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A NOTE ON CUBIC EQUIVALENCES
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Dedicated to the memory of Professor Takehiko Miyata

The present note is intended to be a supplement to [9], in which the
following is proven: Let V be a smooth projective variety over the field
of complex numbers C, T a smooth quasi-projective variety, Z a cycle in
T XV of codimension p. If Z(t) is ¢-cube equivalent to zero for general
te T, then, setting r = dim V — p,

{tZ}: H(V, 2;+*) —> HYT, 24
vanishes for ¢’ < ¢, where {'Z} is the correspondence defined by Z.

If r =0, H(V, 2%) was classically called the space of integrals of the
first kind on V, and we can ask: Is an analogue true for the integrals
of the second kind? The aim of this note is to give an affirmative answer
to this question (cf. (3.2)) if we take, as the definition of integrals of the
second kind, that defined by Atiyah-Hodge [1]; H"(V, 25) is then replaced
by the associated graded module for the coniveau filtration of H* **(V).

A similar result holds also for etale cohomology and for varieties
even over a positive characteristic ground field, but the definition of
integrals of the second kind is, a priori at least, different from that by
Grothendieck [5] (cf. (2.6.1)).

Anyway, for abelian surfaces which are not supersingular, the square
equivalence and the cubic equivalence differ if the ground field is un-
countable (cf. (3.6)). This should be compared with the following: if the
ground field is the algebraic closure of a finite field, the square equiva-
lence is the same as the rational equivalence for any variety, hence the
square equivalence and the cubic equivalence are identical.

Again over the field of complex numbers, note that the space of inte-
grals of the second kind carries a polarized Hodge structure. Then the
corollary (3.5) should give some insight into the metaconjecture of Bloch
2], p. 1.14.
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In Section 1, we recall about the coniveau filtrations, and prove its
functoriality (1.5). Section 2 is devoted to a proposition (2.5) on a family
of products of curves, which is the key to the proof of the theorem (3.2).
In Section 3, the results mentioned above are proven.

§1. Review on coniveau filtrations

(1.1) Let X be a smooth quasi-projective variety over an algebraically
closed field k. We denote by X, one of the following sites:

case a). chark = 0—. X, is the Zariski site of X;

case b). k = C, the field of complex numbers—. X, is the classical
site of X;
case ¢). k is arbitrary—. X, is the etale site of X.

In any case, we have the canonical morphism of sites
oy = a: X, —> Xz, .

By A and p = py = px(a), we denote the following ring and the object
of the derived category D*(X,) of sheaves on X,:

in case a), A =k, and p¢ = 2%, the de Rham complex;

in case b), A = Z, and p = Z, the constant sheaf of X,;

in case ¢), let v be a prime number = char k, N > 0, and a integers.
We denote by g, the etale sheaf of v¥-th roots of unity on X,. Then A =
ZpY, and p = (1,x)?* if @ > 0, and g = Hom, ((1,»)®®, A) if a < 0. (We
often denote by the same letter A the constant sheaf on X, defined by A).

For an integer p > 0, let Z? = Z?(X) be the family of supports con-
sisting of (Zariski) closed subsets of X of codimension > p, and I';.(X,, ?)
the functor “sections with supports in Z?”. We have then, in the derived
category of abelian groups, a sequence of triangles:

RFzzvn/zpnﬂ R['zr/zpﬂ/l

(1.1.1) / \ / \

——> RIypop —> R oot —> RO yjypp—> -+ - —> R op = R,

inducing the spectral sequence

(1.1.2) NEP"? = R"I yoyppiipt ==—> R"['p .
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Let Z? be the Zariski sheaf of supports obtained by localizing Z°?.
Then, in the derived category D*(X,,.) of Zariski sheaves on X, there
exists a sequence of triangles

R_I:gp/szRa'*p
(1.1.3)

o+ —>RI,Rayp—> RL 5, Raypt—> - -« —> R joRotypt = Rayypt

which induces the spectral sequence

(1.1.4) E%},n—p = RnEgp/gp+1(Ra*ﬂ) @ R”a*p .
The application of RI'(X;.., ?) to (1.1.3) gives the sequence of triangles
(1.1.1).

For a closed subset Y of X, we shall denote R"I'y(X, 1) by HL(X).
Then
(115) Rnrzp# = HZP(Xy /*4) = IL.D HTIL’(X) ’

Yezr

and
(116) Rnfzp/zpﬂ[«l = anp/sz(X, #) = Ylei_z—m}r Hrll’\Y'(X\Y,) .

Y’ezZp+1
The Zariski sheaves R"[,,(Rayp) and R"L ;. 5»(Rayp) are obtained by
sheafifying H%,(X, 1) and H%, 504X, ¢) respectively with respect to the
Zariski topology of X.
We shall denote by N?H™(X, p) the filtration on the abutment H"(X, p)

of the spectral sequence (1.1.2) which we call the coniveau filtration, and
by gr*H"(X, 1) its associated graded module:

g HY(X, 1) = N"HY(X, p)/N*"'H"(X, 1) -

Explicitly,
N*HY(X, p) = Im (H»(X, ) —> H"(X, 1)
(1.1.7) = Y;;ﬂ Im (H(X, 1) —> H"(X, 1))
= Y;]ZpKer (HYX, p) —> HY(X\Y, ) .

(Since Z7* is filtering for inclusion, we may replace > by U.)
Let Z® denote the points of X of codimension p. Then we have

(1.1.8) B Lgyzi(Ratyp) = 1] iH(Reryp)
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where i, HYRa,p) is the direct image sheaf of H*(Ra,y) regarded as a
constant sheaf on the space {x} by the inclusion from {x} into X, see [6].
Hence that sheaf is flasque. For more explicit formula of H%(Ra.p), see

[3].

THEOREM (1.2) (Bloch-Ogus, [3], 4.2). The spectral sequence (1.1.4)
degenerates from E,-term on, and E™* =0 for p = 0.

THEOREM (1.3) (Bloch-Ogus-Deligne). The spectral sequence (1.1.2) is
isomorphic to the Leray spectral sequence

E%”q = HP(XZar’ Rqa*/“t) —:7> Hn(X"" ‘U)

from Eyterm on. In particular, the filtrations of H*(X,, 1) by these spectral
sequences coincide.

In case a), the theorem (1.3) was proven in [3]. In cases b) and c),
according to the footnote (loc. cit.), it was shown by Deligne. For com-
pleteness, we give a proof here.

LEMMA (1.4). Let o and # be abelian categories, o/ having enough
injectives, T: <&/ — & a left exact additive functor, K = F°, F*, ..., F™ objects
of D*(s7), F*** — F? morphisms. We have a sequence of triangles:

/NN AN

O0=F""1"—DBF" —»>... > Fr*i_,F? F'—>F' =K,

inducting a spectral sequence

Epn-r = HNG) = HY(K) .
Assume that
(i) EP? gre T-acyclic,
(ii) E2* =0 for p #0.
Applying the functor RT to the sequence of triangles above, we get

RTG™ RTG?

N\ SN N

0=RTF"*'—>RTF"—...-»RTF"' - RTF*—...» RTF'=RTK.

Then the spectral sequence E?"? = R"T G* = R"T K obtained by this
sequence of triangles is isomorphic to the second spectral sequence
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Ept = R'TH/(K)—> R'TK,
from E,-term on.

The lemma (1.4) implies the theorem (1.3): We apply the lemma for
o/ = the category of sheaves of abelian groups on X,,,, # = the category of
abelian groups, T = I'(X;,,, ?), F? = RI ;,(Rayp), and G? = R z,,75+(Raypt).
Then (i) holds as noticed above, and (ii) is satisfied by (1.2). And the
second spectral sequence for R/[(Xj,., Ra,u) is nothing but the Leray
spectral sequence for «.

Before giving the proof of (1.4), we shall prove the elementary

LemmA (1.4.1). Let o/ be an abelian category, f: A" — I' be a morphism
of complexes bounded below in </ such that

(1) fy: H"(A)— H™I') are zero for all n;

(ii) H*(I') and Im (d"~': I*~' — I") are injective objects in </ for all n.
Then, f is homotopic to zero.

We construct a homotopy k*: A"*! — I" by induction on n. For n €0,
it is necessarily zero since so are A" and I". We have exact sequences

0—> B} —>Z}——> H}—0.

0—>Z;—>I"—> By —>0,

where B} =Im(d: I*'—I"), Z? =Ker(d: I* - I"*"), and H} = H"(I').
By hypothesis, B} and H? are injective, so that we have

Z1 = Bt® Hy,
I"'=Z"®B*'=B'® H® By+'.

Denoting the coboundary and cocycle of A’ by B" and Z", we get a com-
mutative diagram with exact rows:

0 > B" > Z" >H" —> 0

f"l f"l fl

0O— Br—>Z"—> Hr—>0.

Since f,, =0, f*: Z" — Z% factors through Bj:
fri Z" —> By =—> 2% .

Notice that giving f*: A® - I" = B @® H}® B is equivalent to giving
priof*, priof®, pr,of”, where pr; are projections. Since the diagram
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a r=pomenr

i A
A I o = B Hy @ By
is commutative, and since d: I* — I**! is given by I" —m}»B;‘“ = [+
pryof* = priof*tod.
Now suppose that we have constructed k‘*': A**' — H? @ Bi*' C I for
i < n such that
dok! + ki*'od = f* @<n),
prioft = priodokt @i<n).
Define p: A™*' — B}*? by
p: Are I oo P g
The restriction to Z* of
PORANG (R LN 2
is zero by hypothesis. Taking the quotient, we get B**'— H?. Since H?
is injective, it can be extended to «: A"*' — H?. We set
k= (o, f): A" —> H} @ B C I,

Then we have f* = k"*'od + do k", pr,of"*! = pr,od o k**!, which completes
the proof of (1.4.1).

Now we prove the lemma (1.4). Let K’ be a complex “representing”
K in D*(«), and K" — I" be a Cartan-Eilenberg resolution of K', 7,.,I"
denote the filtration of the complex I defined by

o qon = [© (b<p)
e ez

We shall construct morphisms 6?: F? — z;.,I" in D*(%/) such that
Fr+t — > F?

(1.4.2) 5P+'l lﬁp

Tu>p+1I" —> TII;pI

commutes, where the horizontal arrow below is the “inclusion”. For p =0,
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6? is K'— I". Suppose 6?: F? — ;. I" is constructed, and set o: F?*'—

F? —51—’—> tuspl . The condition (ii) is equivalent to the condition that
H(F?*') — H(F*) are zero for all n. In fact, it results from the condi-
tion (ii) that E2? =0 for p # 0, hence F'H*(K) = 0, i.e., the map H*(F") —
H"(F"°) is zero. The spectral sequence induced by the sequence ... — F*!
— Ft— ... — F? is also degenerate at E,-term by virtue of (ii), and we
conclude as above that H*(F?*') — H"(F*) is zero. The converse is easy
to see. Hence,

ay: HY(F?*Y) ——> H"(tys,1")

is zero for every n. We have the triangle

e = I —p]

/N

Tisprid  —> Tl

so that the sequence
Hom (F?*', 715, 0"") —> Hom (F?*Y, 71y, ,I7) _7’_) Hom (F?*!, 7y1,,I7)

is exact. Now H"(c;.,I") and Im (d: (¢, ")* ' —> (z1,I7)") are injective
objects for all n, and from what noted above,

(r(@))y: HY(F?*Y) —> H™(ty-,I7)

are zero for all n. By virtue of (1.4.1), 7(a): F?*' — ¢, I" is homotopic
to zero, or 7(«) = 0 in D*(«/). Thus, by the exactness of the sequence
above, there exists a morphism 67*!: F?*' — ¢y, ,.,]" making the diagram
(1.4.2) commutative. Therefore, we have a commutative diagram

G?
N
e P S F? ... —> K
Topl
\
> Tyl = T L —> s —— I

Applying RT, we get:
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RTG*
e —> RTI:’K- —>RTF? —» ... — > RTK
RTz,_ I
«vo —>RTtyop]"—> RTty, I"—> -+ —> RTI" = RTK

Denote by ,-E?? and ,,,E?? the spectral sequences obtained by the
sequences of triangles above and below respectively. Hence we have a
morphism of spectral sequences

B ——> THIEg’q .

We shall show that it is an isomorphism on E,term, which completes
the proof, since ,,;E2? is, by definition, the second spectral sequence for
RTK.
Consider spectral sequences
ReT H¥(G?) =—> R***T G*
RaTHb(TII=pI“) = Ra+bT(TI[=pI") ,
and a morphism of spectral sequences from the above to the below induced

by G* -t I". Since HG?®) are T-acyclic by hypothesis, and H’(zy_,I")
are injective, hence T-acyclic, we get

T H"(G?) —~> R"T G* = y,E»n-»

! l

TH”(Tusz") > RnT(TII=pI“) = TIIIE{)’n—p s
so that it suffices to show that the morphism of complexes

Byt —> THYG*™) —> TH%G")

! l |

T]]IE;m_p: s> THn_l(TII:p—lI") -—> THn(TII=pI“)

3 THn+1(Gp+l) > oo

l

I TH"+1(TII=p+lI") —_—>
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is a quasi-isomorphism. This morphism is, however, obtained by applying
T to the morphism of complexes:

By 0—> H*(GY) —>--.—> H"(G*™) —> HYG) —>

l l i !

dE 00— H* (o) —> - - —> H* tyopid ™) —> H (2 ) I7) —>

By hypotheses, E;"? is a T-acyclic resolution of H* ?(K) and . E;"? is
an injective resolution of H""?(I"") =~ H" ?(K), hence their cohomologies
are isomorphic:

rrEP"? =~ RRTH" "(K) = THIE];"Z_IJ . g.e.d.

CororrArY (1.5). (i) For a morphism f: X — Y, we have the pull-
back

¥ H(Y, py) —> H™(X, py) .

Then, f*(IN*H™ (Y, py)) € NP HY(X, px). Therefore, by taking the quotient,
we get

f*: gr® H(Y, py) —> gr” HY(X, py) .
(i1) For a proper morphism f: X — Y, we have a Gysin map
for H'(X, p(@)) —> H* (Y, py(a — d)) ,
where d = dim X — dim Y. Then,
f«(N?H™(X, p1i(@))) < N*~*H"*(Y, py(a — d)) ,
hence we get
fir gr® HY(X, px(a)) —> gr?~"H" (Y, pp(a — d)) .
(iil) By the cup-product
U: HY(X, px(@)) X H(X, px(@) —> H"*"(X, pxa + @),

N*H™"(X, px(a)) X NP H(X, (a')) is mapped into N?**H" "' (X, p(a + a’)).
Hence, we obtain

U gr* H(X, (@) X gr?’ HY(X, (@) —> geo ™ H*(X, uala + o).

(ii) 1is trivial and well-known (cf. [3]). We shall prove (i) and (iii).
Let /: X— Y be a morphism. We have a commutative diagram of sites
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x, 1oy,

axl fayl

XZar —> YZar ’
and we get a morphism f* of Leray spectral sequences from

Eg,n-—p = HP(YZam Rn_paY*/‘lY) ﬁ Hn(Yaa /'lY)
to
E;a,n—p = HP(XZary Rn_an*/’lX) ﬁ Hn(Xa,y le) .

Since the coniveau filtration coincides with the filtration by Leray spectral
sequence, we get (i). As for the cup-product, we have a pairing of spectral
sequences (cf. [4], p. 336).

H?(Xy0r, Rty tty) X H (Xgpy RVt 1) —> HP*7 (X, RO Vatypiy)
Hp+q(X'a, /'lX) X Hp’+q’(Xa’ #X) _U—> Hp+p'+q+q’(Xa, #X) ’
(We have omitted symbols of twisting for simplicity). Whence (iii).

Remarks (1.5.1). For an (algebraic) cycle Z on X of codimension p,
we have the fundamental class
{Z} € HZp(Xa, qu(p)) .
The subgroup N?H??(X,, nx(p)) = gr” H**(X,, ux(p)) is generated by the
fundamental classes over A. The operation Z+— {Z} is compatible with
pull-backs, direct images, and the products. An equality of maps between
cohomologies induced by algebraic correspondences carries over to their

associated graded modules by the corollary (1.5). For example, let Z be
a cycle on X X Y, and suppose that we have an equality of the type

0 ={Z}: HY(X) —> H"***(Y) ;
then it induces
0 ={Z}: gr* HY(X) —> gr?** H****(Y) .

(1.5.2). As for (1.5), (ii), we have also a morphism of spectral sequences

EpuX) = H*(X, R'axpx(@)) = N*H"(X,, px(a))

A f*l

Ep-®-4Y) = H*~Y, R* ‘ayuy(a — d)) = N?~¢H"*/(Y,, uy(a — d)),
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where E2~%2-%Y) is the shift of the spectral sequence E»(Y) by (—d, —d).
In the case a), for example, we have isomorphisms
E??(X) ~ (the algebraic cycles on X of codimension p modulo algebraic
equivalence) ® &,
Ez?(X) ~ (the algebraic cycles on X of codimension p modulo homo-
logical equivalence) ® k.
Since E»? =0 for p > q, we have natural surjective maps E?? — E»? so
that

E»?(X) ~ (the algebraic cycles on X of codimension p modulo some
equivalence relation) ® k.

In view of morphisms of spectral sequences above, this equivalence relation
is compatible with pull-backs, direct images and the intersection products,
hence an adequate equivalence relation. Thus we have a “filtration of
adequate equivalence relations” between algebraic and homological equiva-
lences, which stops at most at (p — 1)-th step for cycles of codimension p.

Lemma (1.6). If f: X—— Y is an open immersion, then
¥ gr* H™(Y, py) —> gv’ H(X, py)
is injective for every n.
Immediate from the last expression of (1.1.7).
LEmMma (1.7). If f: X— Y is a dominant morphism, then the kernel of
the map
f*: gr* H*(Y, py) —> gr’ H*(X, px)

is killed by an integer + 0 (independent of n, and of v, a, and N in the
case c)).

Let X’ be a (locally closed) subvariety of X such that

rx——»xtsy

is generically finite and dominant. If necessary, by shrinking X’, we may
assume that X’ is smooth. We have
Ker (f*: gr* H(Y, ) —> g1’ H'(X, p))
< Ker (f*: gr* H(Y, p) —> gr*'H" (X', p)) ;
hence we may suppose that f is generically finite. Let d be the degree
of f. If f is proper, the projection formula shows that
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r*
HA(Y, 1) 1> HY(X, 1) L5 HA(Y, )

is the multipliction by d, hence by taking the associated graded module,
we get the lemma. In general case, there exists a nonempty open sub-
variety Y, of Y such that the restriction f, =fy,: f(Y) =X, — Y, is
proper. Since the diagram

g H(Y, 1) > gr* H'(X, 1)

L

gr() Hn( Kb ‘u) I gro Hn(XO’ /l)
commutes and since the vertical maps are injective by (1.6), we have
Ker f* = Ker f¥ .
Then
0=d Kerf¥<«—=d Kerf*. g.e.d.

§2. A proposition on a family of products of curves

(2.1) The aim of this section is to prove the proposition (2.5).
Since the Zariski topology is not so fine, we must treat the case a)
and the cases b) and c) separately.

(2.2) First we consider the case a). Let S be a smooth scheme over
k, h: X — S a smooth morphism. On Q% = Q%,, we have a filtration F?Q%
defined by

FrQy =Im Q7" Q Q% —> 2%),

Os
and its associated graded object Gr? Q% is given by £2%% ® 2%, where 277
and 2% denote the shifts by p places to the right of Q% and 25,5 respec-
tively. We obtain a spectral sequence
(2.2.1) LE: E?"? = R"h (Gr? Q%) = R" ?h,(Qy,s) @ 2% = R"h(2%) .

The filtration on the abutment R"h.(2%) will be denoted by F?R"h.(2%)
=, F?R"h (2%). Let g: Y— S be a smooth morphism, s: Y- X an S-
morphism:

8

Y— X

Y.

i
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Then we have also a spectral sequence for g

(B EPn? = R, (5 5) ® Qs == R'g,(2%)
and the morphism s* of spectral sequences ,E— ,E. Its E-term is given
by s*: R*?h,(Q%;s) — R"78,.(9%,s) tensored with 2%.

(2.3) Now we consider the cases b) and ¢). Let A: X — S be a smooth
morphism. Then we get a commutative diagram of sites:

Xy
XZar D Xa

b

as
SZM D Sa

We have the Leray spectral sequence for ago h,:
(2.3.1) WEr EPt = RPag R, (py) = R(ase ha)*#x .

The filtration on the abutment R™(wsoh,),py will be denoted by
FrRY(agoh,)ypty = 1FPR(aso h,)ypty. Let g1 Y— S be a morphism, s: Y
— X an S-morphism, hence we get a commutative diagram

Then we have also the Leray spectral sequence
gE: Ep? = RPagRIg upty =—> R*(as °ga)*/1Y

and a morphism of spectral sequence s*: ,E — ,E. Its E,-term is obtained
by applying R’ag. to s*: Rih.puy — ROG .y

Note that also in the case a), R"(ago hy)ypx = R*h(2%), and we can
consider the Leray spectral sequence (2.3.1), for which E2? =0 for p # 0.
So it is a little bit confusing to employ the same notation ,E for the
spectral sequences (2.2.1) and (2.3.1), but will be convenient as seen in the
sequel. By the notation ,E (etc), we understand the spectral sequence
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(2.2.1) in the case a), and (2.3.1) in the cases b) and c), both abuting to
R(ets o ho)yttx-

By a family of curves f: X — S, we mean that f is smooth proper of
relative dimension 1 with f,(Oy) = Os.

LEMMA (2.4). Let g: Y— S be a smooth proper morphism of smooth
schemes over k, f': € — S a family of curves, X =Y X ¥:
S

Xﬁg——ﬂﬁ

Ny

Y—5 8.
g
We set h = gof and suppose that two sections s, and s, of €/S are given,
and let §,, §, be the base changes of s, and s, by g: Y— S. We have maps

52": Rn(OlS ° ha)*#X I Rn(a’S oga)*/‘lY .
Then,
(gik - ggk)thRn(a's ° ha)*PX c ng“Rn(Cfs ° ga)}ly .

In fact we have a commutative diagram

X<y

\
A/
S

hence morphisms of spectral sequences §f: ,E— ,E. It suffices to show
¥ = 5f on E%9 a fortiori on E2% 1In the case a), it is therefore enough
to verify

I

sf

851 Rhy(Q%/s) —> Rg:(D%s) -
Since X = Y X %, by Kiinneth formula,
S
L
Rh,(2%/s) = Rgw(2v/s) ® Rf(2%)s) -
S
By [7], R"g.(2y,s) and R"f,(2,,s) are locally free of finite rank, hence,

Rh@is) = @ Ro829) @ BRI
On
R"g*(Q’Y/S) (? Rof:k(‘Q:!/S) =~ Rng*(‘Q.Y/S) %() O ~ R"g*([)i,/s) s
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s} are the identity, and 5f vanish on R°g.(2y,s) ®,, R f4(2,,s) for b > 0.
Therefore sf: R"h, (2%,s) — R"g,(2},s) are nothing but the projection

Rhy(Qx/s) —> R"8,(Dv5) @ Rf(2y5) = R'8,(Dys)

hence, s = 5f on E,-term.
In other cases, we shall show that 5f = §f on E,-term. It suffices to
see
gik = g;k: Rnha*(#X) —> Rnga*(/'[Y) .

By proper base change theorem, it is sufficient to verify that, for every
(geometric) point § of S,
G)F = ¥ HY(X;, ) —> H(Y;, ) -

We have X; = Y; X ;. Since H%,, A) are free A-modules, by Kiinneth
formula, we get

HX, )= @ H(Y,)® H', A) .
The rest of the proof is similar to that in the case a): On H"(Y, 1) ®
HY%;, A) = H(Y;, 1), (5,)f are the identity, and on HY;, 1) ® H*(%;, A),
(3)¥ vanish for b > 0. Thus, 5 = 5 on E,term. q.e.d.

ProposITION (2.5). Let S be a smooth scheme over k, €,— S (@ =
1, -, 0) be the families of curves,

X:(glx “ e X%l-
N S
Let 89, s (i =1, ---,{) be sections of €,/S. For g ¢ 2 = the setl of maps
from [1, 4] to {0, 1}, we set

lo| = o)) + -+ + a(&) ;

8 = sl X ... x gl § > X,
N S

a section of X/S. Let gr® HXX, yty) = NPH™(X, py)/N?'H*(X, 11y) be as in
Section 1. For each o, we get
(s7)*: gr’ HY(X, px) —> gr® H™(S, ps)
Then, for n < ¢, we have
(25.1) 0= 2 (=D(s)*: gr* H(X, px) —> gr’ H*(S, pts)

cc2ll:é]
Proof. Put X, =8, X, =X,_, X% 1 <i<¥), so that X, = X and
S
we have a diagram

https://doi.org/10.1017/50027763000000313 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000313

16 HIROSHI SAITO

< (7)
S

<1 ul""__—_)z)ul

N

i=0,.---,0—1;j=0,1), 5, being the base change of s{/,.

First of all, we claim:
0 =21 (=D"(s)*: Brase (80)slpx) —> Rras(pts)

for n < ¢. We have the maps

GE)*: R(as o 8o stz —> B(as 0 84 (1x)
(we write g; for (g;),, for the moment, to simplify the notation), hence,

Ay = (BE)* — GR)*: RY(as o gra)s(ttris) —> Bats 0 85 (1) -
Clearly, we have
Adio--o0d, = Z": (=1)'!(s)* .
By the lemma (2.4),
4, (e, F'RY(as0 811 )x(tx, ) C o F7 'R (as0 8)x(x) -

Hence,

Ayo - o AR5 0 8)up)) C i F Rraesius) .

Since the spectral sequences (2.2.1) and (2.3.1) are of first quadrant, we
have i F‘R as(us) = 0 for £ > n, whence the claim.

We set g =g, Since agog, = goas, we have another Leray spectral
sequence

gEi Ept = R"g*Rqofx*(/«tx) == R"(goax)(1x) = R"(as 0 8.)5(1tx) -
If S = Spec k, this is no other than the spectral sequence
Epe = H(X, Rq“X(#X)) == H"(X,, tx) ,

in Section 1. The spectral sequence JE is obtained by sheafifying this
spectral sequence with respect to “the Zariski topology of S”.

For ¢ €29, we have again the commutative diagram
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and a morphism (s°)* of spectral sequences from }E to
well: EPt = Rp(ids)*Rqas*(#s) = Rrasdps) ,

which is degenerate: E2?? = 0 for p #+# 0. In particular, we have a com-
mutative diagram

R(ase ga)*(#x) —> gr’ R*(ago ga)*(#x) = E% of ];E

(s7y* l (s7)* l

R"C(S*(lls) —> gr’ Rras{us) = E%* of ng .

The horizontal map above is surjective since JE is a first quadrant spectral
sequence and the horizontal map below is an isomorphism by degeneracy
of \#E. From our claim above results that

2 =2 (=D" () gr’ Bi(arg 0 8a)w(pex) —> 81" Rrars(pts)

is zero. Applying the functor I'(S, ?), we get
0=2: I'(S, gr’ R*(ars © o)1 (1tx)) —> I'(S, gr° Rrars(1es)) -

As mentioned above, gr’ R™(asg,).(¢x) is the sheafification (with respect to
S;..) of the presheaf

8" > gr’ H(g(8"), 1)
hence we have a canonical map
gr’ H'(X, 1) —> I'(S, gr’ B"(at5 0 80)4(11x))
and the diagram

gr® HY(X, p1x) —> I'(S, gr* R™(ats © 84)4(1))

(89)* l (s0)* l

gr® H*(S, ps) —> I'(S, gr° R as(115))
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commutes. We get therefore a commutative diagram

gr’ H(X, px) —> I'(S, gr° R*(ts 0 80)s(tx))
Zl Zl
gr’ H'(S, us) —> I'(S, gx' Rrase(so) -
Rrarglps) =~ gr’ R"aglps) and the horizontal map below is nothing but
E% —— E3"
for the spectral sequence

H*(S, Riasps)) == H™(S, ps) ;

so it is injective. Since the right vertical arrow is zero, so is the left
vertical arrow. g.e.d.

(2.6) In the case c), uy = (1.r)®. Recall that the sheaves ((1£,v)®*)yen
forms a projective system, so that we get a projective system (H"(X,
(.9)2),cn and the v-adic etale cohomology is defined by

H*(X, Z(a)) = lim H"(X, (1£,5)%%) .
Clearly, the subgroups N?H™(X, (1,»)®?) form a projective system, and we
set:
N*HY(X, Z(a)) = lim N?H"(X, (11,x)%%) .

Then N?HY(X, Z(a)) is a subgroup of H*(X, Z,(a)), and they define a fil-
tration on H*(X, Z,(a)). We put:

grrH*(X, Z(a)) = N*"H"(X, Z(a))|N*"'"H"(X, Z,(a)).

Since H"(X, (u,x)®%) are finite groups, a projective subsystem of (H*(X,
(1.v)®))yen satisfies the Mittag-Leffler condition, so that

gr” HY(X, Z,(a)) = lim gr* H*(X, (1,)%%) .

For a cycle Z on X of codimension p, we have its fundamental class
in H**(X, Z(p)) as the limit of those in H*?(X, (1,~)®?), which is compatible
with direct images, pull-backs, and the intersections.

By taking the projective limit, we have an analogue of (1.5) for
N?H*(X, Z(a)). Also the analogues of (1.6), (1.7) and (2.5) hold. The
cohomology theory H*(X, Z,(a)) with this filtration will be referred to as
the case ¢’) in the sequel.
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Remark (2.6.1). On the other hand, we have another (filtration
'N*HX, Z(a)) of HY(X, Z(a)) defined by

'N*HY(X, Z(@) = 3 Ker (H'(X, Z(a) —> H(X\Y, Z(@))

(cf. (1.1.7)), which should be called the coniveau filtration for H*(X, Z (a)).
In general, we have

'N*H"(X, Z,(a)) € N*H"X, Z(a)) ,

and the equality holds for n = 2p (both generated by the fundamental

classes). The author does not know whether the equality holds in general
or not.

§3. Theorem

(8.1) Let T be a smooth quasi-projective variety. We denote the
Chow group of T of codimension p by CH?(T), and put

N*H"(T, a) = N*H"(T) = N*(T, 11(a)) ® Q,

where N?HY(T, u(a)) is one of the cohomology theories a), b) and ¢’) (cf.
(2.6)). Let V be a smooth projective variety. If ze CH*(T x V), we
denote by {z} its fundamental class in N?H**(T X V, p) = gt H*(T X V, p).
Set r = dim V — p; then we have the map

{tz}: gr" H*"*YV,a) —> gr" H(T,a — r)
defined by {*z}{(w) = pr;«{z} U pr#(w)), where pr, and pr, are the projections
from T'x V.
For te T (closed point), we denote by i, the injection V~tx V C
T xX V. Then we obtain the map i¥: CH?(T X V) — CH?(V), z+— i¥(2) =
2(f). Moreover, for an integer ¢ > 0, let F'CH?(V) denote the subgroup

of CH?(V) consisting of cycles ¢-cube equivalent to zero modulo rational
equivalence (cf. [9]).

THEOREM (3.2). Let T be a smooth quasi-projective variety, V a smooth
projective variety of dimension m, p, ¢ integers > 0, ze CH?(T x V), and
r=m — p. Suppose that the ground field £ is uncountable.

If 2(t) e F*CH*(V) for all te T, then the map

{t2}: gr- H***(V,a) —> gt H*(T,a — 1)
vanishes for £ < £.
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(3.3). Before giving the proof, we shall recall about the Chow scheme,
especially in positive characteristic (cf. [9], § 1). Fix an embedding V c P?,
and let C.(V), (d > 0) denote the Chow scheme of effective r-cycles on
V of degree d with respect to this embedding. If Z is an effective cycle
on T X V of codimension p which is non-degenerate on 7T, and if the
r-cycle Z(t) on V is of degree d for general tc T, then we get a rational
map f: T C(V),, t—Z(#). The map Z+— [ is injective in arbitary
characteristic, and bijective if chark = 0. Moreover, if ¢: 7" — T is a
morphism, the following are equivalent: (i) (¢ X id)*(Z) is defined; (ii)
Im ¢ and the domain of definition of f intersect. In this case, the rational
map fop: T”-> C(V), corresponds to the cycle (¢ X id)*(Z). Hence if
char £ = 0, we have the map

7: Hom,,, (T, C(V),) —> N*H*(T X V)

defined by f+ {Z}, which is “functorial in 1.

Suppose that char 2 > 0, and we shall prove that, in this case, we
have a map similar to 7 too. Recall that for a rational map f: T
C.(V),, there exists a purely inseparable finite extension L of k(T) such
that if 4: S— T is a dominant morphism with L C k(S), then there exists
a cycle on S X V of codimension p whose corresponding rational map
S.» C(V), is foy. Let g be a power of the characteristic of k, and F:
Spec k — Spec k be the Frobenius morphism, i.e., g-th power map on the
ring level. Put

T@ =T X Speck
Spec k¥
and we get the relative Frobenius morphism F,: T— T‘@. Then k(T?)
= k(T)*-k = k(T)?. Since k is algebraically closed, F is an isomorphism;
we set

T¢o =T x Speck.
Spec kF 1

Then T — T%? ijs functorial and T/ is smooth quasi-projective if so is
T. From (T%/9)@ ~ T, we get a morphism F,,: T%% — T and k(T"?) =
k(T)"¢. Thus for a rational map f: T--» C(V),, if g is large enough,
L C k(T%9) and there is a cycle Z’ on T®? XV of codimension p whose
corresponding rational map is fo F},,, and such Z’ is unique for each q.
Then we set
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)= (F,, xid),(Z) e N'H(T X V).
deg F},,
The projection formula shows that 7(f) is independent of choice of ¢, and

we get a map
7: Hom,, (T, C(V),) —> N*H*(T X V),

which is “functorial in T” (Note that F¥,: H(T X V) — H" (T x V)
is bijective and Ff, o F,, , = deg F,,).
For chark > 0, if f: T C(V), is a rational map, we obtain a map

f#: grr H21'+£’(V) 3 gI.OHé’(T)

by fHw) = {7(f/)}(®). Evidently, we have the following formulae: if g:
T--> CJ(V), is another rational map, we have

(f+gy=r+g:g H(V)—> g H'(T),

where f+ g: T-» C(V),,, denotes the summation on the Chow schemes.
If $: T" — T is a morphism such that fog: T.-> C(V), is defined,

(fo ¢)¢ — ¢4< Of#: gI‘T HZT+Z’( V) > gr° Hz'(T) )
If f: T-> C(V), corresponds to a cycle Z, then f* = {*!Z}.

(8.4) We are now ready to prove the theorem (3.2). Let Z be a
representative of z. We may assume that every component of Z is non-
degenerate on T, for degenerate components have no effects on z(f) and
{*z}. Since the map induced by an open immersion on gr’ H” is injective
by (1.6), we can suppose that i¥*(Z) are defined for all te T. Let Z* and
Z- be the positive and negative parts of Z respectively. Clearly we can
suppose £ > 0, and in that case, the degrees of Z*(f) and Z-(¢) (te T) are
equal, and we have the corresponding rational maps f, g: T— C.(V),,
which are, in this case, morphisms. By hypothesis, the cycles f(¢) and g(¢)
are /-cube equivalent for all te 7. Recall the following theorem:

THEOREM (3.4.1. = [9], (5.6)). Let T be a smooth quasi-projective variety,
V a smooth projective variety, f and g are morphisms from T to C,(V),,
and suppose that the ground field is uncountable. If f(¢) and g(t) are
£-cube equivalent, then there exist a smooth quasi-projective variety S, a
dominant morphism e:. S— T, families €, of curves over S, sections s
and s of 4,/S(A <i<¥{) and a rational map H* from €, >S< §< €, to
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C.(V)y XC(V)yn such that
(1) for every g2 g7 1= s{°® x ... X s"® has its image in the
domain of definition of H;
(ii) as morphisms from S to C(V)y (N = 2'(d’ + d”) + d),
foe+ lzlzoprloHos" -+ I;;lprono'S"

=goe + lZJ prioHos’ +|Z pryoHos’,

g|=1 o|=0
where |o| = (1) + - -+ + o(4), and “ =" means “equivalent molulo 2”.

As noted in [9], (1.3.1), the theorem is valid even in the positive
characteristic case.

(3.4.2) We shall return to the proof of (3.2). Note that, as maps
from gr” H***(V) to gr* H*(T), {*z2} = {{Z*} — {!Z~} and f* = {{Z"}, g* =
{tZ-}. By virtue of (1.7), it is therefore sufficient to show that e*of* =
e*ogt ie. (foe) = (goe). But by (il) above, we have the equality

(foe) + [éo(prlon")“ + MZEl(pronw’)“
—(ge0) + 3 (rioHeSY + 3 (puo Hos')
or, by (i),
(foey + 22 (=1)Is™ o (prio H) = (goe)' + 21 (=1)"'s™ o (proo H)' .
Since we have >, (—1)"“!s* = 0 by (2.5), we obtain (foe)f = (g-e)’. q.e.d.

In the sequel, k is supposed to be uncountable (except (3.6.1)). Recall
that gr* CH*(V) = F‘CH?(V)|F**'CH?(V).

COROLLARY (3.5). Let T be an abelian variety or a product of (smooth
complete) curves, V a smooth projective variety, ze gt CH? (T X V), r+p =
dimV, ¢ an integer. If

[2]: gr* CH(T) —> gr* CH*(V), 7 —>2(7)
is zero, then
{tz}: gr" H*"*YV,a) —> gr' H(T,a — r)
vanishes.

The general idea of our proof is as follows: Let xe CH (S X T), t =
dim T. If x(s) e F'CH(T) for all se S, and if
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0= {‘x}o{‘z}: gr" H7+{V) —> gr* H(T)

implies {'z} = 0, then we get the corollary, since we have {!x}o{2} =0
by the theorem (3.2).

(i) Suppose that T is an abelian variety. For an integer n, let n,:
T — T denote the multiplication by n, I, its graph. Then for te T, I, (Y
= n.(t) = (nt) e CH(T) and

{r.}: H(T) —> HY(T)

is multiplication by n’. Let

X = Zg(—w—"(ﬂ)rn .
n=0 n
For te T,

X0 =3 0 ()ro =@ = s @ - @) (@ times)

by “binomial theorem”, where x denotes the Pontrjagin product. Hence
Im [X] € F‘CH(T), and {{X}: H(T) — HYT) is multiplication by

30D = o

hence {*X} is bijective on gr"HYT).

(i) Suppose that T is a product of curves. First, assume T =
C, X -+-xC, a product of ¢ curves. For each i, take a point a, e C,.
Consider the algebraic correspondence X defined by

Tot=(@, - t)—> () — (@) X - X((t&) — (@) .
Clearly X(t) e F'CH(T) for te T, and
{X}: H(T) —> H(T)
is the identity, hence so is {*X} on gr’ H(T). The case of a product of

¢ curves is proven. In general, if dim T < ¢, gr’ H(T) = 0. Thus we
may assume:

T=0Cx---xC, (n> ¢, C,: curves).

For IC[1,n], card I = 4, let pr;: T— C, = [[ie; C; denote the projection.
It induces a map pr¥: gr* HY(C,) — gr’ H{T) and we have an isomorphism

(3.5.1) @ gr"HY(C)—=>gr'H(T).

card I=¢
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The inverse is given as follows: choose a point a; ¢ C, on each curve, and
let j;: C; — T be the embedding obtained by “inserting a,” for i ¢ I. The
map j§: gr* H(T) — gr* HYC,) is the I-component of the inverse of the
isomorphism above. In fact, by Kiinneth formula,

® HY(C)®-- ®H"(C,)—>H(T).

ar+eoeetan=~¢

The map is induced by the projections (and the cup-product). Note that
HYC)) = N'H*(C,). Hence if @, + --- 4 a, = ¢ and a, = 2 for some i, the
image of H*(C)® --- ® H, (C,) in HYT) lies in N'HXT), and

©H™(C)® --- @ H*(C,) —> gr" H(T)

is surjective, where the summation is over such (a¢;) that a, 4+ --- + a,
= ¢ and a; =0, or 1. For such (a,), put I ={i; a; = 1}, and we have the
isomorphism

H(C) 25 H(TY 5 H(C) ® - - - ® H(C,) .

Hence, the map (3.5.1) is surjective. The map

aqc) 25 () 22> BY(C,)

vanishes if 1=+ 1’, and is an identity if I = I’. This shows that (3.5.1) is
an isomorphism.

Returning to the proof of the corollary (3.5), suppose that
{tz}: gr- H**4V) —> gr' H(T)
is non-zero. Then for some I, with card I = [,
Jio{'z}: gr" H* (V) —> gr H(C))

is also non-zero. Let 7 be the graph of j, in CHYC, X T) and set x =
207 CH(C; X V). Then

[x] = [2]oj,.: grf CH(C,) —> gr! CH?(V)
is zero, but

{‘x} = j¥o{'2}: gr" H"*Y(V) —> gr* H(C,)
is not zero, which is absurd.

Remark (3.5.2). The author does not know whether or not the corol-
lary remains true without the assumption on 7. The argument similar
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to the one just above shows, however, that the corollary holds for a smooth
projective variety T satisfying the following condition: for any non-zero
x € gr* HY(T), there exist a product of curves (or an abelian variety) 7"
and ye CH(T X T’) (¢t = dim T') such that

{y}(x) =0 in gr* H (T") .

For example, a variety dominated by a product of curves or an abelian
variety is such a variety.

CoROLLARY (3.6). If V is an abelian variety or a product of curves,
then gr" H(V) #+ 0 implies gr* CH(V) # 0. In particular, there exists an
abelian variety in any characteristic such that F*CH(V) + FCH(V).

Apply the corollary (3.5) to T'= V, z = the diagonal of V X V; then
2z = 'z induces the identity on gr‘ CH(V) and on gr° H{V). Notice that
dim gr® H*(V) = (2" Betti number)—(Picard number). If char 2 = 0, then,
gr’ HY(V) + 0 (even gr’ H*(V, Q) + 0 for n < dim V) for any abelian variety.
In positive characteristic, gr’ H*(V) # 0 if an abelian variety V is not
supersingular.

Remark (3.6.1). For a supersingular abelian variety A, we have
F'CH(A) =~ A (N. Maruyama [8]), and gr® CH(A) = 0. Thus, contrary to
the case of characteristic 0, we cannot conclude that H°(A, 2%) + 0 implies
gr! CH(A) + 0. Also notice that if k2 = F,, the algebraic closure of a
finite field, we have F?CH?”(V) = 0 for any smooth projective variety V
and any p. The assumption that & is uncountable is thus not unnecessary
(if a weaker condition can be good).

The author does not know whether or not there exists an abelian
variety (in positive characteristic) for which gr’ HY(A, Q,) # 0 for I < dim A,
though it is plausible for general abelian variety.

Remark (3.7). As mentioned in the introduction, we proved an ana-
logue of (3.2) in [9] for the Hodge cohomology, whose proof was not purely
algebraic. We can give an algebraic proof by a similar method as in
Section 2.
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