα ∈ Γ iff α ∈ ΓA. In the latter case, ΓA = ΔA. Aα ∈ Δ
iff α ∈ ΔA iff α ∈ ΓA.
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We can now give the definition of the canonical model itself.

Definition 3.5 (Canonical sliced matrix model). Let Mc = 〈Wc,Rc�, R
c
A,R

c
�, V

c〉,
where:

• Wc = Tc × Tc ;
• Rc� and RcA are defined as in any sliced matrix model;
• 〈Γ,Δ〉Rc�〈Γ′,Δ′〉 ⇐⇒ Γ′ = Δ′ and {α | �α ∈ t(Γ,Δ)} ⊆ t(Γ′,Δ′);
• 〈Γ,Δ〉 ∈ V (p) ⇐⇒ p ∈ t(Γ,Δ).

To show that the canonical model is indeed a sliced matrix model, we need to show
that Rc� relates every pair to the actual pair of its row, and that it is transitive and
euclidean. A simple proof using the appropriate axioms suffices to show this.

The completeness proof continues as usual, by establishing a relation between truth
at a point in the canonical model and membership of that point, which in this case is
mediated by t.

Lemma 3.3 (Truth lemma).

Mc, 〈Γ,Δ〉 |= α ⇐⇒ α ∈ t(Γ,Δ).

Proof. By induction on the complexity of α. I give only the case for �α (for � ∈
{�, A,�}). The following theorems of �g will be used:

T3 �α → A�α; (by A11, A12, R2 and R3)
T4 A�α → α. (by A13, A14 and A12)

(⇐) Assume �α ∈ t(Γ,Δ). Then take an arbitrary pair 〈Γ′,Δ′〉 such that
〈Γ,Δ〉Rc�〈Γ′,Δ′〉. We need to show thatMc, 〈Γ′,Δ′〉 |= α.

(�) If�α ∈ t(Γ,Δ), by (T3) we haveA�α ∈ t(Γ,Δ). Then by Lemma 3.2,
�α ∈ ΓA. Since Γ′ = Γ,�α ∈ Γ′

A, so by Lemma 3.2,A�α ∈ t(Γ′,Δ′).
It follows by (T4) that α ∈ t(Γ′,Δ′).

(A) In this case, Γ′ = Δ′ = Γ. By Definition 3.4, t(Γ′,Δ′) = ΓA. It follows
from Lemma 3.2 that if Aα ∈ t(Γ,Δ) then α ∈ ΓA.

(�) It follows from the definition of Rc� that α ∈ t(Γ′,Δ′).
By the induction hypothesis,Mc, 〈Γ′,Δ′〉 |= α.

(⇒) For the left to right case, assume �α 
∈ t(Γ,Δ). Then ¬� α ∈ t(Γ,Δ). So we
need to find some 〈Γ′,Δ′〉 such that 〈Γ,Δ〉Rc�〈Γ′,Δ′〉 andMc, 〈Γ′,Δ′〉 
|= α.
Let Δ– = {¬α} ∪ {� | � � ∈ t(Γ,Δ)}. Then Δ– is consistent. If not, then
{� | � � ∈ t(Γ,Δ)} �g α. But then {�� | � � ∈ t(Γ,Δ)} �g �α, and this
contradicts the assumption that ¬� α ∈ t(Γ,Δ). Let Δ′ be any maximally
consistent set extending Δ–.
The next step is to show that there exists a pair 〈Γ′,Δ′〉 such that Δ′ = t(Γ′,Δ′)
and 〈Γ,Δ〉Rc�〈Γ′,Δ′〉.

(�) We show that Δ′ = t(Γ,Δ′). This follows from the definition of t and
the fact that ΓA = Δ′

A: if α ∈ ΓA, then by Lemma 3.2, Aα ∈ t(Γ,Δ).
By axiom (A15), it follows that �Aα ∈ t(Γ,Δ). Then by construction
of Δ′, �Aα ∈ Δ′. It follows from axiom (A14) that Aα ∈ Δ′ and thus
α ∈ Δ′

A. Conversely, if α 
∈ ΓA, then ¬α ∈ ΓA, and from the previous
part of the proof it follows that ¬α ∈ Δ′

A, so α 
∈ Δ′
A.
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(A) In this case, Δ– is already a maximally consistent set by definition.
Furthermore, it is defined in such a way that Δ– = ΓA. Thus Δ′ =
ΓA = t(Γ,Γ).

(�) By construction, Δ′ contains Aα → α for any α, due to (A19), so
it is easy to show that Δ′ = Δ′

A. This means that Δ′ = t(Δ′,Δ′), and
since {α |�α ∈ t(Γ,Δ)} ⊆ t(Δ′,Δ′), we have by definition ofRc� that
〈Γ,Δ〉Rc�〈Δ′,Δ′〉.

Thus we have found a 〈Γ′,Δ′〉 such that 〈Γ,Δ〉Rc�〈Γ′,Δ′〉 andα 
∈ t(Γ′,Δ′). By
induction hypothesis it follows thatMc, 〈Γ′,Δ′〉 
|= α. ThereforeMc, 〈Γ,Δ〉 
|=
�α.

3.4. Completeness. Having established the truth lemma, we can prove completeness
in the standard way.

Theorem 3.1 (Completeness wrt sliced matrix frames).

Γ |=s α ⇒ Γ �g α.

Proof. Suppose Γ 
�g α. Then Γ ∪ {¬α} is consistent, so there exists a maximally
consistent set Δ such that Γ ⊆ Δ but α 
∈ Δ. By Lemma 3.1, Δ = t(ΔA,Δ), thus we
have a pair in the canonical model such that, by the truth lemma,Mc, 〈ΔA,Δ〉 |= Γ but
Mc, 〈ΔA,Δ〉 
|= α.

By finding a pair which makes Γ true and α false we also found an information
state that supports Γ but not α, namely the singleton state consisting only of that pair.
Therefore, Γ 
|=s α.

We have thereby shown that the proof system �g is complete with respect to sliced
matrix models. Now we want to show that it is also complete with respect to regular
matrix models. This is the case because for every pointed sliced matrix model we can
find a pointed regular matrix model that satisfies exactly the same formulas.

Theorem 3.2 (Completeness wrt regular matrix frames).

Γ |=g α ⇒ Γ �g α.

Proof. For this we only need to show that Γ |=g α ⇒ Γ |=s α. Suppose there is a
sliced matrix model M and pair 〈w0, v0〉 such that M, 〈w0, v0〉 |= � for all � ∈ Γ but
M, 〈w0, v0〉 
|= α. We define the following regular matrix modelM ′:

• W ′ =W , R′
� = R�, R′

A = RA;
• Define R′

� as in a regular matrix model: 〈w, v〉R′
�〈w ′, v′〉 ⇐⇒ w ′ = v′;

• Let X = {w | 〈w0, v0〉R�〈w, v〉 for some v} (X is the set of worlds whose row
is accessible by R�);

• We define the following function from pairs to pairs, and define the valuation
ofM ′ in terms of this function:

f(w, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈w, v〉 if w ∈ X ;
〈w0, w0〉 if w 
∈ X and w = v;
〈w0, w〉 if w 
∈ X and v = w0;
〈w0, v〉 otherwise;

V ′(p)(w, v) = V (p)(f(w, v)).
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(a) (b) (c)

Fig. 3. A pointed sliced matrix model (a), and a pointed matrix model (c) that satisfies the
same formulas. The × marks the pair on which the model is based. Its slice is copied entirely,
and rows from other slices are replaced by its own row, as shown in (b). On these copied rows,
the actual pair has to switch positions so it ends up on the diagonal, as is shown in (c).

In words, if in M a row was accessible by R� from 〈w0, v0〉, then the valuation of
this row in M ′ is the same. If not, then the valuation of the row is copied from that
of the row of 〈w0, v0〉, but with two pairs swapped: the pair 〈w,w〉 is valuated like
〈w0, w0〉, and the pair 〈w,w0〉 is valuated like 〈w0, w〉. This ensures that the valuation
of the actual pair on the new row is the same as the valuation of the actual pair on the
original row. See Figure 3 for a graphical representation of this construction.

We can then show that M ′, 〈w, v〉 |= � ⇐⇒ M,f(w, v) |= � . The proof goes by
induction on the structure of formulas, the crucial step is the one for �:

(⇒) Suppose M ′, 〈w, v〉 |= �� . Then for all w′, we have that M ′, 〈w′, w′〉 |= �
and by the induction hypothesis, thatM,f(w′, w′) |= � .
Now take any pair 〈v′, v′〉 such that f(w, v)R�〈v′, v′〉. We need to show
that 〈v′, v′〉 = f(w′, w′) for some w′. This follows from the definition of X
and f : since f(w, v)R�〈v′, v′〉, it must be that v′ ∈ X . Then it follows that
〈v′, v′〉 = f(v′, v′).
By the induction hypothesis,M,f(v′, v′) |= � . Since 〈v′, v′〉 was an arbitrary
pair, it follows thatM,f(w, v) |= �� .

(⇐) SupposeM ′, 〈w, v〉 
|= �� . Then there is somew′ such thatM ′, 〈w′, w′〉 
|= � .
By the induction hypothesis,M,f(w′, w′) 
|= � .
We need to show that f(w, v)R�f(w′, w′). By the definition of f, it must be
that f(w, v) and f(w′, w′) are both pairs whose left element is a world in X,
and that f(w′, w′) is a diagonal pair.
It follows thatM,f(w, v) 
|= �� .

By definition, f(w0, v0) = 〈w0, v0〉. This means that M ′, 〈w0, v0〉 |= � ⇐⇒
M, 〈w0, v0〉 |= � . We have thus constructed a regular matrix model M ′ and pair
〈w0, v0〉 that makes all of Γ true, but not α.18

3.5. Logic of real-world consequence. So far we have shown that Γ |=g α ⇐⇒
Γ �g α, but recall that what we were after was an inference relation for real-world
consequence. We can define this as follows:

18 The fact that Γ |=g α implies Γ |=s α also follows from the proof in [7], which shows that
point-generated subframes of 2Dg-frames (of which sliced matrix frames are a subclass) are
bounded morphic images of regular matrix frames.
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Definition 3.6 (Real-world inference relation). The inference relation �r for the real-
world consequence relation is defined by:

Γ �r α ⇐⇒ {A� | � ∈ Γ} �g Aα.

By the above definition, any proof in the system �g, withA� for all � ∈ Γ as premises
and Aα as conclusion, counts as a proof of α from Γ in �r.

Recall that this mimics exactly the semantic relation between general consequence
and real-world consequence. It follows that this inference relation is sound and
complete:

Theorem 3.3 (Real-world soundness and completeness).

Γ �r α ⇐⇒ Γ |=r α.

Proof. Immediate by Definition 3.6, Fact 2.2 and the fact thatAAα and Aα are
equivalent for classical formulas α.

§4. Extending completeness to the full language. Having obtained a completeness
proof for the classical fragment of Inq2D, it remains to be shown that this result can be
extended to the inquisitive setting.

It is shown in [1] how this can be done for any normal modal logic. Although the
logic of real-world consequence is not a normal modal logic (there are validities ϕ for
which �ϕ is not valid), the logic of general consequence is, which means we should
again take the logic of general consequence as a starting point.

4.1. Proof system. The proof system �g, which we introduced in Section 3.1,
remains unchanged for now, but unlike before we will also use the axioms for inquisitive
disjunction (A7–A10). We will see in Section 4.3 that we need one extra axiom to make
the step from sliced matrix models to regular matrix models, but for the moment we
will go back to working with sliced matrix models.

4.2. Resolutions. For the completeness proof we make use of the tight relation
between inquisitive logic and classical logic, which can be sketched as follows: every
formula in Inq2D can be characterized by a set of classical formulas, which are called its
resolutions, in such a way that an information state s supports ϕ just in case it supports
at least one of its resolutions α.

Extending the definition in [1], we can define resolutions for the whole language of
Inq2D as follows:

Definition 4.1 (Resolutions).

• R(α) = {α} if α is

�

-free;
• R(ϕ ∧ �) = {α ∧ � | α ∈ R(ϕ) and � ∈ R(�)};
• R(ϕ → �) = {

∧
α∈R(ϕ)(α → f(α)) | f is a function from R(ϕ) to R(�)};

• R(ϕ

�

�) = R(ϕ) ∪R(�);
• R(�ϕ) = {

∨
α∈R(ϕ) �α};

• R(Aϕ) = {
∨
α∈R(ϕ)Aα};

• R(�ϕ) = {
∨
α∈R(ϕ) �α}.

Because ϕ is supported just in case one of its resolutions is, we can also say that ϕ is
supported just in case the inquisitive disjunction of its resolutions is. This shows that

https://doi.org/10.1017/S1755020321000186 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000186


QUESTIONS IN TWO-DIMENSIONAL LOGIC 875

any formula can be rewritten as an inquisitive disjunction of classical formulas, which
we call its normal form:19

Fact 4.1 (Normal form).

ϕ ≡

�

R(ϕ).

The notion of resolution can be generalized to sets of formulas Φ in the following way:
we call a function f : Φ → L! a resolution function of Φ if for all ϕ ∈ Φ, f(ϕ) ∈ R(ϕ).
We can then say thatR(Φ) is the set of sets of formulas Γ such that Γ = {f(ϕ) |ϕ ∈ Φ}
for some resolution function f of Φ. Simply put, a resolution of Φ is a set of classical
formulas that contains a resolution for each ϕ ∈ Φ.

With this generalized notion of resolutions, we can obtain the following lemma:

Lemma 4.1 (Semantic resolution lemma).

Φ |=s � ⇐⇒ for all Γ ∈ R(Φ) there is α ∈ R(�) such that Γ |=s α.

Proof sketch. The crucial direction is from left to right. Suppose Φ |=s � and take any
Γ ∈ R(Φ). Then Γ entails any formula in Φ, so Γ |=s �. This means thatΓ |=s

�

R(�).
Now suppose toward a contradiction that there is no α ∈ R(�) such that Γ |=s α.

Then for eachα ∈ R(�) there exists a sliced modelMα and state sα such thatMα, sα |=
� for all � ∈ Γ butMα, sα 
|= α.

Then from these sliced models we can construct a new sliced model M, the domain
of which is W ′ ×W ′, where W ′ is the disjoint union of the worlds of all original
modelsMα for α ∈ R(�). We define V (w, v) as Vα(w, v) if 〈w, v〉 is a pair inMα , and
as Vα(w,w) otherwise. As R� we take the union of all Rα�, and the other relations are
defined as normal. Let s be the union of the states sα .

Then a simple proof by induction on the structure of formulas shows that the
formulas which s of M supports are the formulas that all individual states sα out of
which it was built support. Thus we have M, s |= � for all � ∈ Γ and M, s 
|= α for
all α ∈ R(�). So M, s 
|= �. As this contradicts the assumption that Γ |=s �, we are
done.

In the proof above, the step in which we construct a new model out of several
models, while maintaining the same supported formulas, is not available in regular
matrix models. In these models, the truth value of �α may change as the model gets
bigger, because diagonal pairs become accessible that previously weren’t. Thus, the
semantic resolution lemma does not hold for the general consequence relation |=g.20

This is why we again need to make a detour through sliced matrix models.
The resolution lemma holds on the syntactic side as well:

Lemma 4.2 (Syntactic resolution lemma).

Φ �g � ⇐⇒ for all Γ ∈ R(Φ) there is α ∈ R(�) such that Γ �g α.

Proof. The left to right direction is Lemma 6.4.12 of [1]. The other direction follows
immediately from his Lemmas 6.4.14 and 6.4.19.

These two lemmas can be connected by the fact that �g is sound and complete for
the classical fragment, which we have already shown. Thus we obtain:

19 See Proposition 6.3.13 in [1].
20 Note that this follows from the fact that the disjunction property fails, see Section 2.5.
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Theorem 4.1 (Soundness and completeness wrt sliced frames).

Φ |=s � ⇐⇒ Φ �g �.

4.3. Regular matrix frames. The next step is to obtain a proof system that
is complete with respect to regular matrix frames. Recall that when we proved
completeness for the classical fragment, we could use the fact that sliced matrix models
and regular matrix models share the same consequence relation. However, this is no
longer the case when we consider the full language.

A counterexample is ?�p. A state s can fail to support this formula in a sliced matrix
model: if s contains worlds from more than one slice, p may be a priori in some worlds,
but not in others. This is not possible in a regular matrix model, as we have already
seen in Section 2.5. There, whether something is a priori cannot differ from world to
world: if something is a priori, it is a priori everywhere. Thus, ?�p is a validity in these
models.

In fact, the class of regular matrix frames is exactly the class of sliced frames on
which ?�p is valid. We only need to add the axiom schema ?�α to obtain completeness
with respect to regular matrix frames.

Define �g′ as the proof system consisting of the axioms and rules in (A1–A19,
R1–R3) and (A20):21

A20 ?�α.
Recall that |=g is the consequence relation in which we consider only models in

which R� makes the whole diagonal accessible, while |=s is the consequence relation
based on sliced matrix models. To prove completeness, we need to show the following
lemma.

Lemma 4.3. Let ΔA20 = {?�α | α ∈ L!}.

Φ |=g � ⇒ Φ,ΔA20 |=s �.

Proof. Suppose we have a sliced model M and a state s0 such that M, s0 |= Φ,
M, s0 |= ΔA20 andM, s0 
|= �. We can then construct a regular modelM ′ which has a
state s0 that supports exactly the same formulas as s0 in M. The construction is similar
to the one used in the proof for Theorem 3.2. We need to slightly change the definition
of X and the valuation:

• LetX = {w | 〈w ′, v′〉R�〈w, v〉 for some 〈w ′, v′〉 ∈ s0 and some v} (we let X be
the set of worlds whose row is accessible by R� from any pair in s0);

• Since by assumptionM, s0 
|= �, it follows that s0 is non-empty. This means we
can let 〈w0, v0〉 be one of the pairs in s0 (it does not matter which one). We can
then define f and V ′ as before:

f(w, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈w, v〉 if w ∈ X ;
〈w0, w0〉 if w 
∈ X and w = v;
〈w0, w〉 if w 
∈ X and v = w0;
〈w0, v〉 otherwise;

V ′(p)(w, v) = V (p)(f(w, v)).

21 Because ?�ϕ is valid also for non-classicalϕ, we could make the axiom schema more general.
However, this is not required for completeness.
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(a) (b) (c)

Fig. 4. An information state in a sliced matrix model (a), and an information state in a regular
matrix model (c) that satisfies the same formulas. The slices that overlap with the information
state are copied entirely, and rows from other slices are replaced by the row from the pair marked
with × (an arbitrary pair in the information state), as shown in (b). On the copied rows, the
actual pair has to switch positions so it ends up on the diagonal, as is shown in (c).

We will use f(s) as shorthand for {f(w, v) | 〈w, v〉 ∈ s}.

In this construction, all slices that s0 overlaps with keep the same valuation inM ′. For
other slices, the valuation of each row is copied from that of the row of 〈w0, v0〉, but
with two pairs swapped as before. See Figure 4 for a graphical representation of this
construction.

Note that from the assumption thatM, s0 |= ΔA20 it follows thatM,X ×W |= ΔA20.
Because if not, then there would be some α and some w,w′ ∈ X such that for some
v, v′, M, 〈w, v〉 |= �α and M, 〈w′, v′〉 |= ¬�α. But by definition of X, both 〈w, v〉
and 〈w′, v′〉 share their slice with at least one pair in s0. This would mean M, s0 
|=
?�α, contradicting our assumption. Since we have M,X ×W |= ΔA20, it follows by
definition of f thatM,f(W ×W ) |= ΔA20.

We can then show, by induction on the normal form of formulas, that for all states
s :M ′, s |= ϕ ⇐⇒ M,f(s) |= ϕ. The crucial step in this induction is the left to right
direction for �. It suffices to show that the claim holds for an arbitrary 〈w, v〉 ∈ s .

(⇐) SupposeM ′, 〈w, v〉 
|= �α. Then for some w′, we have thatM ′, 〈w′, w′〉 
|= α
and by the induction hypothesis, thatM,f(w′, w′) 
|= α.
By reflexivity of R�, it follows thatM,f(w′, w′) 
|= �α. Therefore, the state
f(W ×W ) does also not support �α. But sinceM,f(W ×W ) |= ?�α, we
must have M,f(W ×W ) |= ¬�α. This means that no member of f(W ×
W ) supports �α, soM,f(w, v) 
|= �α.

Since f(s0) = s0, we have shown that M, s0 |= ϕ ⇐⇒ M ′, s0 |= ϕ. So we have a
regular matrix modelM ′ and a state s0 that supports all of Φ, but not �.

We then have a complete proof system �g′ for the general consequence relation of
the class of regular matrix frames:

Corollary 4.1 (Completeness wrt regular matrix frames).

Φ |=g � ⇒ Φ �g′ �.

Proof. Suppose Φ |=g �. By Lemma 4.3, we obtain Φ,ΔA20 |=s �. By Theorem 4.1
we have that Φ,ΔA20 �g �. Since all formulas in ΔA20 are axioms in �g′ , it follows that
Φ �g′ �.
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4.4. Logic of real-world consequence. We have shown that Φ |=g � ⇐⇒ Φ �g′ �,
but we still need an inference relation for real-world consequence. The definition we
gave for the classical fragment only needs a minor revision:

Definition 4.2 (Real-world inference relation). The inference relation �r for the real-
world consequence relation is defined by:

Φ �r � ⇐⇒ {AAϕ | ϕ ∈ Φ} �g′ AA�.

This generalizes the previous definition to the full inquisitive language: now, any
proof in the system �g′ , withAAϕ for all ϕ ∈ Φ as premises andAA� as conclusion,
counts as a proof of � from Φ in �r.

Then we can show that the logic of real-world consequence is sound and complete.

Theorem 4.2 (Real-world soundness and completeness).

Φ �r � ⇐⇒ Φ |=r �.

Proof. Immediate by Fact 2.2.

§5. Conclusion. Apart from giving an alternative completeness proof for the
classical two-dimensional logic in [7], we have shown that the logic can be extended
in a natural way to a setting in which questions play a role: this allows us to express
questions and statements about the apriority, necessity and actuality of questions as
well as statements. We have observed that Inq2D does not have the disjunction property.
This is caused by the fact that the question whether a formula is a priori is valid on
any model, even though models can differ in whether they make this formula a priori
or not. We have given a sound and complete proof system for Inq2D.

This system can be extended in many ways: an obvious next step would be to add
a knowledge operator K and investigate the interaction between apriority, necessity
and knowledge, but it would also be interesting to add its inquisitive counterpart, the
‘entertain’ operator E/� (see [1]), which is sensitive to issues of agents.
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