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Abstract

Let f : R→ R be a locally integrable function of bounded lower oscillation. The paper contains the proofs
of sharp strong-type, weak-type and exponential estimates for the mean oscillation of f . In particular, this
yields the precise value of the norm of the embedding BLO ⊂ BMOp, 1 ≤ p <∞. Higher-dimensional
analogues for anisotropic BLO spaces are also established.

2010 Mathematics subject classification: primary 42B37; secondary 49L20.

Keywords and phrases: BMO, BLO, Bellman function, best constants.

1. Introduction

A real-valued locally integrable function f defined on Rn is said to be in BMO, the
space of functions of bounded mean oscillation, if

sup
Q

1
|Q|

∫
Q
| f (x) − fQ| dx <∞, (1.1)

where the supremum is over all cubes Q in Rn with edges parallel to the coordinate
axes, |Q| denotes the volume of Q and

fQ =
1
|Q|

∫
Q

f (x) dx

is the mean of f over Q. A function f is said to have bounded lower oscillation if the
term fQ in (1.1) can be replaced by ess infQ f , the essential infimum of f over Q. That
is, f ∈ BLO if

sup
Q

(
fQ − ess inf

Q
f
)
<∞. (1.2)

The suprema in (1.1) and (1.2) are denoted by ‖ f ‖BMO and ‖ f ‖BLO. We consider
a slightly less restrictive setting in which only the cubes Q within a given Q0 are
considered; to stress the dependence on Q0, we use the notation BMO(Q0) and
BLO(Q0).

Partially supported by MNiSW Grant N N201 397437.
c© 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 $16.00

68

https://doi.org/10.1017/S0004972712000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000226


[2] Estimates for BLO functions 69

The BMO class was introduced by John and Nirenberg in [6] and has played an
important role in analysis and probability, since many classical operators (maximal,
singular integral, and so on) map L∞ into BMO. Another remarkable result, due to
Fefferman [3], identifies BMO as a dual to the Hardy space H1. Functions of bounded
mean oscillation have very strong integrability properties (see for example [6]). In
particular, the p-oscillation

‖ f ‖BMOp := sup
Q

( 1
|Q|

∫
Q
| f (x) − fQ|

p dx
)1/p

, 1 < p <∞,

is finite for any f ∈ BMO; it turns out to define the equivalent norm on BMO(Rn).
The BLO class first appeared in the paper of Coifman and Rochberg [1], who used

it to prove a decomposition property of BMO (see below). It is easy to see that BLO
is contained in BMO; more precisely, the bound ‖ f ‖BMO ≤ 2‖ f ‖BLO holds true. Unlike
BMO, the class BLO is not a linear space, as it is not even stable under multiplication
by negative numbers (log |x| is in BLO, but −log |x| is not). Furthermore, we have
BLO ∩ (−BLO) = L∞, which follows from the very definition. On the other hand,
the aforementioned result of Coifman and Rochberg states that each function from
BMO can be written as a difference of two BLO functions. This decomposition has an
interesting counterpart in the theory of Muckenhoupt weights: since

BMO = {αω : α ≥ 0, ω ∈ A2} and BLO = {αω : α ≥ 0, ω ∈ A1}

(see [1]), the statement BMO = BLO − BLO can be regarded as the logarithm of the
factorisation A2 = A1/A1 of Jones [7]; see also [4, 5].

The purpose of this paper is to provide some sharp upper bounds for the size of
functions belonging to BLO. This type of problems, concerning exact information on
the size of various classes of functions, has gathered a lot of interest in the literature
recently: see for example [2, 8, 11–14] and references therein. We start with the one-
dimensional setting and develop a Bellman-type approach which will enable the study
of such problems in the BLO class. More precisely, we will show that the validity of
a given estimate for BLO functions is equivalent to the existence of a corresponding
function which satisfies appropriate concavity and majorisation properties. Then the
approach is illustrated with a number of examples. In particular, we identify the
embedding constant of BLO into the space (BMO, ‖ · ‖BMOp ). We now give the precise
formulation.

T 1.1. For any interval I0 ⊂ R and any function f : I0→ R,

‖ f ‖BMOp(I0) ≤Cp‖ f ‖BLO(I0), 1 ≤ p <∞, (1.3)

where

Cp =

(∫ ∞

−1
|s|pe−s−1 ds

)1/p

.

The constant Cp is the best possible.
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This leads to the following sharp exponential estimate (which can be viewed as an
integral John–Nirenberg inequality for BLO spaces).

T 1.2. For any interval I0 ⊂ R, any f : I0→ R and any a > 0,

sup
I⊆I0

1
|I|

∫
I

exp(a| f (x) − fI |) dx ≤ K(a‖ f ‖BLO(I0)), (1.4)

where K(u) =∞ if u ≥ 1 and

K(u) =
1
e

( 1
1 − u

+
eu+1 − 1

1 + u

)
for u ∈ (0, 1). For each a, the bound on the right of (1.4) is the best possible.

We also provide sharp estimates for the distribution of BLO functions (which can
be regarded as weak John–Nirenberg inequalities for BLO spaces).

T 1.3. For any interval I0 ⊂ R, any f : I0→ R and any λ > 0,

sup
I⊆I0

1
|I|
|{x ∈ I : | f (x) − fI | ≥ λ}| ≤ P

(
λ

‖ f ‖BLO(I0)

)
, (1.5)

where

P(λ) =


1 if λ ≤ 1

2 ,

1 − λ(1 − e1−2λ) if 1
2 < λ ≤ 1,

e−λ if λ > 1.

For each λ > 0, the bound on the right-hand side of (1.5) is the best possible.

The Bellman function method for BLO functions is described in detail in the next
section. In Section 3 we show how this approach can be used to obtain the results
stated above. The final part of the paper contains higher-dimensional versions of the
above theorems for anisotropic BLO spaces.

2. On the method of proof

The Bellman function method is a powerful technique which allows the study of
various interesting estimates in probability and analysis. There are several papers
which contain a detailed description of the general methodology as well as many
examples and applications, see for example [9–11, 13–15]. We present the appropriate
modification of the technique so that it works for BLO functions. We would like to
stress here that the reasoning we present is not just the mere repetition of the arguments
used in the above papers; the passage to the BLO setting will require some additional
effort.
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We start with an auxiliary technical fact.

L 2.1. Let I ⊂ R be a bounded interval. Suppose that ε ∈ (0, 1
2 ) is a fixed number

and let f : I→ R be an arbitrary function satisfying ‖ f ‖BLO(I) < 1 − ε. Then there
exists a splitting of I into two intervals I− and I+ for which

x− :=
1
|I−|

∫
I−

f (x) dx − ess inf
I

f < 1,

x+ :=
1
|I+|

∫
I+

f (x) dx − ess inf
I

f < 1
(2.1)

and such that the splitting parameters α± = |I±|/|I| belong to [ε, 1 − ε].

P. First note that for any splitting at least one estimate in (2.1) is valid: in fact,
min{x−, x+} < 1 − ε, which is due to

α−x− + α+x+ =
1
|I|

∫
I

f (x) dx − ess inf
I

f < 1 − ε. (2.2)

We begin with splitting I into two halves (that is, we put α− = α+ = 1
2 ). If both

estimates in (2.1) are valid, we take this splitting. If this is not the case, assume, with
no loss of generality, that x− < x+ and start decreasing α− by shrinking the interval I−.
Since x− and x+ are continuous functions of α−, we have two possibilities: either
there is α− ∈ [ε, 1

2 ) for which x− ≤ x+ < 1 (and then we are done), or for all α− ∈ [ε, 1
2 )

we have x+ ≥ 1. Suppose that the second possibility occurs and take the splitting
corresponding to α− = ε. Since x− ≥ 0, dividing both sides of (2.2) by α+ = 1 − ε
yields x+ < 1, a contradiction. �

We turn to the description of the Bellman method in the BLO setting. Let V be a
nonnegative, continuous function defined on [−1,∞), let c ≥ 0 and suppose that we are
interested in proving that

1
|I|

∫
I

V( f (x)) dx ≤ c (2.3)

for any bounded interval I and any f : I→ R satisfying fI = 0 and ‖ f ‖BLO(I) ≤ 1. (Note
that the assumptions on f imply that ess infI f ≥ −1, so the integral in (2.3) is well-
defined.) To handle this problem, distinguish the set

D = {(x, y) : −1 ≤ y ≤ x < y + 1}

and suppose that U :D→ R is a function which enjoys the following four properties:

for any x ≥ −1, U(x, x) ≥ V(x), (2.4)

for any fixed y ≥ −1, the function U(·, y) is concave on [y, y + 1), (2.5)

for any fixed x ≥ 0, the function U(x, ·) is nonincreasing on (x − 1, x]. (2.6)

lim
y↓−1

U(0, y) ≤ c. (2.7)
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Here, as usual, U(·, y) and U(x, ·) denote the functions x 7→ U(x, y) and y 7→ U(x, y),
respectively. The connection between the inequality (2.3) and the special function U
satisfying the above conditions is described in the following statement.

T 2.2. Suppose that U satisfies the conditions (2.4)–(2.7). Then for any
bounded interval I ⊂ R and any function f : I→ R satisfying fI = 0 and ‖ f ‖BLO(I) ≤ 1
the inequality (2.3) holds true.

P. Fix I and f as in the statement; with no loss of generality, we may assume that
‖ f ‖BLO(I) < 1. Indeed, if ‖ f ‖BLO(I) = 1, we pick κ ∈ (0, 1) and work with the function
κ f which has the BLO norm smaller than 1; having shown the estimate

1
|I|

∫
I

V(κ f (x)) dx ≤ c,

we let κ→ 1 and get the claim by virtue of Fatou’s lemma (since V is continuous and
nonnegative).

So, let ‖ f ‖BLO(I) < 1 and pick ε ∈ (0, 1
2 ) such that ‖ f ‖BLO(I) < 1 − ε. It is convenient

to split the reasoning into three intermediate parts.

Step 1. Consider the following family {In}n≥0 of partitions of I, generated by the
inductive use of Lemma 2.1. We start with I0 = {I}; then, given In = {In,1, In,2, . . . ,
In,2n
}, we split each In,k according to Lemma 2.1, applied to the function f , and put

In+1 = {In,1
− , In,1

+ , In,2
− , In,2

+ , . . . , In,2n

− , In,2n

+ }.

Next, we define a sequence ( fn)n≥0 by

fn(x) =
1
|In(x)|

∫
In(x)

f (s) ds,

where In(x) ∈ In is an interval containing x (if there are two such intervals, we pick the
one which has x as its right endpoint). Set gn(x) = ess infIn(x) f ; then, by the inequality
‖ f ‖BLO(I) < 1 − ε < 1, for each n and almost all x ∈ I we have ( fn(x), gn(x)) ∈ D.
Furthermore, (2.1) guarantees that ( fn+1(x), gn(x)) ∈ D for all n ≥ 0 and almost all
x ∈ I.

Step 2. Now we will prove that for any nonnegative integer n and any In,k ∈ In,∫
In,k

U( fn+1(x), gn+1(x)) dx ≤
∫

In,k
U( fn(x), gn(x)) dx. (2.8)

To do this, note that (gn(x))n≥0 is nondecreasing for all x ∈ I, so by (2.6),∫
In,k

U( fn+1(x), gn+1(x)) dx ≤
∫

In,k
U( fn+1(x), gn(x)) dx.

Since gn is constant on In,k, it remains to use (2.5) to get (2.8).
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Step 3. This is the final part. Summing (2.8) over k,∫
I

U( fn+1(x), gn+1(x)) dx ≤
∫

I
U( fn(x), gn(x)) dx

and hence for any nonnegative integer n we have

1
|I|

∫
I

U( fn(x), gn(x)) dx ≤
1
|I|

∫
I

U( f0(x), g0(x)) dx = U
(

fI , ess inf
I

f
)
≤ c,

where in the last passage we have used the equality fI = 0 and the conditions (2.6)
and (2.7). Again by (2.6), we have U( fn, gn) ≥ U( fn, fn) and hence (2.4) gives

1
|I|

∫
I

V( fn(x)) dx ≤ c. (2.9)

Since the splitting ratios α± of Lemma 2.1 are bounded away from 0 and 1, the
diameter of In tends to 0 as n→∞, that is,

lim
n→∞

sup
1≤k≤2n

diam In,k = 0.

Consequently, by Lebesgue’s differentiation theorem, we have fn(x)→ f (x) for almost
all x ∈ I. Since V is continuous and nonnegative, the application of Fatou’s lemma
in (2.9) yields the claim. �

An interesting phenomenon is that the implication of the above theorem can be
reversed. To prove this fact, we need the following definition. For any (x, y) ∈ D, let
F (x, y) denote the class of all continuous and nonincreasing functions f : (0, 1]→ R,
which satisfy ‖ f ‖BLO([0,1]) ≤ 1, f[0,1] = x and ess inf[0,1] f = f (1) = y. We extend each
such function to the whole interval [0, 1] by setting f (0) = limx↓0 f (x) ∈ R ∪ {∞}. For
any (x, y) the class F (x, y) is nonempty, since it contains the function

f (s) =

y + log
x − y

s
if s ≤ x − y,

y if s > x − y.
(2.10)

Indeed, this function is continuous and nonincreasing on (0, 1], and it is easy to
compute that f[0,1] = x and ess inf[0,1] f = y. To check that ‖ f ‖BLO([0,1]) ≤ 1, observe
that in general, for any nonincreasing function f on [0, 1],

‖ f ‖BLO([0,1]) = sup
b∈(0,1]

[ f[0,b] − f (b)]. (2.11)

This identity follows directly from the fact that for any interval J ⊂ [0, 1] we have
fJ ≤ f[0,sup J] and ess infJ f = ess inf[0,sup J] f . Now, for f as in (2.10) and b ≤ x − y,

f[0,b] = y + log
x − y

b
+ 1 = f (b) + 1,
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while for x − y < b ≤ 1,

f[0,b] = y +
x − y

b
≤ f (b) + 1.

This completes the proof of the inclusion f ∈ F (x, y).
We are ready to establish the converse to Theorem 2.2.

T 2.3. Suppose that the inequality (2.3) holds true for I = [0, 1] and all
functions f : [0, 1]→ R such that f[0,1] = 0 and ‖ f ‖BLO([0,1]) ≤ 1. Then there is a
function U :D→ R which satisfies the conditions (2.4)–(2.7).

P. The desired function U :D→ R is given by

U(x, y) = sup
{∫ 1

0
V( f (x)) dx : f ∈ F (x, y)

}
.

Let us verify the required conditions.
The majorisation (2.4). This holds true since F (x, x) contains only one element,

the constant function (so in fact both sides of (2.4) are equal).
The concavity with respect to the first variable. Fix y ≥ 0, x−, x+ ∈ [y, y + 1) and

positive numbers α−, α+ satisfying α− + α+ = 1. Pick two functions f−, f+ belonging
to F (x−, y) and F (x+, y), respectively, and splice them together into the function
f : [0, 1]→ R ∪ {∞} by the formula

f (x) =

 f−(x/α−) if 0 ≤ x ≤ α−,

f+((x − α−)/α+) if α− < x ≤ 1.

Let f be a nonincreasing rearrangement of f : that is, define

f (t) = inf{s ∈ R : |{x ∈ [0, 1] : f (x) > s}| ≤ t}, t ∈ (0, 1].

Then f is nonincreasing and has the same distribution as f , so ess inf[0,1] f = y and

f[0,1] =

∫ 1

0
f (x) dx = α−

∫ 1

0
f−(x) dx + α+

∫ 1

0
f+(x) dx = α−x− + α+x+.

Furthermore, since f± are continuous and have the same essential infimum, the
function f is also continuous. Finally, we check that ‖ f ‖BLO([0,1]) ≤ 1, which, by (2.11),
amounts to saying that f[0,b] − f (b) ≤ 1 for all b ∈ (0, 1]. Fix such a number b and note
that we have two possibilities: either one of sup f−, sup f+ is smaller than f (b), or both
sup f−, sup f+ are at least f (b). If the first possibility occurs (say, sup f− < f (b)), then,
on [ f (b),∞), the distribution function of f coincides with the distribution function of
f+ multiplied by α+. Hence,

f[0,b] = ( f+)[0,α+b] ≤ ess inf
[0,α+b]

f+ + 1 = f+(α+b) + 1 = f (b) + 1.
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Now if both sup f−, sup f+ are at least f (b), then there are b−, b+ ∈ [0, 1] such that
f−(b−) = f+(b+) = f (b), α−b− + α+b+ = b and∫ b

0
f (x) dx = α−

∫ b−

0
f−(x) dx + α+

∫ b+

0
f+(x) dx

≤ α−b−( f−(b−) + 1) + α+b+( f+(b+) + 1)

= b f (b) + b.

Thus, we have f ∈ F (α−x− + α+x+, y) and hence

U(α−x− + α+x+, y) ≥
∫ 1

0
V( f (x)) dx = α−

∫ 1

0
f−(x) dx + α+

∫ 1

0
f+(x) dx.

It remains to take the supremum over f− and f+ to get (2.5).
The monotonicity with respect to the second variable. Pick x, y, z such that x − 1 <

z < y ≤ x and a function f ∈ F (x, y). Fix κ ∈ (0, 1) and consider f : [0, 1]→ R defined
by

f (x) =

 f (x/κ) if 0 ≤ x ≤ κ,
z − y
1 − κ

(x − κ) + y if κ < x ≤ 1.

Then f is nonincreasing, continuous and satisfies ess inf[0,1] f = f (1) = z and

f [0,1] = κ f[0,1] + (1 − κ) f [κ,1] = κx +
(1 − κ)(y + z)

2
.

Furthermore, as we will check now, || f ||BLO([0,1]) < 1. According to (2.11), we must
verify that for any b ∈ (0, 1] we have f [0,b] − f (b) ≤ 1. If b ≤ κ, then this follows
directly from the inequality ‖ f ‖BLO([0,1]) < 1; if b > κ, we derive that

f [0,b] =
κ

b
f[0,1] +

b − κ
b

f [κ,b] ≤
κ

b
x +

b − κ
b

y < z + 1 ≤ ess inf
[0,b]

f + 1.

Thus, the BLO norm of f is smaller than 1 and, consequently,

U
(
κx +

(1 − κ)(y + z)
2

, z
)
≥

∫ 1

0
V( f (x)) dx ≥ κ

∫ 1

0
V( f (x)) dx.

Taking the supremum over f ,

1
κ

U
(
κx +

(1 − κ)(y + z)
2

, z
)
≥ U(x, y).

However, as we have shown above, the function U(·, z) is concave on [z, z + 1); thus
it is continuous in the interior of this interval. Therefore, letting κ→ 1 yields the
monotonicity condition (2.6).

The property (2.7). By the assumption of the theorem, if y ∈ (−1, 0] and f ∈ F (0, y),
then (2.3) holds true. Take the supremum over f to get the property. �
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3. Applications

3.1. Proof of Theorem 1.1. Fix 1 ≤ p <∞ and f ∈ BLO(I0). To show (1.3), it
suffices to prove that for any I ⊆ I0,

1
|I|

∫
I
| f (x) − fI |

p dx ≤Cp
p‖ f ‖

p
BLO(I),

since ‖ f ‖BLO(I) ≤ ‖ f ‖BLO(I0). By homogeneity, we may and do assume that
‖ f ‖BLO(I) ≤ 1; furthermore, since the BLO norm is invariant with respect to trans-
lations, we may restrict ourselves to the functions satisfying fI = 0. Then the above
estimate is precisely of the form (2.3), with V(x) = |x|p and c = Cp

p. The special
function Up :D→ R, corresponding to this choice of V , is given by

Up(x, y) = (x − y)ey
∫ ∞

y
|s|pse−s ds + (1 − x + y)|y|p.

Indeed, it is evident that (2.4) holds true: in fact, we have equality here. The concavity
with respect to the first variable is obvious. The only nontrivial condition is (2.6). We
easily check that U1(x, y) = x − y + |y|, so the monotonicity is satisfied for p = 1. If p
is larger than 1, a straightforward calculation shows that

Upy(x, y) = (1 − x + y)
(
|y|p + p|y|p−2y − ey

∫ ∞

y
|s|pe−s ds

)
= −p(p − 1)ey

∫ ∞

y
|s|p−2e−s ds ≤ 0,

and (2.6) follows. Finally, (2.7) is evident, in fact both sides are equal. Therefore, by
Theorem 2.2, the inequality (1.3) holds true and it remains to prove that this estimate
is sharp. It suffices to consider the interval I0 = [0, 1] only; the examples for other
intervals are obtained by straightforward affine transformations. Consider a function
f : [0, 1]→ R, given by f (x) = −log x − 1. Then ‖ f ‖BLO([0,1]) ≤ 1, which can be seen
by repeating the analysis of the function (2.10). On the other hand,

‖ f ‖pBMOp([0,1]) ≥

∫ 1

0

∣∣∣∣∣ f (x) −
∫ 1

0
f (y) dy

∣∣∣∣∣p dx =

∫ 1

0
|log x + 1|p dx = Cp

p,

where the last passage can be easily verified using the substitution s = −log x − 1. This
shows that the constant Cp is indeed the norm of the inclusion BLO ⊂ BMOp.

3.2. Proof of Theorem 1.2. The bound (1.4) follows at once from (1.3):

1
|I|

∫
I

exp(a| f (x) − fI |) dx = 1 +

∞∑
k=1

ak

k!
1
|I|

∫
I
| f (x) − fI |

k dx

≤ 1 +

∞∑
k=1

akCk
k‖ f ‖

k
BLO(I)

k!
≤ K(a‖ f ‖BLO(I0)).

This estimate is sharp: take I = I0 = [0, 1] and use the function f (x) = −log x − 1
again. Then all of the inequalities above become equalities.
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3.3. Proof of Theorem 1.3. Fix λ > 0. Arguing as in the proof of (1.3), we see
that it suffices to prove that for any I ⊆ I0 and any f : I→ R satisfying fI = 0 and
‖ f ‖BLO(I) ≤ 1, the inequality (2.3), with V(x) = χ{|y|≥λ} and c = P(λ), is valid. Note that
the function V is not continuous, so to enable the application of Theorem 2.2, we fix
ε > 0 and use the function Vε,λ given by

Vε,λ(x) =


0 if |x| < λ,
|x| − λ
ε

if λ ≤ |x| ≤ λ + ε,

1 if |x| > λ + ε.

We consider the cases λ ≤ 1
2 , 1

2 < λ < 1 and λ ≥ 1 separately.
The case λ ≤ 1

2 . The inequality (1.4) is trivial; to see that the constant 1 cannot be
improved, pick I = I0 = [0, 1] and consider the function f = (χ[0,1/2) − χ[1/2,1))/2. Then
‖ f ‖BLO(I0) ≤ 1, since for any interval I ⊆ [0, 1] we have fI ≤

1
2 and ess infI f ≥ − 1

2 ;
furthermore, the left-hand side of (1.4) is equal to 1.

The case 1
2 < λ < 1. Assume that ε < 1 − λ and let Uλ :D→ R be given by

Uλ(x, y) =


1 − (x + λ)(1 − e1−2λ) if y ≤ −λ < x,

(x − y)ey−λ+1 if − λ < y ≤ λ − 1,
x − y
λ − y

if λ − 1 < y ≤ x < λ,

1 if |x| ≥ λ.

Since Uλ(x, x) = χ{|x|≥λ}, the majorisation Uλ(x, x) ≥ Vε,λ(x) holds true. The concavity
of U(·, y) is also straightforward. (This function is either linear, or linear on two
subintervals of [y, y + 1] and the appropriate bounds for one-sided derivatives are
valid.) To prove (2.6), observe that Uλ is continuous and the partial derivatives with
respect to y of the expressions appearing in the definition of Uλ are nonpositive.
Finally, both sides of (2.7) are equal. Thus, by Theorem 2.2,

1
|I|

∫
I

Vε,λ( f (x)) dx ≤ 1 − λ(1 − e1−2λ).

But Vε,λ(x) ≥ χ|x|≥λ+ε}, so the above bound implies

1
|I|
|{x ∈ I : | f (x)| ≥ λ + ε}| ≤ 1 − λ(1 − e1−2λ).

We have proved this estimate for arbitrary λ ∈ ( 1
2 , 1) and ε ∈ (0, 1 − λ). Any number

µ ∈ ( 1
2 , 1) can be written as a sum of two such parameters, with ε as small as we wish.

Thus,
1
|I|
|{x ∈ I : | f (x)| ≥ µ}| ≤ 1 − (µ − ε)(1 − e1−2µ+2ε),
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and letting ε→ 0 yields (1.5). To see that the bound is sharp, take I = I0 = [0, eλ−1/λ]
and consider the function f : I0→ R defined by

f (x) =


λ if 0 ≤ x < e−λ,

−log x − 1 if e−λ ≤ x < eλ−1,

−λ if eλ−1 ≤ x ≤ eλ−1/λ.

Then ‖ f ‖BLO(I0) = 1. To check this, observe that f is nonincreasing, so the appropriate
version of (2.11) holds true. If b ≤ e−λ, then f[0,b] − ess inf[0,b] f = 0; if e−λ < b ≤ eλ−1,
then f[0,b] − ess inf[0,b] f = 1; finally, if b ∈ (eλ−1, eλ−1/λ], then

f[0,b] ≤ f[0,eλ−1] and ess inf
[0,b]

f = ess inf
[0,eλ−1]

f ,

so f[0,b] − ess inf[0,b] f ≤ f[0,eλ−1] − ess inf[0,eλ−1] f = 1, and thus the BLO norm of f
equals 1. Furthermore, it is easy to check that f[0,eλ−1/λ] = 0 and

1
|I|
|{x ∈ I : | f (x)| ≥ λ}| =

e−λ + eλ−1(λ−1 − 1)
eλ−1/λ

= P(λ),

so the constant P(λ) cannot be improved.
The case λ ≥ 1. Here the analysis is very similar to that from the previous case (and

the calculations are somewhat easier), so we will only present the special function Uλ

and the extremal example which gives equality in (1.5). We introduce Uλ :D→ R by
the formula

Uλ(x, y) =


(x − y)ey−λ+1 if y ≤ λ − 1,
x − y
λ − y

if λ − 1 < y ≤ x < λ,

1 if |x| ≥ λ.

The optimality of the constant e−λ can be extracted from the function f : [0, 1]→ R
given by f (x) = λ if x ≤ e−λ and f (x) = −log x − 1 otherwise.

4. Estimates for anisotropic BLO

The above methodology concerned the one-dimensional case, but it can be used
in higher dimensions if one changes the original definition of BMO and BLO, and
works with the anisotropic versions of these spaces. Let d ≥ 2. Recall that f belongs
to the anisotropic space ABMO(Rd) (respectively, anisotropic ABLO(Rd)), if the
inequality (1.1) (respectively, (1.2)) holds true for all bounded rectangles Q ⊂ Rd (the
products of intervals of possibly different lengths). As previously, we will study the
less restrictive, ‘local’ case in which the rectangles Q are assumed to be contained in
a given bounded rectangle Q0. First we show the version of Theorem 2.2.
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T 4.1. Suppose that there is a function satisfying the conditions (2.4)–(2.7).
Then, for any bounded rectangle Q ⊂ Rd and any function f : Q→ R satisfying fQ = 0
and ‖ f ‖ABLO(Q) ≤ 1,

1
|Q|

∫
Q

V( f (x)) dx ≤ c.

We need the following extension of Lemma 2.1.

L 4.2. Pick Q = [a1, b1] × [a2, b2] × · · · × [ad, bd] and ` ∈ {1, 2, . . . , d}. Suppose
that ε ∈ (0, 1

2 ) is a fixed number and let f : Q→ R be an arbitrary function satisfying
‖ f ‖ABLO(Q) < 1 − ε. Then there exists a splitting of Q into two rectangles Q− and Q+

along a hyperplane orthogonal to the `th axis, for which

x− :=
1
|Q−|

∫
Q−

f (x) dx − ess inf
Q

f < 1,

x+ :=
1
|Q+|

∫
Q+

f (x) dx − ess inf
Q

f < 1

and such that the splitting parameters α± = |Q±|/|Q| belong to [ε, 1 − ε].

The proof is essentially the same as in the one-dimensional setting and is omitted.

P  T 4.1. The reasoning is similar to that in the proof of Theorem 2.2, so
we will be brief. We may assume that ‖ f ‖ABLO(Q) < 1 − ε, for some ε ∈ (0, 1

2 ). The only
essential change there is how to construct the sequence {Qn}n≥0 of partitions of Q. We
use the following inductive procedure. Set Q0 = {Q} and suppose that we have defined
Qn = {Qn,1, Qn,2, . . . , Qn,2n

}. We split each Qn,k along the hyperplane orthogonal to the
longest side of the rectangle, according to Lemma 4.2 (if there are two or more longest
sides of Qn,k, we pick any of them); then put

Qn+1 = {Qn,1
− , Qn,1

+ , Qn,2
− , Qn,2

+ , . . . , Qn,2n

− , Qn,2n
}.

This sequence of partitions has two important properties: first, the diameter of Qn

(defined as sup1≤k≤2n diamQn,k) converges to 0 as n→∞; second, for any k, the ratio
of the lengths of any two sides of Qn,k is bounded by a number depending only on ε and
the lengths of the initial rectangle Q. This makes Lebesgue’s differentiation theorem
applicable and, hence, having proved

1
|Q|

∫
Q

V( fn(x)) dx ≤
1
|Q|

∫
Q

U( fn(x), gn(x)) dx ≤
1
|Q|

∫
Q

U( f0(x), g0(x)) dx ≤ c,

it suffices to let n→∞ and use Fatou’s lemma to get the claim. �
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Now we establish the analogues of the results formulated in the Introduction.

T 4.3. Suppose that Q0 ⊂ R is a bounded rectangle and f ∈ ABLO(Q0). Then
for any 1 ≤ p <∞, a > 0 and λ > 0,

‖ f ‖ABMOp(Q0) ≤ Cp‖ f ‖ABLO(Q0), (4.1)

sup
Q⊆Q0

1
|Q|

∫
Q

exp(a| f (x) − fQ|) dx ≤ K(a‖ f ‖ABLO(Q0)), (4.2)

sup
Q⊆Q0

1
|Q|
|{x ∈ Q : | f (x) − fQ| ≥ λ}| ≤ P(λ/‖ f ‖ABLO(Q0)) (4.3)

and all of the estimates are sharp.

P. The validity of the estimates follows from Theorem 4.1. To see the sharpness
of (4.1), we use the extremal example from (1.3) in the following way: put Q = Q0 =

[0, 1] × [a2, b2] × · · · × [ad, bd] and f (x) = −log x1 − 1, x = (x1, x2, . . . , xd) ∈ Q. This
choice gives equality in (4.1). The bounds (4.2) and (4.3) are handled similarly. �
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