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Abstract
Advertising click-through rate (CTR) prediction is a fundamental task in recommender systems, aimed at estimating
the likelihood of users interacting with advertisements based on their historical behavior. This prediction process
has evolved through two main stages: from traditional shallow interaction models to more advanced deep learning
approaches. Shallow models typically operate at the level of individual features, failing to fully leverage the rich,
multilevel information available across different feature sets, leading to less accurate predictions. In contrast, deep
learning models exhibit superior feature representation and learning capabilities, enabling a more realistic sim-
ulation of user interactions and improving the accuracy of CTR prediction. This paper provides a comprehensive
overview of CTR prediction algorithms in the context of recommender systems. The algorithms are categorized into
two groups: shallow interactive models and deep learning-based prediction models, including deep neural networks,
convolutional neural networks, recurrent neural networks, and graph neural networks. Additionally, this paper also
discusses the advantages and disadvantages of the aforementioned algorithms, as well as the benchmark datasets
and model evaluation methods used for CTR prediction. Finally, it identifies potential future research directions in
this rapidly advancing field.

1. Introduction
The problem addressed by recommender systems is how to effectively suggest items to users in order to
enhance their click-through rate (CTR) and overall satisfaction. CTR prediction plays a crucial role in
both recommender and advertising systems, as its accuracy directly impacts the performance of recom-
mendation algorithms. The development of collaborative filtering (CF) algorithms (Koren & Bell, 2015)
dates back to 1992, marking the foundation of modern recommendation models. However, CF algo-
rithms struggle with handling sparse matrices and maintaining similarity matrices. To overcome these
limitations, matrix factorization (MF) techniques (Koren et al., 2009) were introduced. MF represents
users and items through latent vectors, enabling the extraction of underlying patterns and effectively
addressing the issue of data sparsity. Research into these recommendation models has significantly
contributed to the advancement of CTR prediction methodologies.

Logistic regression (LR) (Richardson et al., 2007) is one of the earliest and most widely used meth-
ods for CTR prediction in industry. The LR algorithm employs a shallow interaction model to integrate
multiple features for recommendation, playing a key role in the early development of CTR prediction
techniques. The interaction between features is critical for prediction accuracy. To address the limitation
of linear models, which cannot effectively capture feature interactions, many researchers have proposed
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various enhanced CTR prediction models focusing on feature engineering and interaction. CTR pre-
diction data typically involve multiple features, with categorical features becoming highly sparse after
one-hot encoding. Generalized linear models such as LR and follow-the-regularized-leader (FTRL)
(McMahan et al., 2013) struggle to model complex feature interactions (Chapelle et al., 2014). To over-
come this, factorization machines (FM) (Rendle, 2010; Rendle, 2012a) were introduced, utilizing the
embedding of two features as an inner product to capture second-order feature interactions. FM became
a mainstream recommendation model in industry between 2012 and 2014 for several reasons: (1) It
significantly reduces training overhead, with complexity reduced from O(n2) in POLY2 (Chang et al.,
2010) to the linear complexity of O(kn), where k represents the length of the implicit vector. (2) FM has
a relatively simple structure compared to the more complex deep learning models, making deployment
and service more efficient. (3) By introducing implicit vectors, FM effectively addresses the issue of data
sparsity. However, FM typically captures only pairwise feature interactions, and as the number of fea-
tures increases, the model’s complexity grows significantly. To capture higher-order feature interactions,
Blondel et al. (2016) and He et al. (2014) have proposed various methods.

In recent years, various machine learning tasks, including object detection (Szegedy et al., 2013;
Zhao et al., 2019), natural language understanding (Dahl et al., 2011), and speech recognition (Hinton
et al., 2012), have been revolutionized by end-to-end deep learning paradigms. Models such as deep
neural networks (DNN), convolutional neural networks (CNN), recurrent neural networks (RNN), and
graph neural networks (GNN) have been continuously proposed. The powerful learning capabilities
of deep learning have also been applied to CTR prediction (Wang et al., 2018). Zhang et al. (2021b)
explains that depth is a necessary development trend for such tasks. Given the large volumes of training
data, highly sparse features, and high performance requirements often associated with CTR prediction,
algorithm design is primarily focused on addressing these challenges. Shan et al. (2016) proposed the
Deep Crossing model, based on the classic DNN architecture of ResNet, for CTR prediction. This model
effectively addresses several issues in the application of deep learning to recommender systems, such
as feature engineering, sparse vector densification, and optimization of multilayer neural networks for
target fitting. It has laid a strong foundation for subsequent research. With the advent of Microsoft’s Deep
Crossing model, Google’s Wide & Deep model (Cheng et al., 2016), and other advanced models such
as Factorization Machine-based Neural Networks (FNN) (Zhang et al., 2016) and Product-based Neural
Networks (PNN) (Qu et al., 2016), the field of recommender systems and computational advertising has
entered the era of deep learning.

The core objective of the attention mechanism is to identify and prioritize information that is most
relevant to the task at hand, allowing the model to focus on useful data while minimizing attention to
noise. Given current computational resource constraints, the attention mechanism is a crucial tool for
enhancing efficiency. In CTR prediction, different samples correspond to distinct scenarios, and the
importance of specific features or feature combinations varies depending on the sample and application
context. Vaswani et al. (2017) introduced the Multi-Head Attention mechanism, which has provided
valuable insights into understanding user interests–specifically, what these interests are and how they
evolve. Historically, many models overlooked the varying impact of different features on prediction
outcomes, with fixed training weights across all features. The LS-PLM model (Gai et al., 2017), a tra-
ditional recommendation model, addresses this by introducing an attention mechanism that classifies
samples before calculating prediction scores within each category. Since 2017, a growing body of CTR
prediction research has incorporated attention networks to better capture users’ latent interests. Notable
models include the attentional factorization machine (AFM) (Xiao et al., 2017), deep interest network
(DIN) (Zhou et al., 2018), deepinterest evolution network (DIEN) (Zhou et al., 2019), behavior squence
transformer (BST) (Chen et al., 2019a), and the search-based interest model (SIM) (Pi et al., 2020),
among others.

To summarize, this paper offers an overview for those seeking to understand the development and
current state of CTR prediction research, as well as for those interested in comparing different CTR
prediction models.
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1.1 Our contributions
This paper makes several significant contributions, summarized as follows.

1. Taxonomy: We classify CTR prediction models into two categories: shallow interaction
models and deep learning-based prediction models (including DNN, CNN, RNN, and GNN).

2. Comprehensive Review: We provide an in-depth overview of CTR prediction technologies,
offering detailed descriptions of representative models for each category, making necessary
comparisons, and summarizing the corresponding algorithms.

3. Resource Compilation: We have compiled a wealth of resources on CTR prediction models,
including classic and state-of-the-art models, benchmark datasets, and evaluation metrics.

4. Future Directions: We analyze the limitations of existing CTR prediction methods and
propose potential directions for future research.

1.2 Organization of this paper
The remainder of this paper is organized as follows: Section 2 provides a brief introduction to the CTR
prediction problem, reviews related work, including fundamental concepts of CNN, RNN, Graph, and
Graph Embedding, and presents symbolic definitions along with a list of commonly used notations.
Sections 3 and 4 summarize CTR prediction models by category. Section 5 discusses the advantages
and disadvantages of the aforementioned algorithms, as well as commonly used datasets and evaluation
metrics for assessing CTR prediction performance. Section 6 outlines current research trends in this
field and highlights potential directions for future exploration. Finally, Section 7 concludes the paper.

2. Related work and symbol description
In this section, we present the CTR prediction problem, review related work, introduce the fundamental
concepts of CNN, RNN, graph and graph embedding, and provide a list of the common symbols used
in this paper.

2.1 Related work
Advertising CTR refers to the ratio of ad clicks to ad impressions. The goal of CTR prediction is
to estimate the likelihood of an advertisement being clicked based on advertising and user informa-
tion. The accuracy of this prediction directly impacts the advertising revenue of internet companies
(Richardson et al., 2007). Online advertising typically uses four billing methods (Asdemir et al., 2012):
monthly, Cost Per Mille (CPM), Cost Per Click (CPC), and Cost Per Sale (CPS). Among these, CPC and
CPS are closely related to CTR. The expected revenue R for an internet platform can be expressed as
R = CTR × CPC, where CPC represents the revenue generated by a single click on an advertisement.
Therefore, accurate CTR prediction is crucial for maximizing user engagement, increasing user reten-
tion, and driving significant business value for the company. The relevant theories used in the subsequent
model summary are as follows:

1. Convolutional Neural Networks: CNN (Gu et al., 2018) are characterized by sparse connec-
tions and weight sharing. The overall framework of classification task based on CNN is shown
in Figure 1, which can be divided into feature extraction module and classification module. The
feature extraction module extracts features from input through convolution layer and pooling
layer, while the classification module is based on fully connected feedforward neural network.
The two modules are connected through the flattening operation to flatten the feature matrix
in multiple channels obtained by the feature extraction module into a one-dimensional vector,
which will be used as the input of the classification module.
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Figure 1. Overall framework of convolutional neural network

Figure 2. Recurrent neural network

In the convolution neural network, the feature map (Zou et al., 2018) is composed of multiple
neurons, and each neuron is connected by the output of the upper layer neuron and the convolu-
tion kernel. Convolution kernel (Rawat & Wang, 2017) is a weight matrix of user-defined size,
which acts on the local perception domains of different regions of the same image. The features
of each local perception domain are extracted to generate the input value of the next layer of
neurons. The convolutional layer convolves the input features, and its feature map is shown in
formula (1). The pooling layer performs secondary extraction of input features through certain
pooling rules, and its feature map is shown in formula (2), where Hi is the feature map of the
i-th layer,

Hi = f (Hi−1 ⊗ wi + bi) , (1)
Hi = f (pooling((Hi−1)) + bi) , (2)

f (x) is a nonlinear activation function, ⊗ represents the convolution operation of the convo-
lution kernel and the feature map, pooling(x) represents pooling rules, such as mean pooling,
maximum pooling, random pooling, etc. wi represents the weight vector of the convolution
kernel of the i-th layer, bi represents the bias term of the i-th layer.

2. Recurrent Neural Network: RNN (Zaremba et al., 2014) is a kind of neural network which
is used to process time series information. In this paper, we consider discrete RNN, where the
process is divided into multiple states and each state is time-stamped. Figure 2 (Wu et al., 2016)
shows the basic idea of RNN, let x and o represent input and output, respectively, and use h to
represent the values in the hidden layer, as well as three transfer matrices, U,V and W . There
is a self-link in the hidden layer that indicates that it will update its value over time. Assuming
that there are three states at t − 1, t and t + 1, x(i) and o(i) (t − 1 ≤ t ≤ t + 1) represent the input
and output in different states respectively. The hidden layer value h (i) of state i will be updated
according to the value (h(i − 1)) of the previous state, as shown in formula (3):

h(i) = f (Ux(i) + Wh(i − 1)), (3)
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Figure 4. A general framework for graph embedding

where f represents nonlinear activation functions, such as tanh, ReLU and Sigmoid functions,
and o(i) is the predictive value of state i, which is formalized as follow:

o(i) = softmax(Vh(i)). (4)

Therefore, we can get the output of each state.
3. Graph: Graph (Cai et al., 2018) can be represented as G = (V , E), where V is the set of ver-

tices and E is the set of edges (directed or undirected edges). The directed graph is shown in
Figure 3(a), and the undirected graph is shown in Figure 3(b). Vertices and edges may con-
tain additional information, collectively referred to as label information.The label of vertex v is
defined as�lv ∈R

nv and nv is the dimension of the vertex label, usually containing the characteris-
tics of the vertex. The label that defines the edge (v1, v2) is�lv1,v2 ∈R

nE and nE is the dimension of
the edge label, usually containing characteristics of the relationships between vertices. Graph
structure (Scarselli et al., 2008) exists in various realistic scenarios, such as social network,
citation network and knowledge graph, etc.

4. Graph Embedding: Graph embedding (Cai et al., 2018) aims to map each node in a given
graph into a low-dimensional vector representation that typically preserves some key informa-
tion of the node in the original graph. A node in a graph can be viewed from two domains:
(1) the original graph domain, where nodes are connected via edges (or the graph structure)
and (2) the embedding domain, where each node is represented as a continuous vector. We
illustrate an overall framework of graph embedding in Figure 4, there are four key components
in the general framework as: mapping function, information extractor, reconstructor, and opti-
mize objective. In the figure, E is the extracted graph information, and E

′ is the reconstructed
information. Thus, graph embedding maps graphs to low-dimensional spaces that retain graph
information. Most graph analysis methods require high computational cost and space cost, but
graph embedding provides an effective method to solve the problem of graph analysis.

Table 1 presents the classification of CTR prediction models discussed in this paper. We categorize
these models into two groups: shallow interaction models and deep learning-based prediction models
(including DNN, CNN, RNN, and GNN). In this table, “Shallow” refers to traditional CTR prediction
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Table 1. Classification and representative literature of click-through rate prediction models

Category Publications
Shallow Richardson et al. (2007), McMahan et al. (2013), Rendle (2010), Chang

et al. (2010), Blondel et al. (2016), He et al. (2014), Gai et al. (2017), Juan
et al. (2016)

Deep DNN Shan et al. (2016), Cheng et al. (2016), Zhang et al. (2016), Qu et al.
(2016), Xiao et al. (2017), Zhou et al. (2018), Pi et al. (2020), Guo et al.
(2017), He and Chua (2017), Chen et al. (2019b), Zhao et al. (2021b), Zhu
et al. (2017), Wang et al. (2017), Chen et al. (2021), Xue et al. (2020), Xu
et al. (2021b), Lian et al. (2018), Liu et al. (2020a), Cao et al. (2021),
Huang et al. (2021b), Zeng et al. (2020), Cheng and Xue (2021), Zhang
et al. (2021a), Lu et al. (2021), Zhu et al. (2021), Zhou et al. (2020),
Huang et al. (2019), Kaplan et al. (2021), Ouyang et al. (2019b), Lyu et al.
(2020), Wu et al. (2020), Mishra et al. (2021), Cao et al. (2020), Ouyang
et al. (2019a), Li et al. (2020b), Ouyang et al. (2020), Qin et al. (2020),
Ge et al. (2018), Zhao et al. (2020), Huang et al. (2021a), Shi and Yang
(2020), Zhu et al. (2020), Zhao et al. (2021a), Guo et al. (2021a)

CNN Liu et al. (2015), Chan et al. (2018), Chen et al. (2016), Shen et al. (2016),
Zhou et al. (2016), Lei et al. (2016), Gligorijevic et al. (2019), Liu et al.
(2019), Zhu (2021), Gao et al. (2018), Niu and Hou (2020), Edizel et al.
(2017), Liu et al. (2020b), Guo et al. (2021c)

RNN Zhou et al. (2019), Wang et al. (2020a), Zhang et al. (2014), Feng et al.
(2019), Xu et al. (2021a), Li et al. (2020a), Hong et al. (2021), Pi et al.
(2019), Song et al. (2020)

GNN Li et al. (2019b), Li et al. (2019a), Su et al. (2021), Li et al. (2021), Feng
et al. (2020), Chu et al. (2021), Guo et al. (2021b), Wang et al. (2021),
Ouyang et al. (2021), Min et al. (2022), Zheng et al. (2022)

models based on shallow interactions, while ’‘Deep” encompasses models based on deep learning tech-
niques, including deep neural networks, convolutional neural networks, recurrent neural networks, and
graph neural networks. In the following two sections, we provide a brief overview of the representative
models in each category.

2.2 Commonly used notations
Before formally introducing the CTR prediction model, we list the commonly used notations. Unless
otherwise specified, all notations used in this paper are defined in Table 2.

3. The shallow interactive model
In internet application scenarios, the system can collect vast amounts of user and item data. The logistic
regression model (Richardson et al., 2007) effectively leverages a variety of features and converts the
problem into a binary classification task. The structure of the model is illustrated in Figure 5. However,
since logistic regression lacks the ability to generate combinatorial features, its expressive power is
limited.

The CTR prediction result obtained by the pattern with feature interaction is often more accurate
than those without feature interaction. Hence, Chang et al. (2010) proposed the Poly2 model for CTR
prediction, and the expression is:

https://doi.org/10.1017/S0269888925000025 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000025


The Knowledge Engineering Review 7

Table 2. Commonly used notations

Notations Descriptions
� Element-wise product(Hadamard product)∑

Summation symbol
y True label
xi Features
w, wi Weight of each feature
W ∈R

n×n W belongs to n-dimensional feature space
V ∈R

n×k V belongs to n × k-dimensional feature space
wij The weight of the intersection of the i-th feature and the j-th feature
〈vi, vj〉 Inner product of vi and vj

k Length of the latent vector
σ (·) The activation function
η(x) The softmax function
D1 The number of neurons in the hidden layer
N The number of feature domains
M The dimension of the embedding vector
fi ∈R

M fi belongs to M-dimensional vector space
l Layers of neural network
x1 ∈R

n×D×1 The input matrix of the first layer of convolution
aij The attention score of vi � vj

a(·) The feedforward neural network
cl

i The ith output of the lth pair of convolution and pooling layer
q(·) The pooling function
tl The number of feature maps in the ith layer
C1

:,:,i The ith feature map in the first convolutional layer
h(t) The hidden state in time t
hi

t The tth hidden state of GRU for user i

User features, Item features, Contextual features

1x1x 2x nx 0w

1w

2w nw
1

Sigmoid Function
ip

Figure 5. Structure diagram of logistic regression model

y = w0 +
n∑

i=1

wixi +
n−1∑
i=1

n∑
j=i+1

wijxixj, (5)

where wij(i = 1, 2, . . . , n − 1; j = i + 1, . . . , n) is the weight of the interaction of the i-th feature and the
j-th feature. The model adopts the non-selective feature interaction method to learn the second-order
feature combination, which will make the originally very sparse feature vector more sparse, resulting
in the lack of effective data training for the weights of most of the intersecting features, and the time
complexity is O(n2).
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In order to reduce the computational complexity of the model in learning second-order feature
combination, Rendle (2010, 2012a) proposed the Factorization Machine (FM) model, which maps the
high-dimensional sparse matrix to the low-dimensional dense vector, and learns the information of fea-
ture pairwise combination through the vector inner product. Since the features are not independent of
each other, an implicit factor can be used to connect them in series. The FM introduces the idea of matrix
decomposition to decompose the coefficient matrix of the cross term: wij = 〈vi, vj〉, The mathematical
basis (Blum, 2012) is that when k is large enough, there is a real matrix V ∈R

n×k for any symmetric
positive definite real matrix W ∈R

n×n, so that W = VVT holds. FM model can be expressed as:

y = w0 +
n∑

i=1

wixi +
n−1∑
i=1

n∑
j=i+1

〈vi, vj〉xixj, (6)

The cross term coefficient of the feature vector xi and xj is equal to the inner product of the implicit vector
corresponding to xi and the implicit vector corresponding to xj: 〈vi, vj〉 =∑k

t=1 vit · vjt, k is a hyperparam-
eter, indicating the length of the implicit vector. In essence, it is embedding the feature, and the time
complexity is O (kn). FM does not consider that the implicit vector may show different distribution when
combining the features of different feature fields. Therefore, Juan et al. (2016) introduced the concept
of field-aware and proposed the field-aware factorization machine (FFM) model related to the feature
field, the mathematical expression is:

y = w0 +
n∑

i=1

wixi +
n−1∑
i=1

n∑
j=i+1

〈vi,fj , vj,fi〉xixj, (7)

although more information can be learned by using the feature field, FFM model gives a set of feature
implicit vectors to individual features in each feature field, and the algorithm complexity is increased
to O(kn2). Moreover, the feature interaction of FM and FFM is second-order, and at most, two features
are crossed. Once there are more than two features, the complexity will become very high. Therefore,
Blondel et al. (2016) extended the second-order FM to higher-order factorization machines (HOFM) and
designed the ANOVA kernel (used when the higher-order is greater than 2) to ensure that the higher-order
combination information of features can be learned when the interpretability is strong.

In order to get higher-order feature combinations, Facebook researchers (He et al., 2014) use the
gradient boosting decision tree (GBDT) (Friedman, 2001) to extract and screen differentiated features
and feature combinations and take the extracted features as the input of LR. This scheme is called
GBDT+LR, which is the beginning of feature engineering modeling. Gai et al. (2017) put forward
the large-scale piece-wise linear model (LS-PLM), also known as the mixed logistic regression (MLR),
which was applied to all kinds of advertising scenes in Alibaba for a long time before the deep learning
model was put forward. LS-PLM adopts the idea of divide and conquer on the basis of LR, after clus-
tering and slicing the samples, logistic regression is applied in the sample sharding for CTR estimation.
The structural characteristics of LS-PLM are similar to those of three-layer neural network (as shown in
Figure 6), x is a large-scale sparse input data, the embedding operation is divided into two parts: the blue
part is clustering embedding, and the green part is classification embedding, both projections are cast
into the m dimensional space, and m is the number of categories. The formal expression is as follows:

f (x) =
m∑

i=1

ηi(x) · σi(x) =
m∑

i=1

eμi ·x∑m
j=1 eμj ·x · 1

1 + e−wi ·x , (8)

The clustering function ηi is the softmax function, which is responsible for dividing the features into
different spaces of m. σi(x) is the sigmoid function, which is responsible for predicting the feature frag-
ments of m space. The space is divided into m regions for linear fitting, and finally, the results of the
m regions are normalized in order to make the CTR prediction model more targeted for different user
groups and different application scenarios.
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Figure 6. Structure diagram of LS-PLM

4. Deep learning models
Recently, recommender systems and computational advertising have entered the era of deep learning.
On one hand, deep learning enables the extraction of deep feature representations for both users and
items (Shaheen et al., 2016). On the other hand, it allows for the mapping of diverse data types to
a shared latent space through automatic feature learning from multi-source heterogeneous data (Mu,
2018), thereby facilitating a unified representation of the data.

4.1 CTR prediction model based on deep neural network
Zhang et al. (2016) proposed factorization machine supported neural network (FNN) model, which
used DNN to re-cross the second-order features of FM (Rendle, 2010) display expression, thus gen-
erating higher-order feature combinations and strengthening the learning ability of the model to data
patterns. The input features are sparse after one-hot coding, which leads to the slow convergence speed
of the embedding layer. FNN initializes the weight w of the embedding layer of the formally trained
model with the feature implicit vectors pre-trained by the FM method. After introducing valuable prior
information, the starting point of neural network training is closer to the optimal point of the target,
which naturally accelerates the convergence process of neural network. However, the serial mode of
FNN limits the expression ability of the whole model, which is limited to the upper limit of FM repre-
sentation ability (second-order feature crossing), and only pays attention to the crossing of high-order
combination features, so it is easy to lose the ‘memory ability’ of the model.

In the same year, Qu et al. (2016) put forward the product-based neural network (PNN) model to
enrich the way of feature interaction. The PNN introduced the product layer and used the vector product
(inner product or outer product) between features to learn feature combination information and capture
cross-domain interactive information. The product layer structure of PNN is shown in Figure 7. z in the
product layer is the linear operation part, lz = (l1

z , l2
z , . . . , ln

z , . . . , lD1
z ), D1 is the number of neurons in the

hidden layer. The embedding vector f = (f1, f2, . . . , fN) is defined as the vector z = (z1, z2, . . . , zN), then
the formula can be obtained:

ln
z = Wn

z � z =
N∑

i=1

M∑
j=1

(
Wn

z

)
i,j

zi,j, (i = 1, 2, . . . , N), (9)

where N is the number of feature fields, and M is the dimension of Embedding. p in the product layer cor-
responds to the product operation part, lp = (l1

p, l2
p, . . . , ln

p, . . . , lD1
p ), divided into inner and outer modes,

and ln
p = Wn

p � z. The expressions for inner product and outer product modes are as follows:
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Figure 7. Structure diagram of product layer
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Figure 8. Structure diagram of Wide & Deep

1. IPNN: The model input is the result of the inner product between embedding vectors, and
the model complexity caused by the calculation of pairwise vector product will be very high.
Therefore, the weight Wn

p in the formula is decomposed by using the idea of FM: Wn
p = θ n

i θ
n
j ,

the formula can be transformed into:

ln
p = Wn

p � p =
N∑

i=1

N∑
j=1

θ n
i θ

n
j 〈fi, fj〉 = 〈

N∑
i=1

δn
i ,

N∑
i=1

δn
i 〉, (10)

where δn
i = θ n

i fi ∈R
M.

2. OPNN: The model input is the result of the outer product between the pairwise embedding
vectors. The outer product operation will increase the complexity of the problem from O(M) to
O(M2). In order to reduce the complexity of the model, the results of all outer product operations
can be superimposed into M × M, that is, p is converted into:

p =
N∑

i=1

N∑
j=1

fi f
T
j = fM(fM)T , fM =

N∑
i=1

fi. (11)

Deep learning networks alone can capture high-order feature interactions, but they often overlook the
importance of low-order feature combinations. Both the FNN and PNN models account for high-order
feature interactions, yet their memory capacity is limited due to the neglect of low-order features. In
deeper network architectures, the increased depth enables more complex feature interactions, but this
can lead to the loss of simpler information provided by the initial features.

In 2016, Google researchers (Cheng et al., 2016) proposed the Wide&Deep model to combine linear
models and deep learning models, not only considering low-level information but also learning the inter-
active information between features. The structure of the Wide&Deep model is shown in Figure 8, wide
part is a linear model (generally LR) to provide memory for the whole model; DNN, as the deep part,
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mines high-order nonlinear features to increase the generalization ability of the model. The influence of
Wide & Deep is to put forward a form that can be combined, which combines the simple model with the
deep neural network, so as to strengthen the memory ability and generalization ability. In view of the
defect that the wide part of Wide& Deep does not have the ability of automatic feature combination, the
DeepFM model proposed by Guo et al. (2017) uses a parallel structure to combine FM and DNN, both
of which receive the same input, but learn different features (one is responsible for low-level interaction,
the other is responsible for high-level interaction). As the FM part of the DeepFM is still a second-order
crossover, it inevitably limits the expression ability of the model. Hence, He and Chua (2017) proposed
Neural Factorization Machine (NFM) to extract the nonlinear interactive information of high-order fea-
tures. The structure of NFM network is similar to that of PNN network. The structure of NFM network
is similar to that of PNN network, which changes the product layer of PNN into Bi-Interaction pooling
Layer to realize the seamless connection between FM and DNN.

Chen et al. (2019b) proposed the field-leveraged embedding network (FLEN), which uses space-
time efficient methods to alleviate the widespread gradient coupling problem, mainly using field-wise
bilinear interaction (FwBI) (including three parts: Linear, FM, and MF), in which the MF part is used
to learn the feature interaction among the large categories of features (user, item, and context), and the
FM part is used to learn the feature interaction within the large categories of features. Reference (Zhao
et al., 2021b) proposes that Field-aware INTeraction Neural Network (FINT) for CTR prediction uses
the Field-aware INTeraction layer to capture high-order feature interactions while preserving low-order
field information.

In addition to the models or composite models mentioned above, there are also models that directly
use multi-layer perceptron (Gardner & Dorling, 1998) to learn the interaction between features. The
deep crossing model (Shan et al., 2016) consists of embedding layer, stacking layer, multiple residual
units, and a scoring layer. Through the multilayer residual network, all dimensions of feature vectors are
fully crossed and combined, so that the model can capture more nonlinear features and combined feature
information, and increase the expression ability of the model. Zhu et al. (2017) put forward the deep
embedding forest (DEF) model by replacing the residual network in the deep crossing model with the
forest layer. Compared with the deep crossing, this model can effectively reduce the online prediction
time.

Feature engineering plays an important role in CTR prediction accuracy, and identifying common,
predictive features while exploring unseen or rare intersecting features is the key to making good pre-
dictions. Wang et al. (2017) proposed the Deep&Cross Network (DCN) for CTR prediction. The model
consists of deep neural network and cross network, and the outputs of the two networks are combined as
the input of the CTR prediction model. The purpose of designing cross network is to increase the inter-
action strength between features, and the time and space complexity of the network are linear. Cross
network consists of multiple cross layers, assuming that the output vector of the l-th layer is xl, then the
output vector of the l + 1-th layer is:

xl+1 = x0xT
l wl + bl + xl = f (xl, wl, bl) + xl, (12)

the visualization of cross layer is shown in Figure 9 (Wang et al., 2017), the cross network can perform
high-order feature interaction. The number of layers of the network determines the order of feature inter-
action, the highest cross product order corresponding to the l-th layer feature is l + 1. It can be seen that
each layer adds a n-dimensional weight vector wl (n represents the dimension of the input vector) and
retains the input vector at each layer, so the change between input and output will not be particularly
obvious. Since Equation (12) is used for feature interaction learning, it can be seen that xl+1 is itera-
tively derived from x0, so it will be more sensitive to the parameters of each layer. Due to insufficient
sharing of hidden layer of DCN, and excessive network input sharing limits the expressiveness of the
models. To enhance information sharing between explicit and implicit feature interactions, Chen et al.
(2021) proposed the Enhanced Deep&Cross Network (EDCN). In EDCN, the bridge module mainly
solves the problem of insufficient sharing of the hidden layer of DCN model and increases the interac-
tion between parallel structures. and the regulation module generates different embeddings for different
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Figure 9. Visualization of cross layer

parallel networks, and is used again after each interaction to generate different embeddings. Explicit
feature interaction modeling can help neural networks reduce the number of parameters and achieve
better performance. However, because of the complexity of the calculation, the explicit feature interac-
tions are often limited to the second order. Literature (Xue et al., 2020) also proposes efficient methods
to express explicit higher-order feature combinations and simultaneously prune redundant features. To
better model complex feature interactions, Xu et al. (2021b) proposed the DisentanglEd Self-atTentIve
NEtwork (DESTINE) framework for CTR prediction, which explicitly separates the computation of
unary feature importance from pairwise interaction.

Lian et al. (2018) put forward the eXtreme Deep Factorization Machine (xDeepFM) model with com-
pressed interaction network (CIN) to learn explicit high-order interaction. The CIN module replaces the
bit-wise mode of ordinary DNN with vector-wise, which retains the advantages of high-order interac-
tion, automatic cross-multiplication, and parameter sharing of cross network. The output of the k-th
layer in CIN is matrix Xk ∈R

Hk×D, where Hk represents the number of feature vectors in the k-th layer
and let H0 = m, Xk is calculated as follow:

Xk
h,∗ =

Hk−1∑
i=1

m∑
j=1

Wk,h
ij

(
Xk−1

i,∗ ◦ X0
j,∗
)

, (13)

where 1 ≤ h ≤ Hk, Wk,h ∈R
Hk−1×m is the parameter matrix of the h-th feature vector, and ◦ is the

Hadamard product: 〈a1, a2, a3〉 ◦ 〈b1, b2, b3〉 = 〈a1b1, a2b2, a3b3〉. Finally, the linear module, CIN mod-
ule, and DNN are combined to complement each other, providing low-order features, explicit high-order
features and implicit high-order features, respectively, to form xDeepFM. Literature (Liu et al., 2020a)
models automatic feature grouping of explicit high-order feature interaction in CTR prediction.

In 2017, Xiao et al. (2017) added the attention mechanism to the NFM (He & Chua, 2017) and pro-
posed the attentive factorization machines (AFM) model. In the pair-wise interaction layer, the weights
of the cross features of the NFM model are all 1, without considering the influence degree of different
features on the results, while AFM can learn the different influence degrees of different cross features
on the results. That is, an attention net is added between pair-wise interaction layer and output layer, and
the formula is as follow:

fAtt (fPI(ε)) =
∑

(i,j)∈
x

aij

(
vi � vj

)
xixj, (14)

where aij represents the attention score of the vi � vj, indicating the importance of the interaction feature
to the predicted target. Intuitively, this attention score can be used as a parameter to learn by minimizing
the prediction loss, but it is impossible to estimate the attention score of the interaction for features that
have never been common in the training data. In order to solve the generalization problem, a multilayer
perceptron is used to parameterize the attention score. The structure of the attention network is a simple
single full connection layer plus softmax output layer.

AFM is a great attempt of attention in the recommender system, but it does not use specific application
scenarios. Zhou et al. (2018) added activation unit to learn the distribution of user interest on the basis
of the basic model (Embedding & MLP) to improve CTR. This model is called deep interest network
(DIN), this is Alibaba’s model improvement from the perspective of practical application based on
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business observation in 2018, and accords with the principle of innovation guided by actual needs.
The structure of activation unit is shown in Figure 10: one of the most important features of the DIN
is user behavior features, that is, the product features that the user has purchased or clicked on in the
past. If many of the user’s historical products are related to the current product, then the product may
be in line with the user’s taste, so recommend the advertisement to him. The activation unit structure
makes a pairwise interaction between each record in the historical commodity and the commodity to
be recommended, and calculates the correlation degree. The input of activation unit is the historical
behavior commodity of each user and the current candidate commodity, and the output is the weight
calculated by the correlation between the two. The user’s interest is expressed as formula (15):

vU(A) = f (vA, e1, e2, . . . , eH) =
H∑

j=1

a
(
ej, vA

)
ej =

H∑
j=1

wjej, (15)

where vA is the embedding vector of the candidate advertisement A, {e1, e2, . . . , eH} is the list of histor-
ical behavior embedding vectors of the user u, and the length is H, a(ej, vA) = wj indicates the weight
or the correlation between the historical behavior commodity and the current advertisement A, a(·) is a
feedforward neural network, the output is the activation weight, the input not only the historical behavior
vector and candidate advertisement vector, but also their Hadamard product (the corresponding posi-
tion elements are multiplied and not added) are added to the subsequent network, which is helpful to
the explicit knowledge of association modeling. It should be noted that in order to retain the intensity
of user interest, the attention score is taken as the final weight coefficient, and softmax normalization
is not done. In recent years, some deep learning models that can automatically extract user interests
from user behavior have achieved great success. In these works (Zeng et al., 2020; Cao et al., 2021;
Huang et al., 2021b), the attention mechanism is used to select items of interest to users from histor-
ical behaviors to improve the performance of CTR predictors. Literature (Cheng & Xue, 2021) found
that most CTR prediction models can be regarded as a general attention mechanism suitable for fea-
ture interaction, so attention mechanism plays a key role in CTR prediction models. Literature (Zhang
et al., 2021a) proposes a multi-interactive attention network (MIAN) to comprehensively extract the
potential relationships among various fine-grained features (such as gender, age and occupation in user
profiles). The model includes a multi-interaction layer for fine-grained feature interaction learning and
a Transformer-based module to extract multiple representations of user behaviors in different feature
subspaces. Dual inputaware factorization machines (DIFMs) model proposed by Lu et al. (2021) can
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adaptively learn different representations of given features according to different input examples. The
automatic interaction machine (AIM) proposed in the literature (Zhu et al., 2021) has a similar idea.

The feature interaction method in CIN network is similar to the cross network in Deep&Cross, and
each feature interaction uses input variables. Unlike FM, FM is a pairwise feature interaction of vari-
ables, and the CIN network fuses all variables into a matrix for feature interaction. The Co-Action in the
Co-Action Network (CAN) proposed by Zhou et al. (2020) is a new feature interaction method. When
there is an association between user and item, the data processed by Co-Action and the original data are
simultaneously input to the depth learning models to improve CTR prediction.

Huang et al. (2019) pointed out that the current work of CTR prediction through feature combination
mainly uses the inner product or hadamard product of feature vectors to calculate cross features. This
method ignores the importance of the feature itself, and further proposes the feature importance and
bilinear feature interaction network (FiBiNET) model, in which the importance of dynamic learning
features using squeeze-and-excitation Nnetwork (SENET) structure and the use of a bilinear function to
better establish cross features. Three kinds of bilinear functions, called Bilinear-Interaction layer, have
been proposed in the literature. Taking the i-th field embedding vi and the j-th field embedding vj as
examples, the bilinear interaction can be expressed as:

pij = vi · W � vj, (16)

where W ∈ Rk×k, and vi, vj ∈ Rk are the i-th and j-th field embedding. Literature (Kaplan et al., 2021)
proposes dynamic length factorization machines (DLFM) for CTR prediction to dynamically optimize
the user vector structure and provide better representation for each feature and each pair of features under
the constraint of maximum vector length.

In 2019, the DeepMCP model proposed by Ouyang et al. (2019b) is different from the previous
CTR prediction model. It includes three parts (a matching subnet, a correlation subnet, and a prediction
subnet) to model the user-ad, ad-ad and feature-CTR relationships, respectively. Aiming at the sorting
problem in CTR prediction, Lyu et al. (2020) combined with the idea of collaborative filtering, proposed
deep match to rank (DMR) model, emphasizing the importance of capturing the correlation between
users and items. Wu et al. (2020) proposed a tensor-based feature interaction network (TFNet) model,
which introduces an operation tensor to describe the feature interaction through multi-slice matrices in
multiple semantic spaces. Mishra et al. (2021) proposed an ad text-to-CTR prediction model based on
BERT (Mozafari et al., 2020), which uses the Ad Text Strength Indicator of Text-to-CTR and Semantic-
Ad-Similarity.

The cold-start problem (Schein et al., 2002) is a common and unavoidable challenge in recommender
systems. Specifically, it arises when a new user is introduced, posing the question of how e-commerce
platforms can personalize product recommendations, or how short video platforms can tailor video sug-
gestions, in the absence of user data. Literature (Cao et al., 2020) frames cold-start click-through rate
(CTR) prediction as a meta-learning problem, treating each advertisement as an individual task. An
adaptive loss function is then proposed to address task diversity and distributional shifts. The ultimate
aim is to enhance CTR prediction performance in cold-start scenarios. In Table 3, we summarize the
key features of representative deep neural network (DNN)-based ad CTR prediction models, compar-
ing aspects such as input sources, shallow models, attention mechanisms, auxiliary loss functions, and
overall model architectures.

In the common CTR prediction models, only target advertisements are used for CTR prediction.
Ouyang et al. (2019a) use the contextual ads, clicked ads, and unclicked ads information auxiliary
models of auxiliary advertisements to improve CTR. Three different processing methods are used for
embedding matrix, including Pooling, Self-Attention, and Interactive Attention. Finally, three differ-
ent CTR prediction models (DSTN-P, DSTN-S, DSTN-I) are obtained. Li et al. (2020b) proposed the
Interpretable Hierarchical Attention (InterHAt) model, after embedding the layer, InterHAt joins the
transformer network and uses the multi-layer attention mechanism to increase the interpretability of
the network. Multi-head attention (Voita et al., 2019) divides the entire attention space into multiple
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Table 3. Summary of the representative DNN based ad click-through rate prediction model. Specifically, X, Xu, Xb, Xcont, Xt and Xn represent the input
feature vector containing multiple fields, the user, the user behavior, the context, the target ad and the negative ad respectively. ‘+’ in the Model
Framework indicates that the two models are combined in parallel, and ‘→’ indicates transmission. Missing values in the table are represented by ‘-’

Approach Inputs Shallow Attention Aux Model Framework
Shan et al. (2016) X – – – Multi-Residual Units
Cheng et al. (2016) X – – – LR + MLP
Qu et al. (2016) X Inner & Outer Product – – shallow → MLP
Guo et al. (2017) X FM – – FM + MLP
He and Chua (2017) X FM – – FM → MLP
Chen et al. (2019b) Xu, Xb, Xcont FM & MF – – FM + MF + MLP
Zhu et al. (2017) X Boosting (i.e. XGBoost) – – Boosting→MLP
Wang et al. (2017) X Cross Network – – (Cross + MLP) → MLP
Lian et al. (2018) X CIN – – CIN + MLP
Zhou et al. (2020) Xu, Xb, Xt, Xcont CAN – – (Seq-CAN + no-Seq-CAN + DIEN) → MLP
Xiao et al. (2017) X � & FM Att – FM → Att
Huang et al. (2019) X SENET & Bilinear – – (Bilinear + (SENET → Bilinear)) + MLP
Ge et al. (2018) Xu, Xb, Xt Inner Product Att – MLP + (Att → MLP)
Zhou et al. (2018) Xu, Xb, Xt, Xcont � – – � → MLP
Pi et al. (2020) Xu, Xb, Xt, Xcont Inner Product Multi-Att � ((GSU → ESU) + DIEN) → DNN
Zhao et al. (2020) X DRM & Field-wise Module – – DRM + MLP + (DRM → Field-wise Module)
Huang et al. (2021a) Xu, Xb, Xt, Xcont – Att & Transf – (MLP + (Att → Transf)) → MLP
Qin et al. (2020) Xu, Xb, Xt, Xcont – Self-Att & Att – (Att → MLP) → MLP
Ouyang et al. (2019a) Xu, Xb, Xt, Xcont – Self-Att – Self-Att → MLP
Li et al. (2020b) X – Transf & Att – Transf → Att · · · Att
Ouyang et al. (2020) Xu, Xb, Xt, Xcont – Att � (Att → Att → MLP) + (Att → MLP)
Ouyang et al. (2019b) Xu, Xb, Xt, Xcont, Xn – – – MLP + MLP + MLP
Lyu et al. (2020) Xu, Xb, Xt, Xcont, Xn – Att � (Att + Att) → MLP
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Table 3. Continued

Approach Inputs Shallow Attention Aux Model Framework
Shi and Yang (2020) X – Self-Att – (Self-Att →(+) Self-Att →(+) Self-Att) → MLP
Zhao et al. (2021a) X – – – –
Xue et al. (2020) X � – – Auto-Hash → MLP
Lu et al. (2021) X FM M-Self-Att – (M-Self-Att + MLP) → FM
Xu et al. (2021b) X – M-Self-Att – M-Self-Att → MLP
Huang et al. (2021b) Xu, Xb, Xt, Xcont – Att – Att → Att → MLP
Liu et al. (2020a) X FM – – AutoGroup → FM → MLP
Chen et al. (2021) X Cross Network Self-Att – (Cross + MLP) → GatNet → (Cross + MLP)
Mishra et al. (2021) Xt – – – BERT → MLP
Zhao et al. (2021b) X � – – Multi-� → MLP
Wu et al. (2020) X TFI – – (TFI + MLP) +MLP
Kaplan et al. (2021) X DLFM – – DLFM
Guo et al. (2021a) X – – – AutoDis → MLP
Zhang et al. (2021a) Xu, Xb, Xt, Xcont – M-Self-Att & Att – (M-Self-Att + Att) → MLP
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attention subspaces, which has stronger expression ability. There are three ways to use multi-head atten-
tion: encoder-decoder attention, encoder self-attention and decoder masked self-attention. In principle,
Multi-head is equivalent to introducing more nonlinearity to enhance the expression ability of the model
under the condition that the overall calculation cost remains unchanged. A multi-head self-attention-
based transformer can capture rich pairwise feature interaction and learn the diversity and polysemy of
feature interaction in different semantic subspaces, that is, the diversity meaning of CTR in different
click through rate contexts. Given input matrix X0, the potential expression Hi of transformer head i is

Hi = softmaxi

(
QKT

√
dK

)
V, (17)

Q = W(Q)
i X0, K = W(K)

i X0, V = W(V)
i X0, (18)

where matrix W(Q)
i ∈R

dK×d, W(K)
i ∈R

dK×d, and W(V)
i ∈R

dK×d is the weight parameters of head i, dK rep-
resents the dimension of K and Hi ∈R

dK×m. Previous work mainly focused on single-domain CTR
prediction, but advertisements are usually displayed as natural content, which provides opportunitys
for cross-domain CTR prediction. In order to effectively use news data to predict the CTR of advertis-
ing, Ouyang et al. (2020) proposed a mixed interest network (MINET), which combines three types of
user interests.

Shopping, looking for delicious food, etc. will use the search function. The items currently searched
will be the same as those in the history. Then, through the current search, mining similar parts in the
history and adding them to the recommended items will greatly improve the user experience. The Search-
based Interest Model(SIM) proposed by Pi et al. (2020) divides the modeling of long-sequence user
behavior features into two modules, namely, General Search Unit (GSU) and Exact Search Unit(ESU).
GSU is responsible for screening candidate behaviors related to the current target advertisement from all
user behavior queues. ESU uses the filtered information for effective modeling on this basis. The User
Behavior Retrieval for CTR prediction (UBR4CTR) (Qin et al., 2020) model has the same purpose.
UBR4CTR model retrieves a certain number of behavior sequences from the user’s historical behavior
according to the target predicted by CTR. The target here consists of three parts, target item, target user
and other associated content context. Then the model is used to extract the features of the most relevant
subsequences from the user’s historical long behavior sequence, and finally these features will be used
to complete the prediction task of CTR.

Over the past decade, the rapid development of e-commerce and mobile internet has led to a sig-
nificant surge in the number of mobile applications. The emergence of e-commerce platforms such as
Taobao, JD.com, and Douyin has introduced diverse forms of source data for advertisements, which
hold considerable research significance. These platforms generate vast amounts of user interaction and
behavioral data, which can be leveraged to enhance the accuracy and relevance of advertising recommen-
dations. CTR prediction typically encompasses three primary recommendation modes, each designed to
address different real-world recommendation scenarios, thereby offering tailored solutions for various
types of users, content, and contextual conditions.

1. CTR prediction scenarios related to pictures
Ge et al. (2018) proposed the deep image CTR model (DICM) using pictures as one of the data sources.
DICM uses the pictures clicked by users and the pictures in advertisements to predict CTR. When using
pictures for training and predicting, it causes excessive bandwidth problems when embedding pictures,
so the advanced model server (AMS) (Tusch, 2002) architecture is proposed in this paper to solve this
problem. Add a learnable MLP of the compression model {4096 − 256 − 64 − 12} for each server. When
worker requests image embedding from server, the compression model on server first compresses the
original 4096-dimensional image embedding to 12-dimensions, which greatly reduces the traffic. The
compression model parameters on each server can be learned according to the locally stored graph data.
At the end of each iteration, all server compression models need to be synchronized to ensure that the
compression models on each server are consistent.
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2. CTR prediction scenarios related to position
The dimension relation module (DRM) model proposed by Zhao et al. (2020) includes two subnetworks
(Item-to-Item network and user-to-item network) and adds the location information of each behavior,
which pays more attention to the recent behavior of users, so it can better predict CTR. When ordering
takeout or looking for location-related services such as food on some platforms, adding location infor-
mation and context information to the CTR model can greatly improve the prediction performance of
the model. The common CTR prediction model uses the results obtained from the embedding layer for
learning feature interaction, which will bring two shortcomings: one is that the importance of dimen-
sion in different field is not considered; the other is that the interaction between features is ignored.
Therefore, Zhao et al. (2020) put forward field-wise and element-wise based on DRM (FED-net) to
solve the shortcomings caused by the direct use of embedding. First of all, dimension relation module
(DRM) is proposed in FED-net to solve the deficiency one (the importance of dimension in different
field), and then the Field-wise module is designed to solve the deficiency two (interaction between fea-
tures). The use of two different network structures to help solve the shortcomings caused by the direct use
of the embedding layer will have a great impact on future research. Huang et al. (2021a) proposed that
deep position-wise interaction network (DPIN) model uses multi-source data and adds attention mech-
anism to learn the potential interest of users’ location to help the platform to better push satisfactory
services to users.

3. CTR prediction scenarios related to video
The video click-through rate prediction studied in document (Wang et al., 2020a) solves the multi-
channel problem in video CTR prediction for the first time, which is very important for the refinement
of video recommendation and the revenue of video advertising. In this paper, sequential multi-fusion
network (SMFN) is proposed to divide all channels into two categories: (1) the target channel to which
the current candidate video belongs. (2) the context channel including all left channels. For each cate-
gory, SMFN deeply fuses the two sequences through a simple but effective mechanism, and verifies that
the fusion unit helps to improve the CTR prediction performance. Min et al. (2022) propose neighbor
interaction-based CTR prediction (NI-CTR) model. The model is actually deployed to the online recom-
mendation scene of wechat official account video. The proposed modeling neighborhood information
improves the performance of CTR prediction.

The effective integration of high-level and low-level features remains an underexplored area of
research. Some studies attempt to combine these features through simple summation or concatenation.
However, this approach often yields suboptimal results, as it treats high-level and low-level features with
equal importance, without accounting for their inherent differences in significance and abstraction. The
hybrid feature fusion (HFF) model proposed by Shi and Yang (2020) is composed of feature interaction
layer and feature fusion interaction. It can not only capture high-level features but also make full use of
low and high level features. Model integration is a powerful means to improve the prediction accuracy.
Literature (Zhu et al., 2020) attempts to apply knowledge distillation (KD) to ensembled CTR predic-
tion. Zhao et al. (2021a) introduced reinforcement learning (Sutton & Barto, 2018) into CTR prediction
model, which lays a foundation for the proposal of various evolution models later.

4.2 CTR prediction model based on convolutional neural network
Convolutional neural networks (CNNs) have demonstrated exceptional performance in processing
images, videos, and other types of data, and they can also be effectively applied to click-through rate
prediction tasks. CNNs are particularly well-suited for feature extraction, leveraging their hierarchical
structure to capture both low-level and high-level features from raw data, the most typical of which is
the convolutional click prediction model (CCPM) proposed by Liu et al. (2015), which calculates con-
tinuous features to obtain local features, Then, the obtained feature combination is input into the fully
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Figure 11. Basic architecture of applying CNN to CTR prediction

connected neural network, which improves the learning ability of the fully connected network. The basic
architecture of using CNN for the CTR problem is shown in Figure 11 (Chan et al., 2018),

the feature field is mapped to a densely structured input space using an embedding layer, that is,
the i-th feature field is mapped to ei, where ei represents the i-th embedding feature vector of length t,
e = [e1, e2, . . . , en](i = 1, 2, . . . , n), n is the number of feature fields. The embedding feature vector is
fed into the feature learning layer, including convolution and pooling. Finally, all learned latent features
are processed by fully connected layers to predict CTR. Unlike applications in image or natural language
processing where the samples have natural sequences, the embedding feature vectors for CTR prediction
can be arranged in any order. However, the order in which the embedding feature vectors affects the
local information learned by the CNN because the convolutional and pooling layers of the CNN capture
information in the local receptive fields.

The distribution of data predicted by CTR varies over time, Chan et al. (2018) first investigated
whether and how feature sequences affect the performance of CNN-based CTR prediction methods. To
learn the information provided by different sequences, two multi-sequence models are proposed: multi-
sequence model with single feature learning module (MSS) and multi-sequence model with multiple
feature learning modules (MSM). In the MSS model, all feature maps of the MS layer are used as the
input of the first convolutional layer: c0

i = [esi1 , esi2 , . . . , esim ], usually the i-th output of the l-th pair of
convolutional pooling layers cl

i can be defined as Equation (19):

cl
i = q

(
σ

(
tl−1∑
j=1

conv
(
cl−1

j , wl
ij

)+ bl
ij

))
, (19)

where q(·) and σ (·) are the pooling function and activation function, wij represents the weight of the i-th
filter of the j-th input, b is the bias term, and tl is the number of feature maps of the i-th layer. In the
MSM model, each feature map in the MS layer is independently learned by a feature learning module.
The output of the first pair of convolutional pooling layers can be defined as (20):

u1
ij = q

(
σ
(
conv

(
c0

j , w1
ij

)+ b1
ij

))
, j = 1, 2, . . . , n, (20)

where c0
j represents the j-th feature map of the MS layer. The MSS model first combines the information

provided by the multi-sequence embedding feature vectors and is learned by a feature learning module.
The time complexity of this model is low, but the feature learning module cannot learn all the information
efficiently. So the MSM model is proposed so that the feature vectors embedded in each sequence are
learned separately by a feature learning module, and the learned representations are merged into the
fully connected layers.

Chen et al. (2016) proposed a DeepCTR model based on convolutional structure and multilayer
perceptron structure to extract image advertisements as image features and other basic features. The
image features are extracted by the convolution layer and further learned by the DNN, and then the

https://doi.org/10.1017/S0269888925000025 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888925000025


20 X. Geng et al.

Table 4. Summary of the representative CNN-based ad click-through rate prediction
model. Specifically, X, XA, XQ, Xu, and Xcont represent the input feature vector containing
multiple fields, the ad, the query, the user, and the context, respectively. In the Pooling
column, p-max, MOR, and max & avg represent flexible p-max pooling, mean-overtime
region pooling, and max and average pooling, respectively. Missing values in the table
are represented by ‘-’

Approach Inputs Conv-Kernel Pooling #ConvNetLayer
Liu et al. (2015) X 1D-Conv p-max 2
Chan et al. (2018) X 2D-Conv max –
Chen et al. (2016) XA, XQ 2D-Conv – 17
Shen et al. (2016) X 1D-Conv MOR 2
Liu et al. (2019) X 1D-Conv max –
Liu et al. (2020b) XA, Xu, Xcont 3D-Conv max & avg –
Gao et al. (2018) X 1D-Conv – 1
Niu and Hou (2020) X 2D-Conv max 2
Edizel et al. (2017) XA, XQ 2D-Conv max –
Gligorijevic et al. (2019) XA, XQ 2D-Conv max –

two features are normalized and input into the multi-layer perceptron. The model achieves performance
improvement by combining the two types of features for prediction. Convolutional neural networks
have powerful functions in extracting image features, and can also extract text features, so as to better
discover latent factors. Shen et al. (2016) exploited convolutional neural networks to extract latent factors
based on user review text data. Zhou et al. (2016) used convolutional neural networks to extract image
advertisement features, and further considered users’ visual preferences in click-through rate prediction.
Lei et al. (2016) based on the convolutional neural network to map the latent features of the image and
the user’s preference features to the same latent space, discover the latent features of the image, and
further generate prediction results. Literature (Gligorijevic et al., 2019) is the first effective attempt to
use click data to learn CTR and semantic embeddings at the same time. In Table 4, we summarize
the main characteristics of the representative CNN-based ad click-through rate prediction model. Input
sources, the dimension of conv-kernel, the pooling method, and the number of layers of convolution
network are compared among various models.

The primary challenge in click-through rate prediction is effectively modeling feature interactions.
Many researchers have proposed deep learning models to capture both low-order and high-order feature
interactions from raw features. However, many of these meaningful features are sparse, and while man-
ual feature engineering can improve model performance in real-world scenarios, it is often costly and
requires extensive domain knowledge. Consequently, there is a need for methods that can automatically
expand the feature space, reducing the reliance on manual intervention. Liu et al. (2019) proposed a new
feature generation model based on convolutional neural network (FGCNN), which consists of two parts:
feature generation and deep classifier. Figure 12 is a general framework for automatic feature generation,
the raw features are input into the machine learning model (model section in Figure 12) to identify and
generate feature interactions between the raw features. The original features are then combined with the
new generated features and fed into the deep neural network. In CNN, the design of weight sharing and
pooling mechanism greatly reduces the number of parameters required to find important local patterns,
and eases the optimization difficulty of the later MLP structure. Assuming that the output of the first
convolutional layer is C1 ∈ Rnf ×k×m1

c , the convolutional layer can be expressed as Equation (21):

C1
p,q,i = tanh

⎛
⎝ 1∑

m=1

h1∑
j=1

E1
p+j−1,q,mWC

1
j,1,1,i

⎞
⎠ , (21)
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Figure 12. General framework of FGCNN model

where C1
p,q,i represents the i-th feature map of the first convolutional layer, and p,q are the row and column

indices of the i-th feature map. If only CNN is used, many useful global feature interactions will be lost.
Therefore, a complementary approach of CNN and MIP is adopted to extract cross features that are
difficult to get from DNN, and then the generated new features and old features are spliced together and
input into any other classifier (FM, DNN, IPNN, DeepFM, etc.) to improve the effect.

Most existing studies only focus on user-level CTR prediction, and advertiser-level CTR prediction
also plays an important role, because return on investment (ROI) is closely related to advertiser-level
click-through rate forecasting. The CTR prediction of advertiser-level can be described as a time series
prediction problem based on historical click through records. Literature (Zhu, 2021) proposes a CNN-
LSTM convolution hybrid neural network algorithm to predict advertising click through rate. In the
modeling process, effective features and combined features are extracted, and prediction and analysis
are performed according to the LSTM neural network time series features. Gao et al. (2018) proposed
a context-aware attention convolutional neural network (CACNN) to capture the highly nonlinear and
local information of time series and the potential correlation between CTR time series and context
information, so as to obtain more accurate prediction. Literature (Niu & Hou, 2020) proposes a new input
instance representation method based on density matrix, which can contain the interaction information
of global second-order features. Then, combining the advantages of density matrix and convolutional
neural network, a density matrix based convolutional neural network (DMCNN) is proposed, which
can capture more feature interactions than other models. Literature (Edizel et al., 2017) proposes two
new content-based click-through rate prediction model for sponsored search. Both models are based on
convolutional neural network structure, which can significantly improve the accuracy and calibration of
the model in production.

Attention mechanism is an important feature selection method, which can help CNN to highlight
important parts in feature maps and suppress unimportant parts. Many previous works (such as CBAM
Woo et al., 2018 and GSoP Gao et al., 2019) have attempted to learn attention weights from feature
maps, called self-attention. A large part of the advertisements of e-commerce application scenarios
are displayed in the form of images, existing algorithms usually use CNN to extract visual features
and fuse visual and non-visual features together to finally predict CTR. Liu et al. (2020b) proposed a
new visual embedding module category-specific CNN (CSCNN) for CTR prediction. The core idea is
to perform category-specific channel and spatial self-attention to emphasize important and category-
related features. CSCNN early combined category knowledge with a lightweight attention module on
each convolutional layer. This enables CSCNN to extract expressive class-specific visual patterns that
are beneficial for CTR prediction. Literature (Guo et al., 2021c) proposes two multi-interest extractors
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Figure 13. RNN training process with BPTT algorithm

based on CNN, which fully consider different interest representation, interest dependence and interest
correlation.

4.3 CTR prediction model based on recurrent neural network
Personalization is a key factor in enhancing user experience for click-through rate prediction models.
Personalized information is inherently embedded in a user’s past behavior. As a result, many models aim
to learn a user’s current interests by incorporating their behavioral sequence into the modeling process.
A user’s decision to click on an advertisement is often influenced by a series of prior behaviors, such
as previous searches, content clicks, and the time spent on landing pages (Zhang et al., 2014). For
instance, if a user clicks on an advertisement and quickly closes the landing page, the likelihood of them
clicking on an advertisement in the future is significantly reduced. Conversely, if a user searches for
flight booking keywords, the probability of them clicking on a flight booking advertisement is much
higher. In comparison to shallow models and traditional deep learning approaches, recurrent neural
networks (RNNs) are particularly effective in capturing the impact of a user’s browsing sequence on
CTR prediction (Gan & Xiao, 2019). RNNs excel at identifying latent interests behind user behavior
and can track the dynamic evolution of these interests over time.

The sequence of user behavior is ignored in most CTR prediction models. Zhang et al. (2014) used
a recurrent neural network to model sequential dependencies in predicting ad click probabilities. They
treat each user’s ad viewing history as a sequence that generates internal dependencies. During the
training of the RNN model, the features of each ad impression are fed into the hidden layers along
with the previously accumulated hidden states, and order dependencies are incorporated to improve
the accuracy of click predictions. The RNN training process of this model adopts the BPTT algorithm
(De Jesus & Hagan, 2007), the expansion step is set to 3, and the structure is shown in Figure 13, the
network consists of input layer i, output unit, hidden layer h and internal weight matrix. Here, we use
t ∈ N to denote the timestamp and use h(t) to denote the hidden state at time t. Specifically, the recurrent
connection R between h(t − 1) and h(t) can propagate sequential signals. The input layer consists of the
vector i(t) representing the current user behavior characteristics, and the vector h(t − 1) represents the
value in the hidden layer calculated from the previous step. The activation values of the hidden layer
and output layer are calculated as Equations (22) and (23):
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Table 5. Summary of the representative RNN based ad click-through rate prediction
model. Specifically, X, Xu, Xb, Xt, and Xcont represent the input feature vector containing
multiple fields, the user features, the user behavior features, the target ad features, and
the context features, respectively. Att, Multi-Att, and M-Self-Att in the Attention indicate
that attention, multi-head attention, and multi-head self-attention, respectively. Missing
values in the table are represented by ‘-’

Approach Inputs RNN-type Attention Mechanism Aux
Zhou et al. (2019) Xu, Xb, Xt, Xcont GRU & AUGRU Att �
Pi et al. (2019) Xb, Xt, Xcont GRU Att –
Zhang et al. (2014) X RNN Att –
Feng et al. (2019) X Bi-LSTM M-Self-Att –
Song et al. (2020) X – – –
Li et al. (2020a) Xb, Xt, Xcont GRU Att & Multi-Att –
Wang et al. (2020a) Xb, Xt, Xcont GRU – –
Xu et al. (2021a) Xu, Xb, Xt, Xcont GRU & AUGRU Att �
Hong et al. (2021) Xb, Xt GRU Att �

h(t) = f
(
i(t)UT + h(t − 1)RT

)
, (22)

y(t) = σ
(
h(t)VT

)
, (23)

where f (·) represents the tanh function for nonlinear activation, and σ (·) represents the sigmoid func-
tion. i(t) represents the features related to the user’s current behavior, and h(t) represents the sequence
information of the user’s previous behavior. The prediction results not only depend on the current input
features but also on continuous historical information.

Currently, user historical data are a time series, so the recurrent neural network can be used to learn
user interests. Sequences of user historical behaviors may contain multiple concurrent interests, and the
rapid jumps and abrupt ends of these interests cause the sequence data of user behaviors to be noisy.
The deep interest evolution network (DIEN) (Zhou et al., 2019) proposed in 2019 is an evolution of the
DIN (Zhou et al., 2018). Based on the DIN model, a recurrent neural network is introduced to capture
sequence information. DIEN utilizes RNN with two layers of gated recurrent unit (GRU) to learn user
interests. The first layer is the interest extractor layer, which learns the sequence dependencies between
historical sequence behaviors by simulating the user’s interest migration process. A GRU training loss,
an auxiliary loss, is introduced to supervise the training process of each intermediate hidden state of the
GRU, as shown in Equation (24):

Laux = − 1

N
(

N∑
i=1

∑
t

log σ (hi
t, ei

b[t + 1]) + log (1 − σ (hi
t, êi

b[t + 1]))), (24)

where σ (x1, x2) = 1
1+exp(−[x1,x2])

is the sigmoid activation function, hi
t represents the t-th hidden state of

the GRU of user i. Then the output of the first layer is used as the input of the attentional up-date
gate (AUGRU) of the second layer (interest evolving layer) and combined with the attention network to
simulate the user’s interest migration process related to the target advertisement. The attention network
is used to control the update gate of AUGRU in the second layer to make it more targeted to simulate
the interest evolution path related to the target advertisement. Finally, the last state in the second layer is
input into the DNN as the user’s interest to predict the user’s CTR. In Table 5, we summarize the main
characteristics of the representative RNN based ad click-through rate prediction model. Input sources,
the type of RNN, the attention mechanism, and the auxiliary loss function are compared among various
models.

Transformer is a feature extractor based on attention mechanism. The transformer architecture
includes two parts: encoder and decoder, which can extract the features of sequences instead of CNN
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and RNN. Transformer has the following advantages over the recurrent neural network: (1) Long dis-
tance dependencies in sequences can be captured directly. (2) The model has high parallelism, which
greatly reduces the training time. Most works ignore the inherent structure of user behavior sequences,
user behavior sequences are composed of multiple sessions (Hidasi et al., 2015), and the sessions are
distinguished by the user’s click time. A user has a definite and separate need to purchase items within
the same session, but his interests will change once a new session is opened. Based on this observation,
Feng et al. (2019) proposed the deep session interest network (DSIN) that utilizes multiple historical
sessions of users to simulate user sequence behavior in CTR prediction tasks. The key part of the DSIN
is to model the user behavior sequence, which is divided into four layers from bottom to top: (1) session
division layer: divide the user’s behavior sequence into multiple sessions according to the click time;
(2) session interest extraction layer: for each session, the multi-head self-attention mechanism in trans-
former is used to extract the interest features of the user session and capture the internal relationship
between actions; (3) session interest interacting layer: adopts Bi-LSTM (Huang et al., 2015) captures
the interaction and evolution of users’ interests across multiple historical sessions; and (4) session inter-
est activating layer: applies a local activation unit to the user’s session interest about the item. Finally,
the output of the session interest activating layer, along with the user portrait embedding and the item
portrait embedding, is input into the fully connected layer for final prediction.

The aforementioned studies demonstrate that researchers have long acknowledged the importance
of extracting user interests in CTR prediction tasks. Many of these studies treat interactions between
users and items as sequential data and apply recurrent neural networks (RNNs) to effectively capture
and model user interests. However, these solutions cannot handle relatively long sequence lengths due
to the vanishing gradient problem (Hochreiter, 1998) of RNNs. Therefore, Xu et al. (2021a) proposed a
new core interest network (CIN) to alleviate the long sequence problem of the CTR prediction task for
sequence data. The main idea of the model is to extract users’ core interests first and the refined data
is then used as input for the following learning tasks. The model divides a long sequence into multiple
subsequences and extracts the user’s core interest in each subsequence and also uses the auxiliary loss
shown in Equation (24) to supervise the training process of each intermediate hidden state of the GRU.
The core interests extracted from each subsequence are passed to the next subsequence and finally the
learning of user interests in the whole long sequence is completed. Li et al. (2020a) proposed the deep
time-aware item evolution network (TIEN), the mentioned time-aware item behavior extends traditional
user behavior, and helps indicates user interest drift and item popularity over time. Reference (Hong
et al., 2021) proposes a recommendation model that is closer to real recommender scenarios by jointly
learning the current and comprehensive interests of users.

Simple recurrent neural networks (RNNs) often struggle to learn from long sequence data. To address
this, attention mechanisms can be introduced to enhance the model’s expressive power by compressing
relevant information from sequential data into fixed-length vectors. However, the computational cost of
attention mechanisms grows with the length of the action sequence. Moreover, the hidden state in an
RNN does not retain all information from the past sequence; instead, it tends to focus more on the pre-
diction target, potentially overlooking important historical context. Drawing on the idea of neural turing
machine (NTM) (Graves et al., 2014), Pi et al. (2019) proposed the multichannel user interest mem-
ory network (MIMN) to deal with long sequences of user behaviors in CTR prediction. MIMN designs
an independent user interest center (UIC) module, which separates the bulk user interest computation
from the entire CTR prediction process. UIC stores MIMN’s external storage information, updates it for
each user’s behavior, and UIC gradually captures the user’s interest from the user’s behavior sequence.
The core idea of the model is to adopt two designs: (1) Increase a memory utilization regularization to
improve the expressiveness of memory tensors in UIC by improving memory utilization. (2) Use a mem-
ory induction unit to help capture higher-order information. Reference (Song et al., 2020) conducted a
preliminary study of automatically designing the architecture for the CTR prediction task.
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Figure 14. Structure of co-occurrence commodity graph

4.4 CTR prediction model based on graph neural network
In recent years, graph neural networks (GNNs) (Scarselli et al., 2008) have gained widespread adoption
as a deep learning-based approach for processing graph-structured data, owing to their powerful ability
to model complex relationships within graph structures. In 2019, Li et al. (2019b) pioneered the use of
GNNs for modeling intricate interactions between features and proposed the feature interaction graph
neural network (Fi-GNN) for CTR prediction. The basic idea is to use a graph structure called feature
graph to represent multi-field features. The feature is used as a node of the graph, there is an edge between
two nodes, and the weight on the edge represents the importance of feature interaction, so as to transform
the complex interaction between features into the interaction between the nodes of the feature graph. In
the embedding layer, the model uses a multi-head self-attention network layer to obtain a new field
embedding, which contains the high-level feature interaction between the field and other feature fields,
and the output feature map is used as the input of the Fi-GNN. The Fi-GNN consists of multiple steps, and
each step updates the nodes. The information of neighbor nodes is aggregated using an attention network,
and then a GRU unit is used to make state updates for the nodes. In Fi-GNN, each node updates its own
state in a cyclic manner by exchanging state information with neighbor nodes, so the number of steps
updated on the graph network is equivalent to the order of feature interaction. According to the powerful
representation ability of the graph, the model not only can flexibly and explicitly model complex feature
interactions but also provides more understandable model interpretation for CTR prediction.

The accuracy of CTR prediction in sponsored search has a key impact on improving business revenue
and user experience. Li et al. (2019a) proposed a graph intention network (GIN) based on co-occurrence
commodity graph to mine user intentions. In previous models, user intentions were mostly extracted
based on their historical click behaviors, there will be problems such as user behavior sparsity, weak
generalization, and so on. First, the GIN method enriches user behaviors through the multilayer graph
diffusion of historical behaviors and solves the problem of sparse user behaviors; Second, by introduc-
ing commodity co-occurrence relationships, it explores users’ potential preferences and alleviates the
weak generalization problem. The construction of the co-occurring commodity graph based on histori-
cal behavior is shown in Figure 14, each row in Figure 14(a) represents a user’s click sequence, when
the window size is 1, the black arrows represent the behavior direction, and the red arrows represent
the edges of the graph. In the undirected co-occurrence commodity graph of Figure 14(b), the nodes
represent the clicked commodities, and the edge weights represent the number of co-occurrence clicks.
By performing multilayer neighborhood diffusion on the graph for each item in the user click sequence,
then an attention mechanism is applied to aggregate the tree-like intents. Finally, through end-to-end
joint training, the intent mining method based on co-occurrence commodity graph is combined with
the CTR prediction task. In Table 6, we summarize the main characteristics of the representative GNN
based ad click-through rate prediction model. Input sources, graph info and the attention mechanism are
compared among various models.

Feature interaction is critical for achieving high-accuracy recommendations in recommender sys-
tems. Graphs provide a more effective data structure for addressing combinatorial problems, making
them particularly well-suited for modeling complex interactions between features. In order to make full
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Table 6. Summary of the representative GNN based ad click-through rate prediction
model. Specifically, X, Xu, Xb, Xt and Xcont represent the input feature vector containing
multiple fields, the user features, the user behavior features, the target ad features and the
context features, respectively. Att and M-Self-Att in the Attention Mechanism indicates
that attention and multihead self-attention, respectively. Missing values in the table are
represented by ‘-’

Approach Inputs Graph info Attention mechanism
Li et al. (2019b) X GRU M-Self-Att & Att
Li et al. (2019a) Xu, Xb, Xt, Xcont Att Att
Li et al. (2021) Xu, Xb, Xt, Xcont GraphSAGE –
Guo et al. (2021b) Xu, Xb, Xt GCN Att
Feng et al. (2020) Xu, Xb, Xt Bi-LSTM
Ouyang et al. (2021) Xu, Xb, Xt GAT Att

use of feature interaction, Su et al. (2021) proposed a recommendation model based on graph neural
network—L0-SIGN, which detects beneficial feature interaction through graph neural network and L0

regularization, and only uses beneficial feature interaction for recommendation. L0-SIGN also constructs
a feature graph, where each data sample is treated as a graph, features are nodes, feature interactions are
edges, and the weight of edge represent the importance of feature interactions. This is the first time that
the problem of detecting beneficial feature interactions in recommender system is proposed and elabo-
rated, and an edge prediction model with L0 activation regularization is also proposed to automatically
detect those beneficial feature interactions in recommendation accuracy, thereby filtering out feature
interactions that bring noise. Specifically, the model consists of two components: one component is the
L0 edge prediction model, which detects the most beneficial feature interactions by predicting the pres-
ence of edges between nodes. Another component is the graph classification model, called the statistical
interaction graph neural network (SIGN). SIGN takes nodes (features) and detected edges (beneficial
feature interactions) as input graphs, and outputs predictions by efficiently modeling and aggregating
pairs of nodes connected by edges. The general form of the SIGN prediction function is

y = fS

(
Gn

(
Xn, E′

n

)
; θ
)

, (25)

where θ is the parameter of SIGN, and y is the graph classification result. So the L0-SIGN prediction
function fLS is:

fLS (Gn (Xn, ∅); θ , ω) = fS

(
Gn

(
Xn, Fep (Xn; ω)

)
; θ
)

. (26)

Different from the end-to-end modeling of Fi-GNN, the PCF-GNN proposed by Li et al. (2021) is a
two-stage model. The first stage is the pre-training of GNN: build a GNN based on feature co-occurrence
relationship, nodes represent each feature, and edge weights are feature co-occurrence degrees. During
pre-training, the multi-head attention mechanism is not used to learn the initial representation of nodes
like Fi-GNN, but the interaction relationship with the output feature is explicitly predicted, and the
prediction can also be generalized for new interactions that have not appeared before. The second stage
is the downstream application: GNN can use fixed parameters as interactive feature extractor, the value
of the interaction feature is first inferred in the application stage, and then spliced together with the
remaining features as the input of the subsequent DNN. Or a pre-training paradigm can be used to fine-
tune the GNN during the downstream CTR model training process to update the representation of each
feature.

Modeling user behavior sequences has attracted a lot of attention, and many existing methods ignore
the underlying reasons that drive users to click on target items. Feng et al. (2020) proposed a novel
Multiplex Target-Behavior Relation enhanced Network (MTBRN) framework to enhance CTR predic-
tion using multiple relationships between user behavior and target items. Multiple relationships contain
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semantics that enable better understanding of user interests from different perspectives. MTBRN com-
bines various graphs such as knowledge graph (Wang et al., 2014) and item-item similarity graph to
build multiple relational paths between user behaviors and target items. Chu et al. (2021) put forward
Dynamic Sequential Graph Learning (DSGL) method, which enhances the representation of users or
items by using the collaboration information in local sub-graphs associated with users or items. In tra-
ditional methods, item attributes are regarded as ID features, thus ignoring the dependency between
structural information and attributes. In addition, when mining user interests from user product interac-
tions, the current model ignores user intentions and product intentions with different attributes. Zheng
et al. (2022) proposed hierarchical intention embedding network (HIEN), which considers attribute
dependency based on bottom-up tree aggregation in the constructed attribute graph. The hierarchical
attention mechanism captures both user and product intentions across different attributes. It repre-
sents the relationship between attributes and products (users) using graph and tree structures, exploring
attribute dependencies through aggregation methods. Additionally, the attention mechanism integrates
with the hierarchy to uncover user and product intentions based on varying attributes.

In recent years, two prevalent techniques for CTR prediction are feature interaction modeling and
user interest mining. However, these approaches encounter key challenges: (1) Feature sparsity arises as
many features occur infrequently, and feature interaction models rely heavily on feature co-occurrence
and (2) user interest mining requires extensive behavioral data to capture diverse interests, but many
users have short behavior sequences, leading to sparse behavior data. To address these issues, Guo et al.
(2021b) proposed the dual graph enhanced embedding module compatible with various CTR predic-
tion models to alleviate these two issues. And further propose dual graph enhanced embedding neural
network (DG-ENN) for CTR prediction. A user (item) attribute graph and a collaborative graph are
proposed in DG-ENN to alleviate the feature sparsity and behavior sparsity problems. To efficiently
learn these graphs, the embeddings are optimized through two well-designed learning strategies: divide-
and-conquer and curriculum-learning-inspired organized learning. Literature (Wang et al., 2021) puts
forward the dependency-aware multi-interest network (Deminet), which explicitly models multiple user
interests in CTR prediction task. In order to reduce the noise signal in the behavior sequence, we carry
out multi-dependency-aware heterogeneous attention and self-supervised interest learning.

5. Discussions
5.1 Comparison of advantages and disadvantages of algorithms
Different ad click-through rate prediction algorithms exhibit unique advantages and challenges. Table 7
offers a comprehensive summary of the advantages and disadvantages of CTR prediction algorithms
based on shallow interactive model, DNN, CNN, RNN, and GNN.

This comparative overview offers valuable insights into the strengths and weaknesses of these models,
guiding researchers in selecting the most appropriate approach for CTR prediction tasks.

5.2 Datasets
In the existing literature, ad click-through rate prediction models are often evaluated using various
datasets. Table 8 summarizes the datasets used in several studies. It is evident that Criteo, Avazu,
and Amazon are the most commonly used public datasets. Proprietary datasets, on the other hand,
are sourced from advertising platforms such as Alibaba Cloud, as well as social media platforms (e.g.,
Tencent, Facebook) and e-commerce sites (e.g., Alibaba, Taobao). Public datasets tend to be more widely
used than proprietary ones, likely due to their greater accessibility.

5.3 Model evaluation indicators
Many studies have proposed a range of evaluation indicators for evaluating CTR prediction mod-
els. Table 9 presents various evaluation indicators along with the corresponding research references.
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Table 7. Advantages and disadvantages of CTR prediction algorithms based on shallow interactive
model, DNN, CNN, RNN, and GNN

Model Type Advantages Disadvantages
The shallow
interactive model

1. Simple, efficient, and fast to train,
making it suitable for
resource-constrained problems.
2. Interpretable, offering a clear
linear relationship between features
and predictions. 3. Effective in
scenarios with simple feature
interactions, capturable by linear
models

1. Struggles to capture complex
feature interactions, limiting
performance on high-dimensional
datasets. 2. Sensitive to feature
scaling, necessitating extensive
preprocessing. 3. Underperform in
modeling non-linear relationships or
higher-order interactions

DNN (Deep Neural
Network)

1. Effectively models complex
feature interactions, making it
suitable for large-scale datasets.
2. Highly flexible, capable of
handling various input data types.
3. End-to-end training eliminates the
need for manual feature engineering

1. Requires extensive training data
and may underperform with sparse
data. 2. Lacks interpretability in its
internal workings.
3. Computationally intensive,
particularly with large datasets

CNN
(Convolutional
Neural Network)

1. Suitable for data with local
structures, where convolutional
layers reveal complex patterns.
2. Reduces reliance on manual
feature engineering, showing strong
adaptability. 3. FGCNN Liu et al.
(2019) automatically generates
expressive features, capturing local
dependencies and feature interactions

1. Requires high-quality input data
and may need additional
preprocessing. 2. Less effective on
small or sparse datasets compared to
DNN. 3. May fail to capture complex
global relationships, focusing
primarily on local patterns

RNN (Recurrent
Neural Network)

1. Well-suited for sequential data,
capturing long-term dependencies,
such as DIN (Zhou et al., 2018).
2. Effective for modeling user
behavior sequences, particularly in
CTR prediction with time-dependent
features. 3. Adaptable to real-time
data, handling temporal variations in
user behavior.

1. Susceptible to vanishing/exploding
gradient issues. 2. Demands
significant computational resources
and lengthy training times, especially
for large datasets. 3. Struggles to
model complex feature interactions,
particularly with diverse user
behavior sequences

GNN (Graph
Neural Network)

1. Effectively models complex
feature dependencies, making it
suitable for representing interactions
as graphs. Addressing cold-start
issues and enhancing accuracy for
new ads. 2. Well-suited for sparse
and high-dimensional data,
particularly in CTR prediction tasks.
Fi-GNN Li et al. (2019b) improves
CTR prediction accuracy by
modeling feature interactions within
a graph structure.

1. High computational complexity,
especially with large-scale graph
data, resulting in significant resource
consumption. 2. Requires careful
design of the graph structure, as
different construction methods may
impact performance. 3. Limited
interpretability due to complex
dependencies between nodes
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Table 8. The summary of datasets for advertising click-through rate prediction model

Dataset Outline Ciation
#Instances #Fields

Criteo1 45M 39 Qu et al. (2016), Guo et al. (2017), Wang et al. (2017), Lian et al. (2018), Huang et al.
(2019), Liu et al. (2019), Li et al. (2019b), Zhao et al. (2020), Li et al. (2020b), Juan
et al. (2016), Song et al. (2020), Wu et al. (2020), Xue et al. (2020), Lu et al. (2021),
Xu et al. (2021b), Liu et al. (2020a), Chen et al. (2021), Zhao et al. (2021b), Zhu et al.
(2020), Cheng and Xue (2021), Guo et al. (2021a), Niu and Hou (2020), Zhu et al.
(2021)

Avazu2 40M 24 Chen et al. (2019b), Zhou et al. (2020), Huang et al. (2019), Liu et al. (2015), Chan
et al. (2018), Liu et al. (2019), Li et al. (2019b), Zhao et al. (2020), Li et al. (2020b),
Song et al. (2020), Wu et al. (2020), Xue et al. (2020), Lu et al. (2021), Xu et al.
(2021b), Liu et al. (2020a), Chen et al. (2021), Zhao et al. (2021b), Zhu et al. (2020),
Cheng and Xue (2021), Zhao et al. (2021a), Niu and Hou (2020), Zhu et al. (2021)

Amazon-books3 22W 4 Zhou et al. (2020), Shen et al. (2016), Zhou et al. (2019), Pi et al. (2020), Ouyang et al.
(2020), Pi et al. (2019), Cao et al. (2021), Hong et al. (2021), Xu et al. (2021a), Zhang
et al. (2021a), Wang et al. (2021), Guo et al. (2021c)

Amazon-Electronics3 7.8W – Zhou et al. (2019), Zhou et al. (2018), Cao et al. (2020), Cao et al. (2021), Xu et al.
(2021a), Zhang et al. (2021a)

Amazon-Other3 – – Ouyang et al. (2020), Zeng et al. (2020), Li et al. (2020a), Huang et al. (2021b), Liu
et al. (2020b), Cao et al. (2021), Chu et al. (2021), Guo et al. (2021c)

MovieLens Dataset4 1M 12 Zhou et al. (2018), Cao et al. (2020), Shi and Yang (2020), Cao et al. (2021), Hong
et al. (2021), Zeng et al. (2020)

KDDCup 2012-track25 200M – Song et al. (2020), Zhao et al. (2021b), Rendle (2012b), Shi and Yang (2020)
iPinYou6 19M – Zhang et al. (2016), Qu et al. (2016), Xue et al. (2020), Liu et al. (2020a)
Avito7 2M 27 Ouyang et al. (2019a), Ouyang et al. (2019b)
Huawei8 – – Zhu et al. (2021)
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Table 8. Continued

Dataset Outline Ciation
#Instances #Fields

Proprietary dataset – – Richardson et al. (2007), Chang et al. (2010), He et al. (2014), Gai et al. (2017), Xiao
et al. (2017), Zhou et al. (2018), Zhou et al. (2019), Pi et al. (2020), Ge et al. (2018),
Chan et al. (2018), Chen et al. (2016), Zhou et al. (2016), Lei et al. (2016), Zhang et al.
(2014), Li et al. (2019a), Su et al. (2021), Li et al. (2021), Guo et al. (2021b), Feng
et al. (2019), Huang et al. (2021a), Qin et al. (2020), Ouyang et al. (2019a), Zhao et al.
(2021a), Lyu et al. (2020), Feng et al. (2020), Li et al. (2020a), Huang et al. (2021b),
Wang et al. (2020a), Mishra et al. (2021), Ouyang et al. (2021), Zeng et al. (2020), Liu
et al. (2020b), Kaplan et al. (2021), Gao et al. (2018), Edizel et al. (2017), Zhu (2021),
Gligorijevic et al. (2019), Wang et al. (2021), Chu et al. (2021), Guo et al. (2021c),
Min et al. (2022), Zheng et al. (2022)

1 https://www.kaggle.com/c/criteo-display-ad-challenge.
2 https://www.kaggle.com/c/avazu-ctr-prediction/dat.
3 http://jmcauley.ucsd.edu/data/amazon/.
4 https://grouplens.org/datasets/movielens/20m/.
5 https://www.kaggle.com/c/kddcup2012-track2.
6 http://contest.ipinyou.com/.
7 https://www.kaggle.com/c/avito-context-ad-clicks/data.
8 https://www.kaggle.com/louischen7/2020-digix-advertisement-ctr-prediction.
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Table 9. Evaluation metrics for CTR prediction model

Evaluation
metrics Citation
AUC Blondel et al. (2016), Shan et al. (2016), Cheng et al. (2016), Zhang et al. (2016), Qu

et al. (2016), Gai et al. (2017), Zhou et al. (2018), Zhou et al. (2019), Pi et al. (2020),
McMahan et al. (2013), Guo et al. (2017), Chen et al. (2019b), Zhu et al. (2017), Lian
et al. (2018), Zhou et al. (2020), Huang et al. (2019), Ge et al. (2018), Chan et al.
(2018), Chen et al. (2016), Liu et al. (2019), Zhang et al. (2014), Li et al. (2019b), Li
et al. (2019a), Su et al. (2021), Li et al. (2021), Guo et al. (2021b), Feng et al. (2019),
Zhao et al. (2020), Huang et al. (2021a), Qin et al. (2020), Ouyang et al. (2019a), Li
et al. (2020b), Song et al. (2020), Wu et al. (2020), Xue et al. (2020), Lu et al. (2021),
Xu et al. (2021b), Liu et al. (2020a), Chen et al. (2021), Zhao et al. (2021b), Zhu et al.
(2020), Cheng and Xue (2021), Guo et al. (2021a), Zhao et al. (2021a), Shi and Yang
(2020), Ouyang et al. (2019b), Ouyang et al. (2020), Pi et al. (2019), Lyu et al. (2020),
Cao et al. (2020), Feng et al. (2020), Li et al. (2020a), Cao et al. (2021), Hong et al.
(2021), Huang et al. (2021b), Wang et al. (2020a), Mishra et al. (2021), Ouyang et al.
(2021), Xu et al. (2021a), Zeng et al. (2020), Liu et al. (2020b), Kaplan et al. (2021),
Zhang et al. (2021a), Niu and Hou (2020), Edizel et al. (2017), Gligorijevic et al.
(2019), Wang et al. (2021), Chu et al. (2021), Zhu et al. (2021), Guo et al. (2021c),
Min et al. (2022), Zheng et al. (2022)

Logloss Shan et al. (2016), Qu et al. (2016), Juan et al. (2016), Guo et al. (2017), Chen et al.
(2019b), Zhu et al. (2017), Wang et al. (2017), Lian et al. (2018), Huang et al. (2019),
Liu et al. (2015), Chen et al. (2016), Liu et al. (2019), Li et al. (2019b), Guo et al.
(2021b), Zhao et al. (2020), Qin et al. (2020), Ouyang et al. (2019a), Li et al. (2020b),
Song et al. (2020), Xue et al. (2020), Lu et al. (2021), Xu et al. (2021b), Liu et al.
(2020a), Chen et al. (2021), Zhao et al. (2021b), Zhu et al. (2020), Cheng and Xue
(2021), Guo et al. (2021a), Shi and Yang (2020), Ouyang et al. (2019b), Ouyang et al.
(2020), Cao et al. (2020), Feng et al. (2020), Li et al. (2020a), Huang et al. (2021b),
Ouyang et al. (2021), Kaplan et al. (2021), Zhang et al. (2021a), Niu and Hou (2020),
Wang et al. (2021), Chu et al. (2021), Zhu et al. (2021), Guo et al. (2021c), Min et al.
(2022), Zheng et al. (2022)

Relalmpr Zhou et al. (2018), Chan et al. (2018), Liu et al. (2020a), Zhao et al. (2021a), Lyu et al.
(2020), Cao et al. (2021), Wu et al. (2020), Mishra et al. (2021), Wang et al. (2020a),
Zhu et al. (2021)

RIG He et al. (2014), Qu et al. (2016), Zhang et al. (2014)
MSE Richardson et al. (2007), Shen et al. (2016)
RMSE Rendle (2010), Qu et al. (2016), Xiao et al. (2017), He and Chua (2017), Gao et al.

(2018), Zhu (2021)
Accuracy Chang et al. (2010), Zhou et al. (2016), Su et al. (2021), Gligorijevic et al. (2019)
Precision Shen et al. (2016), Lei et al. (2016)
Recall Lei et al. (2016)
F1-score Li et al. (2020a), Zeng et al. (2020)

Among these, the most commonly used evaluation indicators are AUC and Logloss. A brief overview
of some of these metrics is provided below:

1. AUC: AUC measures the probability that a randomly selected positive item ranks higher than
a randomly selected negative item. It is the area under the ROC curve (Narkhede 2018). It only
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considers the order of prediction instances, which is not sensitive to the problem of imbalance
of class. AUC’s upper boundary is 1, the bigger the better.

2. Logloss: Logloss (Vovk 2015) measures the distance between the predicted scores of each
instance and the real label. The lower limit of the Logloss is 0, which means that the two
distributions match exactly, the smaller the value, the better the performance. The expression
of Logloss with regularization term is as shown in the formula (27),

L= − 1

N

N∑
i=1

yi log
(
ŷi

)+ (1 − yi) log
(
1 − ŷi

)+ λ‖�‖2, (27)

where yi and ŷi are the true label and estimation value of the i-th instance, respectively. N is
the total number of training instances, λ is the weight of L2 regularization, and � is a model
parameter set.

3. RelaImpr: The introduction of RelaImpr is to estimate the relative improvement of online
performance on the basis of offline performance. As shown in the formula (28), the model is
compared well with the baseline model. RelaImpr is also known as RI-AUC, the value of AUC
for random guess is 0.5, and RelaImpr can be expressed as follows:

RelaImpr = [
AUC(model) − 0.5

AUC(baseline) − 0.5
− 1] × 100%. (28)

4. Relative Information Gain (RIG): RIG = 1 − NE, where NE is normalized cross entropy,
which is expressed as

NE = − 1
N

∑n
i=1

(
1+yi

2
log (pi) + 1−yi

2
log (1 − pi)

)
−(p ∗ log (p) + (1 − p) ∗ log (1 − p))

, (29)

where pi represents the click-through rate estimation value, p is the average experience CTR
value.

6. The future research directions

1. Attention mechanism: In practical applications, not all feature interactions contribute to
improved model performance, and CTR predictions that cannot be explained are often unreli-
able. Models that automatically capture high-order feature interactions, such as DeepFM (Guo
et al., 2017) and xDeepFM (Lian et al., 2018), require more robust theoretical support. Future
research should explore the full potential of attention and pooling methods to analyze the impor-
tance of combined features. In the context of online advertising, a deeper understanding of user
behavior can significantly enhance CTR prediction. Attention-based CTR models are partic-
ularly effective in capturing user interests by leveraging sequential behavioral data. However,
since user interests are dynamic and prone to drift, more sophisticated predictive models are
needed to better capture the evolving relationship between user behavior and click-through rate.

2. Graph neural network: In recent years, several studies have explored the use of GNNs for
CTR prediction, primarily employing graph representations for simple feature interactions.
GNNs can integrate more powerful feature interactions, such as those found in models like
FwFM (Pan et al., 2018), FmFM (Sun et al., 2021) and AOAFM (Wang et al., 2020b), into
the graph structure, and apply various aggregation strategies to achieve better CTR predic-
tion performance. Researchers have also focused on developing explicit higher-order models
for CTR prediction, such as the deep and cross network (Wang et al., 2017) and compressed
interaction network (CIN) (Lian et al., 2018). However, while explicit representations and high
interpretability are valuable, they can sometimes limit the predictive performance of these mod-
els. Another promising approach is to leverage GNNs to represent feature interactions directly
within the graph structure (Li et al., 2019b; Su et al., 2021), transforming complex interactions
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into node-to-node relationships. This approach suggests that GNNs hold significant potential
for advancing the exploration of explicit higher-order models in CTR prediction.

3. Cold start: For newly launched advertisements, there is often insufficient historical data to pre-
dict clicks effectively. Deep learning models struggle to generate accurate embedding vectors
for new ads or ads with limited training samples. To address this, Pan et al. (2019) proposed a
meta-embedding model that leverages attributes related to new advertisements to mitigate the
cold start problem. However, this approach may overlook other valuable information. GNNs
offer a solution to the cold start issue by constructing graphs that link various advertisements,
enabling the extraction of useful information from adjacent ads. This approach can enhance
the click-through rate prediction performance for new advertisements (Ouyang et al., 2021).
Effectively addressing the cold start problem could provide valuable insights for developing
highly interpretable CTR prediction models.

4. Embedding of numerical features: Most modeling frameworks for CTR prediction primarily
focus on capturing interactions between categorical features, while the embedding of numer-
ical features is often overlooked. The GBDT+LR model (He et al., 2014) addresses this by
converting numerical features into categorical values using a tree model and then searches for
embedding dimensions to obtain their representations. To better handle numerical features in
CTR prediction, Guo et al. (2021a) proposed the AutoDis framework, a pluggable embedding
learning approach for numerical features. AutoDis boasts high model capacity and generates
unique representations with a controlled number of parameters in an end-to-end manner.

7. Conclusion
This paper provides a comprehensive overview of ad click-through rate prediction models. We classify
CTR prediction models into two main categories: shallow interaction models and deep learning-based
CTR prediction models (including DNN, CNN, RNN, and GNN). First, we trace the evolution of classi-
cal CTR prediction models in recommender systems, with a focused discussion on representative models
from each category. Next, we summarize the advantages and disadvantages of the aforementioned algo-
rithms as well as commonly used datasets and evaluation metrics for assessing the performance of CTR
prediction models. Finally, we explore the current research trends in this field and highlight potential
directions for future exploration. This paper aims to offer foundational knowledge and identify key areas
for further research for scholars interested in CTR prediction.
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