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Abstract

Fruit growth is driven by the interaction of environmental cues and phytohormonal signals.
Biophysical models have captured the general trend of fruit growth but often overlook the
regulatory role of phytohormones. This study integrates a biophysical framework with the
quantitative response of endogenous abscisic acid (ABA) in fruit. ABA dynamics are incor-
porated as a ripening signal, influencing sugar uptake, respiration, hydraulic conductance and
transpiration processes. The model has been primarily tested on blueberries, a fruit with well-
characterised ABA responses. Simulations show predictive accuracy and explanatory capability
for fruit mass under variable climatic conditions. Notably, the model effectively simulates the
impacts of environmental stresses such as heat, cold and drought, capturing the resulting
physiological delays in fruit growth. Our research underscores the potential of integrating
phytohormonal responses into biophysical models, providing key insights into fruit growth
dynamics and practical guidance for optimising crop management under increasing climate
uncertainties.

1. Introduction

Global warming and extreme weather events are causing unpredictable patterns in fruit develop-
ment (Fontúrbel et al., 2018; Houston et al., 2018; Vanalli et al., 2021), affecting both crop yields
and production quality. These challenges pose significant concerns for natural ecosystems and
agriculture, making an understanding of fruit development crucial for effective mitigation.

Fleshy fruit development proceeds through three stages: set, growth and ripening (Fenn &
Giovannoni, 2021). After fertilisation, the fruit set stage leads to the growth stage involving
cell division and expansion, determining fruit size and weight. Ripening then follows, evolving
ripening qualities like flavour and colour. Throughout these stages, the fruit acts as a sink
for carbon and water as a resource for fruit development (Ren et al., 2023). The growth and
ripening stages proceed sequentially or simultaneously, depending on the species, genotypes and
environmental conditions, regulating carbon and water allocations for optimal development.

Phytohormones orchestrate the stage of fruit growth and ripening (Fenn & Giovannoni, 2021;
Kou et al., 2021; Ren et al., 2023). During fruit growth, auxin and gibberellic acid synergistically
regulate cell division and expansion, as commonly observed in many fruits. Fruit ripening can
be classified into two types based on the primary phytohormones: climacteric, including fruits
like apples and peaches, where ethylene is significant and non-climacteric, such as strawberries,
blueberries and grapes, associated with abscisic acid (ABA). However, recent evidence indicates
varying requirements for ABA within the ripening physiology of both fruit types (Fenn &
Giovannoni, 2021; Ren et al., 2023).

In fruit, ABA primarily originates from endogenous biosynthesis within the fruit itself
(Chung et al., 2019; Zhang et al., 2009) and determines fruit size and ripening times (Liao et al.,
2018). In apples, ABA influences the transcriptional regulation of genes involved in sugar and
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water metabolism. For example, in apples, MdWRKY9 interacts
with MdbZIP23 and MdbZIP46, key ABA signal transducers, to
enhance the regulatory effect on the expression of MdSWEET9b,
a sugar transporter (Zhang et al., 2023). In addition to influencing
sugar flux, ABA can modify water flux by affecting the total tissue
and apoplastic water-soluble calcium concentration in fruit (de
Freitas et al., 2011). These biochemical regulations drive the bio-
physical processes determining the accumulation of fruit biomass
(Liao et al., 2018; Wang et al., 2022; Zhang et al., 2023).

Process-based modelling elucidates the interplay between envi-
ronmental conditions and internal mechanisms in fruit growth
(Grisafi et al., 2021). Most models focus on carbon and water
dynamics, offering insights into fruit dry mass and water mass
(Chen et al., 2021; Fishman & Génard, 1998; Lescourret & Génard,
2005; Zhu et al., 2019). Fishman and Génard (1998) developed a
biophysical model for peach fruit growth, which has since been
adapted and expanded for various fruits, including tomatoes (Liu
et al., 2007) and grapes (Zhu et al., 2019). Liu et al. (2007) incorpo-
rated sugar metabolism into the tomato model, thereby enhancing
estimations of structural and non-structural carbons and improv-
ing the predictions of osmotic pressure and fruit weight. Zhu et al.
(2019) refined the carbon sink and source dynamics, refining car-
bon inputs of a grape growth model. These models well-described
the overall estimation of biomass, responding to external stimuli;
however, they lack the incorporation of phase shifts driven by
ripening signals, particularly like ABA which plays a crucial role
in regulating fruit growth and ripening.

In this study, we present a process-based model that integrates
the quantitative effects of ABA on the biophysical growth of
blueberry (Vaccinium spp.) fruit. Given that blueberry fruit growth
is influenced by endogenous ABA (Chung et al., 2019; Zifkin et al.,
2012), the integrative model could effectively describe biomass
accumulation driven by ABA-induced biophysical changes. We
developed an empirical model of ABA accumulation in fruit and
coupled it with a biophysical fruit growth model for blueberry.
After calibration and validation with blueberry fruit data, the
model was simulated under climate change scenarios to assess the
effect of global warming on fruit growth. Furthermore, by applying
the model to regional climate data, we evaluated the performance in
different environmental conditions, including abiotic stresses, and
correlated these findings with yield data. The modelling process
was implemented using the Cropbox framework, which features
a domain-specific language designed for crop modelling with
reduced technical complexity (Yun & Kim, 2022).

2. Materials and methods

2.1. Plant materials

Ten-year-old ‘Bluecrop’ highbush blueberry (V. corymbosum)
shrubs were grown at the experimental orchard of Seoul National
University, Suwon (37○ 17′ N, 127○ 00′ E), Republic of Korea. In the
2015 growing season, five blocks were designed; within each block,
two shrubs were randomly selected to assess fruit characteristics.
Fruits on each shrub were chosen using a consistent set of criteria:
visually assessed, comparable sunlight exposure, matching canopy
positions and identical anthesis dates. Twenty fruits from each
shrub were harvested at eight intervals from 10 days after anthesis
(DAA) to 80 DAA every 10 days.

Fruits were investigated for their dry, water and fresh masses to
parameterise the fruit growth model. The dry mass was measured
by drying the fruits at 70○C until a constant weight was achieved.

The initial water mass was then calculated for each fruit based on
the difference between its fresh and dry masses.

To determine the ABA concentration at each growth stage, five
fruits per shrub were separately collected at the eight DAAs. These
samples were immediately frozen in liquid nitrogen and stored at
−80○C.

In each block, data from one shrub was selected for calibrating
the fruit growth model based on the fruit characteristics; data from
the remaining shrubs were used for model testing.

2.2. Determination of ABA concentration

ABA concentration of ‘Bluecrop’ blueberry fruits was determined at
the eight growth stages, according to Oh et al. (2018). Freeze-dried
samples were rehydrated, homogenised and subjected to a series of
centrifugation and lyophilisation steps. The processed samples were
then analysed for ABA content using a Triple TOF 5600 Q-TOF LC-
MS/MS (AB Sciex, Foster City, CA, USA) coupled with an Ultimate
3000 RS HPLC system (Thermo Dionex, Waltham, MA, USA).
Chromatographic separation was performed in a formic acid and
acetonitrile gradient, and for ABA quantification, multiple reaction
monitoring was employed in the transition from 263.1 to 153.1 m/z.
The ABA concentration was expressed as μg mg−1 of fruit dry
weight with a threshold of 0.01 μg mg−1 for detection.

2.3. The model: incorporation of ABA actions in fruit growth via
carbon and water fluxes

To incorporate the effect of endogenous ABA on fruit growth, we
modified the biophysical fruit model developed by Fishman and
Génard (1998) (Figure 1). This model conceptualises the fruit as
a large single cell, separated from the phloem and xylem by a
composite membrane. The dry, water and fresh masses of the fruit
are calculated based on the carbon and water fluxes across the
membrane. These fluxes are governed by thermodynamic equations
that account for the membrane’s hydraulic conductivity, differences
in hydraulic and osmotic pressures, and the membrane’s solute
impermeability.

In the integrative model, we posit that endogenous ABA affects
fruit growth by regulating carbon and water fluxes, a premise sup-
ported by physiological and biochemical research (Gutiérrez et al.,
2021; Jia et al., 2016; Kobashi et al., 2001; Ofosu-Anim et al., 1996;
Trivedi et al., 2019; Wheeler et al., 2009). ABA accumulation is
modelled based on heat units to reflect the correlation between fruit
development and ABA concentrations (Chung et al., 2019), where
developmental changes are linked to heat accumulation (Marra
et al., 2002). Recognising the different quantitative effects of ABA
on carbon and water fluxes, we adopt empirically derived different
equations for each flux component, including sugar uptake, respi-
ration, the membrane’s hydraulic conductivity and the permeability
of the fruit skin. The variables in this model are detailed in Supple-
mentary Table S1.

During the growth of ‘Bluecrop’ blueberry fruit, the fresh mass
is calculated as the sum of dry mass (s, mg) and water mass (w, mg).
The seed mass is not considered in this calculation, as it accounts for
only 0.80–1.08% of the total mass, a negligible amount, according to
Strik and Vance (2019). The rate of dry mass accumulation (ds/dt,
mg h−1) is quantified as the net result of the sugar uptake from
the phloem (Us, mg h−1) and the carbon lost to fruit respiration
(Rf, mg h−1) (Equation (1)), where Us consists of active uptake
through the apoplastic pathway (Ua, mg h−1), mass flow through
the symplastic pathway and passive diffusion across the membrane
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Figure 1. The schematic diagram for depicting the effect of endogenous abscisic acid (ABA) on the biophysical growth of fruit. Water enters the fruit (represented by the

black-bordered oval) via the xylem and phloem, propelled by the water potential gradient between the xylem (Ψx) and phloem (Ψp), and the fruit itself. Water loss occurs through

transpiration. Sugars from the phloem sap (sucrose concentration, Cp) are transferred into the fruit through mass flow, and passive and active uptake mechanisms, with a portion

being respired. Endogenous ABA modulates biophysical growth by altering hydraulic conductivity and the permeability of the fruit skin during water flux; it also fine-tunes active

sugar uptake and respiration associated with ripening during carbon flux.

(Fishman & Génard, 1998). The rate of water mass accumulation
(dw/dt, mg h−1) is determined by the total water uptake from the
xylem (Ux, mg h−1) and phloem (Up, mg h−1) against the water lost
through fruit transpiration (Tf, mg h−1) (Equation (2)):

ds
dt
=Us−Rf, (1)

dw
dt
=Ux+Up−Tf . (2)

The quantitative response of ABA is integrated into the model to
predict the accumulation of dry and water masses by characterising
ABA concentration. These concentrations initially surge and then
slightly diminish during the late ripening stage in non-climacteric
fruits, including blueberry (Watanabe et al., 2021; Zifkin et al.,
2012), grape (Stacey et al., 2009; Villalobos-González et al., 2016)
and strawberry fruits (Liao et al., 2018). Given the absence of
previous attempts to model ABA accumulation patterns in line with
experimental data, a beta growth equation is empirically imple-
mented (Equation (3)), which is driven by cumulative growing
degree hours (cGDH, K) during the entire day (Equation (4)).
Subsequently, the ABA concentration (ABAconc, ug mg−1 of s) was
normalised (ABAnorm) to be utilised for carbon and water fluxes
(Equation (5)):

ABAconc =ABAf
(ABAe− cGDH)
(ABAe−ABAm)

( cGDH

ABAm
)

ABAm
(ABAe−ABAm)

, (3)

cGDH =∑(min(T,T0)−Tb), (4)

ABAnorm =
ABAconc−ABA0

ABAf −ABA0
, (5)

where ABA0 (ug mg−1 of s) and ABAf (ug mg−1 of s) are the initial
and final ABA concentrations, respectively. cGDH is calculated by
summing the difference between the base temperature (Tb, K) and
effective temperature, which equals an ambient temperature (T, K)
capped by optimal temperature (T0, K). ABAe represents an envi-
ronmental factor affecting cGDH as an equilibrium point; ABAm is
the baseline value of cGDH that triggers the accumulation of ABA.
ABAnorm (dimensionless) is applied to adjust active sugar uptakes,
which is based on biological interaction where endogenous ABA
in fruit affects enzyme activation, including hexose transporters
(Murcia et al., 2016). Specifically, ABA enhances sugar uptake by
activating relevant enzymes up to a certain concentration level,
beyond which the rate of sugar uptake decreases:

ABAsugar = kABA
(STPe−ABAnorm)
(STPe−STPm)

(ABAnorm

STPm
)

STPm
(STPe−STPm)

,

(6)

Ua =
ABAsugarvmCp

(Km+Cp)(1+ e −t∗
τ )

, (7)

where ABAsugar (dimensionless) represents the ABA-modulated
sugar uptake factor based on beta function with a scaling factor
(kABA). STPe (dimensionless) and STPm (dimensionless) are thresh-
olds defining the range within which ABA concentration optimally
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enhances sugar uptake; STPe is the upper threshold beyond which
the effectiveness of ABA starts to decline, and STPm is the mini-
mum threshold below which the effect of ABA on sugar uptake is
minimal. The vm represents the maximum rate of sugar transport.
Km (dimensionless) is the Michaelis–Menten constant for sugar
transport: t∗ (h) and τ (h), describing the activity of an inhibitor.

In biophysical models, fruit respiration is traditionally parti-
tioned into growth respiration and maintenance respiration (Fish-
man & Génard, 1998; Zhu et al., 2019); the growth respiration is
proportional to ds/dt, and the maintenance respiration is propor-
tional to s (Thornley & Johnson, 1990). To more accurately reflect
respiration changes based on fruit phenology, we introduce a novel
‘ripening respiration’ category. This category, describing respiration
during metabolic shifts that evolve fruit qualities during the ripen-
ing phase (Perotti et al., 2014; Saltveit, 2019), is distinctly separate
from the traditional concepts of maintenance and growth respira-
tion. This addition is justified by observed changes in respiration
patterns following ripening initiation across various fruit types,
albeit to varying degrees (Kou et al., 2021). To integrate ripening
respiration into the model, we leverage ABA concentration as a
ripening signal, introducing a ripening coefficient (qr, mg h−1)
that reflects the effect of ABA on respiratory dynamics. Rf, fruit
respiration, is thus formulated as follows:

Rf = qg
ds
dt
+qm(T)s+qrABAnorm, (8)

where qq (dimensionless) and qm(T) (h−1) are the coefficients for
growth and maintenance, respectively. The effect of air temperature
(T) on maintenance respiration is addressed by the Q10 concept,
which quantifies the rate of increase in a biological process, such as
respiration, for every 10○C rise in temperature (Fishman & Génard,
1998; Pavel & DeJong, 1993). With Equations (7) and (8), Equation
(1) was calculated to estimate dry mass. The subsequent equations
are followed by the berry growth module of Zhu et al. (2019).

Water flux in fruit represents the difference between total water
uptake and transpirational water loss. Water uptake is determined
by the hydraulic conductivity (L, mg cm-2 MPa−1 h−1) of the
phloem and xylem, which are assumed to have identical values
(Fishman & Génard, 1998). We introduce incorporating the effect
of ABA to reflect changes in L attributable to alteration in fruit
surface characteristics during the ripening phase (Peschel et al.,
2003; Trivedi et al., 2019). The ABA effect on the conductivity is
expressed through the following equation:

L = Lmaxe(−kLABAnorm), (9)

where Lmax (mg cm−2 MPa−1 h−1) denotes the maximum conduc-
tivity achievable in the absence of ABA modulation. The constant
kL determines the sensitivity of conductivity to ABA levels. The L
is implemented to Ux and Up of Equation (2) to estimate w with
other parameters and followed equations described by Zhu et al.
(2019). In addition, the equation for cell extensibility is employed
to represent variations in the cell wall extensibility coefficient rather
than treating it as a constant (Liu et al., 2007).

Fruit transpiration is assumed to be proportional to the fruit
surface area (Af, cm2) and to be driven by the difference in relative
humidity between the air-filled space within the fruit (Hf, dimen-
sionless) and the ambient atmosphere (Ha, dimensionless):

Tf = Af αρ(Hf −Ha) . (10)

In this equation, α (g cm-3) is a temperature-dependent coefficient
that converts the relative humidity gradient into a water flux term

(Fishman & Génard, 1998). ρ (cm h−1) is the solute permeability
coefficient of the fruit skin, a crucial factor in determining the rate
of transpiration. Equation (10) describes how the ρ is affected by
endogenous ABA:

ρ = ρmin+ρ0e(−kpABAnorm). (11)

Here, ρmin (cm h−1) represents the coefficient for minimum
solute permeability of the fruit skin and ρ0 (cm h−1) is the scaling
factor. The exponential term captures the effect of ABA on p, mod-
ulated by a constant kp (dimensionless). The integration indicates
that as ABA increases, there is a corresponding decrease in ρ,
reflecting the influence of ABA on enhancing the barrier properties
of the fruit skin. This approach is based on ABA-induced changes in
cell wall and cuticle properties, according to Curvers et al. (2010),
leading to a reduction in water loss through the fruit skin.

After the carbon and water fluxes have been calculated, inte-
gration of Equations (1) and (2) over time yields the main state
variables of the system s(t) and w(t) with each initial mass (so and
wo, respectively).

s(t) = s0+∫ (Us−Rf)dt, (12)

w(t) =w0+∫ (Ux+Up−Tf)dt. (13)

Model implementation, parameterisation and validation

The fruit growth model was comprehensively established within
the Cropbox modelling framework (Yun & Kim, 2022), which
enhances modelling efficiency and precision, allowing a refined
focus on the biological processes that underpin fruit growth simu-
lations.

Model parameterisation utilised both experimental data and
literature. Hourly air temperature and relative humidity were cap-
tured using WatchDog 2450 data loggers (Spectrum Technologies,
Inc., Aurora, IL, USA). Stem water potential was set to oscillate
diurnally between −0.10 and −1.8 MPa (Glass et al., 2005), and
the phloem sucrose concentration was set between 15 and 100 mM
(Zhu et al., 2019).

The model encompasses 27 parameters: 13 derived through
calibration and the remainder from literature (Table 1). Calibration
focused on ABA accumulation, fruit surface transpiration, com-
posite membrane area, sugar uptake and hydraulic conductance.
Parameters for ABA accumulation were calibrated independently
before integration into the full model, which was then further
calibrated using fresh mass data. These parameters were utilised in
model validation against a distinct dataset to assess performance.

2.4. Model goodness-of-fit analyses

The goodness-of-fit was assessed using observed data for ABA
concentrations and fruit masses. The evaluation employed five met-
rics: mean absolute error (MAE), root mean square error (RMSE),
normalised RMSE (NRMSE), the index of agreement (dr) and the
Nash–Sutcliffe model efficiency (EF):

MAE = 1
n

n
∑
i=1
∣yi− ŷi∣, (14)

RMSE =
�
��
 1

n

n
∑
i=1
(yi− ŷi)2, (15)
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Table 1. List of symbols and the estimates of the model parameters used for ‘Bluecrop’ highbush blueberry (Vaccinium corymbosum)

Symbol Description Value Unit Source

Growing degree hours

Tb Base temperature 281.0 K Zheng et al. (2017)

To Optimal temperature 305.6 K Zheng et al. (2017)

Abscisic acid (ABA) accumulation

ABAm Baseline of cGDH 18287 K Calibration

ABAe Upper threshold of cGDH 23683 K Calibration

Fruit surface transpiration

γ Empirical coefficient for fruit surface area 4.24 cm2 g−1 Jorquera-Fontena et al. (2017)

η Empirical coefficient for fruit surface area 0.70 Dimensionless Jorquera-Fontena et al. (2017)

ρmin Minimum fruit surface conductance to water vapour 1.005 cm h−1 Calibration

ρ0 Scaling factor 193.401 cm h−1 Calibration

kp Exponential decay rate 54 Dimensionless Calibration

Composite membrane area

a Coefficient for converting fruit surface area to membrane area 9.13e–4 Dimensionless Calibration

Sugar uptake

σp Reflection coefficient for sugar for entering the composite membrane 0.9 Dimensionless Fishman and Génard (1998)

vm Maximal rate of active transport 2.12e−3 mg sucrose (g of s)−1 h−1 Calibration

Km Michaelis constant for the equation of active transport 0.08 Dimensionless Fishman and Génard (1998)

ps Permeability of the composite membrane for sugar transport 0.27 mg cm−2 h−1 Fishman and Génard (1998)

t∗ kinetic parameter for inhibitor accumulation 1138.8 h Fishman and Génard (1998)

τ Characteristic time for inhibitor accumulation 216.95 h Fishman and Génard (1998)

σP Reflection coefficient of the composite membrane for sugar 0.9 Dimensionless Fishman and Génard (1998)

kABA Scaling factor 4.95 Dimensionless Calibration

STPe Upper threshold of normalised ABA concentration (ABAnorm) 0.51 Dimensionless Calibration

STPm Minimum threshold of ABAnorm 0.05 Dimensionless Calibration

Hydraulic conductance

Lmax Conductivity of the composite membrane for water transport 15 mg cm–2 MPa−1 h−1 (Zhu et al., 2019)

φmax Cell wall extensibility coefficient in Lockhart’s equation 0.4 MPa−1 h−1 Jorquera-Fontena et al. (2017)

Y Threshold value of hydrostatic pressure needed for fruit development 2.47 MPa Calibration

kL Coefficient for sensitivity of conductivity to ABA 2.51 Dimensionless Calibration

Respiration

qg Maintenance respiration coefficient 0.21 Dimensionless Fishman and Génard (1998)

Q10 Temperature ratio of maintenance respiration 2.03 Dimensionless Thornley and Cannell (2000)

qr Coefficient for ripening respiration related to ABA 0.01e−5 mg h−1 Calibration

NRMSE = RMSE

ymax−ymin
, (16)

dr = 1−

n
∑
i=1
(yi− ŷi)2

n
∑
i=1
(∣yi−y∣+ ∣̂yi−y∣)2

, (17)

EF = 1− ∑
n
i=1 (yi− ŷi)2

∑n
i=1 (yi−y)2 , (18)

where yi denotes the observed value, ŷi denotes the predicted value
and y denotes the mean of observed values, with n representing
the total observations. The terms ymax and ymin indicate the maxi-
mum and minimum observed values, respectively. MAE and RMSE

quantify the average prediction error magnitude, assessing the
model prediction. NRMSE normalises RMSE against the observa-
tion data range, offering a unitless metric for variable comparison.
The indices, dr and EF, approaching 1, signify excellent model fit
and predictive accuracy.

2.5. Sensitivity analysis

A local sensitivity analysis was performed to identify the contri-
bution of individual parameters to fresh mass, as per the methods
described by Thornley et al. (1981). Thirteen parameters used
for the calibration were grouped into six categories: ABA accu-
mulation, composite membrane area, fruit surface transpiration,
hydraulic conductance, respiration and sugar uptake. The sensitiv-
ity of each parameter was quantified using a sensitivity coefficient.
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The coefficient was the relative change in fresh mass in response to
a proportional adjustment in the parameter’s value and expressed
as a percentage:

Sensitivity coefficient (%) = 10ΔW/W
ΔP/P , (19)

where W represented the final berry fresh weight obtained under
baseline calibrated parameters, and P referred to the original
calibrated parameter value. The term ΔW and ΔP indicated the
changes in berry fresh weight and parameter value, respectively.
The factor 10 normalises the coefficient to represent the percentage
change in berry fresh weight corresponding to a standardised 10%
increase in the parameter, with other parameters unchanged.

2.6. What-if scenario simulations

The robustness and versatility of the fruit growth model were
assessed through what-if scenario simulations under various
climates. The first scenario assessed the effects of temperature
increases on blueberry growth, adjusting the baseline temperature
by 3○C and 5○C for each hourly input while keeping relative

humidity constant. A second scenario examined geographic growth
variations using real climate data from Seattle, Washington, USA,
sourced from AgWeatherNet, covering May 5 to August 31 from
2018 to 2023. Additionally, variations in anthesis dates were
simulated within this context to evaluate their impact on fruit
growth, thus testing the model’s relevance to practical agricultural
scenarios.

3. Results

3.1. Calibration and evaluation of the fruit growth model

The calibration of the fruit growth model delineated the patterns of
ABA accumulation and the variations in fruit masses of blueberry
fruit (Figure 2). Initially, the ABA concentration increased gradu-
ally, then surged rapidly to a peak of 32.30 μg g−1, and ultimately
declined swiftly (Figure 2a). The MAE and RMSE values were
2.03 and 2.83 mg fruit−1, respectively (Table 2), less precise fit due
to overestimation of the initial rapid ascent and underestimation
thereafter (Figure 2a). Despite this, the low NRMSE (0.26) and high
dr (0.91) indicate that the estimation of the model represented the
overall trends in the pattern of ABA accumulation.

Figure 2. Comparison of simulations (lines) and measurements (points) of the concentration of abscisic acid (mg g−1 of dry mass) (a) dry mass (mg fruit−1) (b) water mass (mg

fruit−1) (c) and fresh mass (mg fruit−1) (d) of ‘Bluecrop’ blueberry (Vaccinium corymbosum) fruit.
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Table 2. Mean absolute error (MAE), root mean square error (RMSE) and nor-
malised root mean square error (NRMSE), the index of agreement (dr) and effi-
ciency coefficient (EF) between the observed and simulated the concentration of
abscisic acid (ABA), dry mass, water mass and fresh mass, for ‘Bluecrop’ blueberry
(Vaccinium corymbosum) fruit

Goodness-of-fit Variable Unit Calibration Validation

MAE ABA μmol g−1 DW 2.03 2.31

Dry mass mg fruit−1 7.79 8.93

Water mass mg fruit−1 27.40 29.48

Total mass mg fruit−1 26.26 28.16

RMSE ABA μmol g−1 DW 2.82 3.26

Dry mass mg fruit−1 10.89 12.76

Water mass mg fruit−1 38.13 41.53

Total mass mg fruit−1 37.80 40.14

NRMSE ABA – 0.26 0.28

Dry mass – 0.07 0.08

Water mass – 0.06 0.06

Total mass – 0.05 0.05

dr ABA – 0.91 0.90

Dry mass – 0.96 0.94

Water mass – 0.97 0.97

Total mass – 0.98 0.97

EF ABA – 0.94 0.93

Dry mass – 0.99 0.98

Water mass – 0.99 0.99

Total mass – 0.99 0.99

The model effectively represented dry, water and fresh masses
(Figure 2b–d). The dry mass exhibited a rapid rise followed by a
slight decline in the later stages of fruit growth (Figure 2b). This
pattern was aligned with the differences between the sugar uptake
and respiration (Supplementary Figure S1A,B). Notably, the decline
in dry mass was predominantly due to a more pronounced decrease
in the sugar uptake compared to the respiration. The water mass
exhibited a rapid increase akin to the dry mass, but then transi-
tioned into a slower growth phase (Figure 2b), without the decline
observed in the dry mass (Figure 2c). The trend was consistent with
the dynamics of water uptake and transpiration (Supplementary
Figure S1C,D); water uptake exceeded the transpiration in most
growth stages. The pattern of the fresh mass (Figure 2d) closely
mirrored that of the water mass (Figure 2c), which is attributable
to the water mass constituting a larger proportion of the fresh
mass compared to the dry mass (Figure 2b,c). The estimations for
dry, water and fresh masses were more robust than those for ABA
(Figure 2), with low variance, as indicated by the values of RMSE
and MAE (Table 2). Additionally, the values for NRMSE (0.05–
0.07), dr (0.96–0.98) and EF (0.94–0.99) indicate higher precisions
for fruit masses compared to ABA.

The validation of the fruit growth model exhibited trends similar
to those observed during calibration for both ABA accumulation
and the estimation of fruit masses (Figure 3, Table 2); the pattern of
overestimation and underestimation in ABA accumulation during
validation (Figure 3a) mirrored the trends seen in the calibration
(Figure 2a). While the variance in goodness-of-fit measures slightly

increased in the validation (Table 2), the values still indicate a well-
fitted model to the observed data. For example, the dr values during
validation ranged from 0.90 to 0.97.

3.2. Parameter sensitivity in fruit masses

In the sensitivity analysis, where parameters were increased by
10%, a range of changes in fruit masses was observed, spanning
from −7.15% to 24.08% (Figure 4). The study encompassed six
categories, wherein parameters linked to ABA accumulation, fruit
surface transpiration and sugar uptake impacted fruit masses both
positively and negatively, exhibiting consistent trends across all
mass types. The parameter of the composite membrane area cat-
egory, however, had a decrease in dry mass alongside an increase
in water and fresh masses.

In the respiration category, represented by the qr, no noticeable
influence on fruit masses was detected (Figure 4). In the sugar
uptake category, the parameters kABA and vm stood out, registering
significant increments in fruit masses (17.58%–24.08% for kABA
and 16.14%–22.04% for vm), thereby marking them as the most
impactful parameters. Other parameters led to changes in fruit
mass below the 10% threshold.

3.3. Effect of temperature increase on fruit growth

Simulations for the effect of rising average temperatures indicate
changes in ABA concentration patterns and fruit masses (Fig-
ure 5). With higher temperatures, the onset of ABA accumula-
tion occurred earlier, and peak concentrations were reached more
rapidly (Figure 5a). This effect was attributed to increases in cGDH,
as all other variables and parameters remained constant, isolating
temperature as the primary variable. Despite these temperature-
induced shifts, the initial and final ABA concentrations, predefined
constants in the fruit growth model, remained unaffected by cli-
matic changes.

With rising temperatures, a synchronous pattern emerged in
the growth rates and final weights of fruit masses (Figure 5b–d).
The dry mass exhibited a quicker increase at elevated temperatures,
achieving its maximum earlier (Figure 5b). However, the peak
mass was lower in scenarios with higher temperatures. Post-peak,
simulations for dry mass showed declining trends, while the water
mass increased slightly (Figure 5c). The fresh mass, predominantly
influenced by the water mass, followed a similar trend to the water
mass rather than the dry mass (Figure 5d).

Throughout the simulations, the variations in ABA concentra-
tions and fruit masses (Figure 5) were associated with the dynamics
of carbon and water fluxes. The impact was pronounced, especially
between June 15 and June 30 (Supplementary Figure S2). In this
period, under the actual climate condition, dry mass continued
to rise (Figure 5b) due to the sugar uptake surpassing respira-
tion (Supplementary Figure S3A,B), despite a minor reduction
in sugar uptake. Consequently, the carbon flux remained positive
(Supplementary Figure S3C). Conversely, in scenarios with tem-
perature increases of 3○C and 5○C, there was a marked reduction
in sugar uptake and a slight decrease in respiration, leading to
a net negative carbon flux (Supplementary Figure S2B,C). These
conditions led to the dry mass peaking earlier and then declining
(Figure 5b).

In parallel, the water mass changes (Figure 5c) were closely
aligned with the interplay between water uptake and transpiration
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Figure 3. Validation of the fruit growth model by comparison of predicted and observed values of the concentration of abscisic acid (mg g−1 of dry mass) (a) dry mass (mg fruit−1)

(b) water mass (mg fruit−1) (c) and fresh mass (mg fruit−1) (D) of ‘Bluecrop’ blueberry (Vaccinium corymbosum) fruit.

Figure 4. Sensitivity coefficients (coloured bars) calculated for dry mass (a), water mass (b) and fresh mass (c) to variations in calibrated parameters for ‘Bluecrop’ blueberry

(Vaccinium corymbosum) fruit. The default value of a parameter, as noted in Table 1, was changed to 10%, while all other parameters were kept at their default values during the

sensitivity analysis. ABAm, the baseline of cumulative growing degree hours (cGDH) for abscisic acid (ABA) accumulation; ABAe, the upper threshold for cGDH for ABA

accumulation; a, coefficient for converting fruit surface area to membrane area; p0, scaling factor for the solute permeability of the fruit skin; pmin, the coefficient for minimum

solute permeability of the fruit skin, kp, exponential decay rate for fruit surface transpiration; kL, the coefficient for the sensitivity of conductivity to ABA; Y, the threshold value of

hydrostatic pressure needed for the fruit growth; vm, maximal rate of active sugar transport; kABA, scaling factor for active sugar uptake; STPm, the upper threshold of normalised

ABA concentration (ABAnrom) for active sugar uptake; STPe, the minimum threshold of ABAnorm for active sugar uptake.

(Supplementary Figure S2D,E). Across all simulations, both these
processes exhibited a gradual decline from June 15 to June 30. This
decline was more pronounced at higher temperatures, primarily
because the decrease in water uptake was more substantial than that
in transpiration (Supplementary Figure S2E,F).

3.4. Simulation of the fruit growth model under various climatic
conditions

The fruit growth model was simulated using regional climatic data
from Seattle, WA, USA, spanning the years 2018–2023 (Figures 6
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Figure 5. Simulations for the effect of increased average temperature on the concentration of abscisic acid (mg g−1 of dry mass) (a), dry mass (mg fruit−1) (b), water mass (mg

fruit−1) (c) and fresh mass (mg fruit−1) (d) of ‘Bluecrop’ blueberry (Vaccinium corymbosum) fruit. The actual climate data (red solid lines) represent hourly air temperature and

relative temperature from the 2015 season in Suwon, Republic of Korea. For increased temperatures, the hourly temperatures were augmented by +3○C (blue dashed lines) and

+5○C (green dotted lines), while relative humidity was maintained consistent across all temperature scenarios.

and 7). Changes in fruit masses were compared during the growth
stage and the potential harvest period with uniformly setting the
start of anthesis to May 5th (Figure 6). The growth stage exhibited
similar patterns to those previously observed in Figures 2 and 4; in
the harvest period, dry mass consistently declined, while water and
fresh masses plateaued during the harvest period.

Year-over-year analysis of fruit masses revealed 2023 as the year
with the highest mass, followed by 2019, 2018, 2020, 2021 and 2022
(Figure 5a–c). The year 2022 stood out for having the lowest fruit
masses across all periods, with fresh mass during the harvest period
ranging from 614.45 mg to 655.24 mg, lower than the >1,000 mg

observed in other years (Figure 5c). This reduction in 2022 was
associated with lower cGDH values (Figure 6d), attributable to
reduced temperatures in the early fruit growth phase compared to
the other years (Supplementary Figure S3).

Fruit growth in 2021 and 2022 was notably influenced by abrupt
climatic changes. Specifically, between 26 and 29 June 2021, a
marked decrease in both water and fresh masses was recorded
(Figure 6b,c), coinciding with a temperature spike reaching 43.2○C
(Supplementary Figure S3D) and a drastic drop in relative humidity
to 24% (Supplementary Figure S4A). These conditions resulted in
reduced water flux (Supplementary Figure S4D); however, a sharp
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Figure 6. Simulations for the effect of yearly climatic conditions on dry mass (mg fruit−1) (a), water mass (mg fruit−1) (b) and fresh mass (mg fruit−1) (c) of ‘Bluecrop’ blueberry

(Vaccinium corymbosum) fruit, along with cumulative growing degree hours (h) (d). Hourly temperatures and relative humidity for Seattle, USA, were retrieved from

AgWeatherNet (weather.wsu.edu): 2018, red solid lines; 2019, pink dashed lines; 2020, blue dotted lines; 2021, purple dotted-dashed lines; 2022, green long-dashed lines and

2023, orange two-dashed lines. The grey area was assumed as the harvest period from July 25 to August 31.

decrease in the solute permeability of the fruit skin mitigated water
loss. A similar pattern was observed in 2022, characterised by
high temperatures (Supplementary Figure S3E) and low relative
humidity (Supplementary Figure S4A).

The simulated fresh masses were compared with the actual
blueberry yield data from Washington state, USA (Figure 7) for
heuristic evaluation of the model behaviour. The comparative anal-
ysis covered the years 2018–2022, noting that yield data for 2023
was unavailable. Interestingly, the trends observed in the simu-
lated fresh mass closely matched the actual yield trends for these
years.

3.5. The effect of anthesis timing on fruit growth

The timing of anthesis affected both the fresh mass (Figure 8)
and the growth patterns of the fruit (Supplementary Figure S5).
Under the simulation, variations in fresh mass across different years
were with the standard deviations from 44.41 in 2018 to 188.29 in
2021, followed by 2018 (44.41), 2019 (72.78), 2020 (91.19), 2023
(93.10), 2022 (115.93), 2021 (188.29) (Figure 8). The years 2021
and 2022, which experienced abrupt climatic changes (Figure 6 and
Supplementary Figure S3), showed higher variances in fresh mass.
In these specific years, delaying the anthesis date proved beneficial,
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Figure 7. Comparison between the estimated fresh mass of blueberries and the actual

blueberry fruit yield in Washington State, USA, from 2018 to 2022 (quickstats.nass.

usda.gov). The fresh mass was simulated starting May 5, assuming this as the anthesis

date, and calculated the mean value during the harvest period from July 24 to

August 31.

Figure 8. Variations in the fresh mass of ‘Bluecrop’ blueberry (Vaccinium corymbosum)

fruit at 80 days after anthesis over a range of anthesis dates from the years 2018–2023

for Seattle, USA. Hourly temperatures and relative humidity were sourced from

AgWeatherNet (weather.wsu.edu): 2018, red solid lines; 2019, pink dashed lines; 2020,

blue dotted lines; 2021, purple dotted-dashed lines; 2022, green long-dashed lines

and 2023, orange two-dashed lines.

mitigating the adverse effects of harsh environmental conditions
and subsequently enhancing fruit growth. This adjustment led to
significant increases in fresh mass, rising approximately 50% from
995 to 1,500 mg in 2021 and from 612 to 944 mg in 2022. However,
despite these improvements in 2022, the coldest season (Figure 6d
and Supplementary Figure S3E) consistently exhibited the lowest
fresh mass across all anthesis dates.

The growth patterns of fresh mass were simulated across
three distinct anthesis start dates: May 5, May 20 and June 1
(Supplementary Figure S5). All simulations exhibited a uniform
growth pattern: an initial gradual increase, a swift expansion
period, and then stabilisation. However, the timing of these phases
and the ultimate fresh mass differed across scenarios. In the years
2018, 2021 and 2022, initiating anthesis earlier (May 5) led to
a faster transition to the slow growth phase. In contrast, a later
anthesis start (June 1) resulted in a more substantial increase
in fresh mass (Supplementary Figure S5A,D,E). Particularly in
2021, a later anthesis date prolonged the rapid growth phase.
In other seasons, fruits that began growth on May 5 or June 1
exhibited higher overall growth, whereas those with a May 20 start
consistently showed the lowest growth levels (Figure 8).

4. Discussion

This study incorporated the quantitative ABA effect into the bio-
physical model, tailoring it for blueberry fruit, with potential appli-
cability across a broad range of fruit species. The integrative model
is a novel approach to depict fruit growth driven by a phytohor-
mone, specifically focusing on ABA as a ripening signal to shift
fruit growth phase (Chung et al., 2019; Fenn & Giovannoni, 2021;
Jia et al., 2013). The model encapsulates the regulatory role of
ABA for carbon and water uptake, respiration and transpiration,
aligning with established knowledge of endogenous ABA roles.
The simulation with environmental conditions and physiological
responses closely mirrored empirical observations during the fruit
growth (Figures 2 and 3). The sensitivity analysis highlighted the
substantial impact of ABA, particularly in the modulation of sugar
uptake associated with carbon flux (Figure 4).

4.1. Carbon flux during fruit growth

Dry mass in fruit growth is governed by carbon flux, with sugars
derived predominantly from leaves contributing to mass gain, and
respiration, resulting in carbon loss (Pavel & DeJong, 1993). This
concept has been extensively explored in various biophysical mod-
els of fruit growth (Chen et al., 2021; Fishman & Génard, 1998; Liu
et al., 2007; Zhou et al., 2023; Zhu et al., 2019). In these models,
sugar uptake consists of active and passive mechanisms, as well as
mass flow, which is governed by the sugar concentration gradient
between the phloem and the fruit, assuming no reverse sugar flow
the from fruit to the phloem. While passive sugar uptake and mass
flow are primarily driven by biophysical processes, active sugar
uptake involves a biochemical approach that typically describes
enzymatic activities using parameters like Km and vm (Fishman &
Génard, 1998). This approach adeptly captured the increase in dry
mass during fruit growth, but there is an opportunity for further
refinement to precisely estimate the decrease in dry mass often
observed in the later stages of growth across a variety of fruit
species.

Our model captured the dynamic pattern of dry mass (Figures
2b, 5b, 6a) by incorporating ABA response into active sugar uptake
(Equations (6) and (7)) where vm was regulated by ABA concen-
trations, featuring minimum and upper thresholds. This change
allowed our model to show decreasing dry mass in the later stages
of fruit growth (Figure 2a), which aligns with a known observation
that vm changes in strawberry fruit during the growth with no
changes in Km (Ofosu-Anim et al., 1996). Dynamics of the active
sugar uptake would be associated with sugar transporters during
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fruit growth (Ren et al., 2023), with the transcriptional regulation
(Li et al., 2022; Zhang et al., 2023). In apples, ABA regulated
the expression of gene regulating tonoplast monosaccharide sugar
transporter (MdTMT1) and sucrose transport (MdSUT2) by direct
binding with the activity of a gene of ABA-signalling transcription
factor, MdAREB2. A similar regulation was also observed in fruits
of grapes (Wang et al., 2022), peaches (Kobashi et al., 2001) and
strawberries (Jia et al., 2016), in which ABA regulated the expres-
sion of hexose transporters through ABA-signalling transcription
factors.

Carbon loss in the model is quantified through respiration,
encompassing growth, maintenance and ripening aspects. The
respiration formula (Equation (8)) is newly designed to capture
the dynamics of mitochondrial energy and reactive species
metabolism, essential for developing fruit qualities such as colour,
aroma and firmness during ripening (Kan et al., 2010; Perotti
et al., 2014). According to Saltveit (2019), the oxidation of
glucose, organic acid and fatty acid during ripening leads to CO2
production. Physiological and biochemical research on ripening
respiration has predominantly focused on climacteric fruits,
characterised by a distinct peak in respiration coinciding with
ethylene production during ripening. Although non-climacteric
do not exhibit a marked increase in respiration, previous studies
have reported that the application of exogenous ABA intensified the
endogenous ABA synthesis of fruit, leading to increased ripening
and fruit respiration in various fruits, including grapes (Wheeler
et al., 2009), strawberries (Jia et al., 2013) and litchi (Lai et al., 2014).
While our model incorporated the ripening respiration responding
to ABA concentrations, the coefficient limited sensitivity to the fruit
mass (Figure 3). The precise reason for this minimal effect, whether
attributable to the characteristics of the non-climacteric fruit or
the need for further refinement of ripening respiration, remains
to be determined. To enhance the accuracy of the model, future
developments should focus on incorporating enzymatic activities
associated with ripening to provide a comprehensive view of ABA
effects on carbon flux during fruit growth.

4.2. Water flux during fruit growth

Fruit masses are largely influenced by water flux, reflecting the
high proportion of water in fresh fruits. Water flux depends on
biophysical factors, including water potential gradient, hydraulic
conductance and fruit surface permeability. To replicate the water
flux, previous models have evolved in their approach to parame-
ters related to water uptake and transpiration. Initially, parameters
were considered constant (Chen et al., 2021; Fishman & Génard,
1998) and have been modified to be responsive to fresh mass
(Zhu et al., 2019), to reflect observations of biophysical properties
during physiological experiments. Our model implemented the
ABA modulation of biophysical parameters governing water flux to
align their changes associated with ripening (Gutiérrez et al., 2021;
Trivedi et al., 2019). ABA modestly affected hydraulic conductance
for water uptake (Figure 3), but significantly decreases the perme-
ability, reducing surface conductance to water vapour and thereby
limiting transpiration water loss.

Blueberry fruit exhibited a decrease in transpiration during
fruit growth at a certain stage (Supplementary Figure S2), which
would be associated with the growth of cuticular wax on the fruit
surface during the ripening (Chu et al., 2018); blueberry fruit
wax layer, primarily composed of aliphatic compounds, acts as a
transpiration barrier (Vogg et al., 2004). A linkage between ABA
and cuticular wax biosynthesis was demonstrated in various fruits

(Trivedi et al., 2019). In cherries, exogenous ABA accumulated
wax compounds, particularly long-chain alkanes, which enhance
the water impermeability (Gutiérrez et al., 2021). This effect was
prominently demonstrated in our simulation of fruit growth, par-
ticularly in response to the abrupt high temperatures experienced
in 2022 (Figure 6 and Supplementary Figure S4B). However, it
remains unclear whether the ABA, as a ripening signal, also con-
tributes to heat stress defence by reducing transpiration, or if
additional ABA accumulates to protect the fruits from heat stress.
Differentiating between the function of ripening and its stress-
protective mechanisms is required for a precise depiction of its
response.

4.3. Model responses to various climatic conditions

The fruit growth model adeptly responded to a wide range of
climatic conditions (Figures 5, 6, 8). In fruit, the impact of tem-
perature has been studied, manifesting in metabolites related to
ripening, including sugar (Parker et al., 2020; Sadras & Petrie,
2012) and lycopene (Brandt et al., 2006); increased temperatures
enhanced their accumulation, potentially indicating an accelera-
tion of ripening. Our model demonstrated that the final phase of
changes in fruit mass occurs earlier under scenarios with rising
average temperatures (Figure 5). Considering the ABA role as a
ripening signal that initiates changes in these metabolites (Fenn &
Giovannoni, 2021), the model results (Figure 5) aligned with the
ripening acceleration of the metabolite studies (Parker et al., 2020,
Sadras & Petrie, 2012). This finding suggests that the fruit growth
model can be expanded for modelling changes in fruit qualities
associated with ABA during fruit growth and ripening.

Our model exhibited that rising temperatures led to a reduction
in fresh mass (Figure 5b–d), a trend also observed in strawberries
(Lobell & Field, 2011; Menzel, 2021), bananas (Varma & Bebber,
2019) and peaches (Sikhandakasmita et al., 2022). During the 2022
simulations using regional data, lower temperatures were linked to
a decrease in the fresh mass of blueberries (Supplementary Fig-
ure S5E). This pattern of reduced yield due to lower temperatures
was also evident in data from Washington state, USA (Figure 7).
While our fruit growth model does not directly parallel the yield of
blueberries, it indicates that lower temperatures negatively influ-
ence the mass of blueberry fruits. The variability in temperature
effects among different genotypes (Wang & Camp, 2000; Zhang
et al., 2022) underscores the need for further research to confirm
these findings in field observations. Therefore, the model suggests
that temperature fluctuations can cause changes in both the culti-
vation period and the fresh mass of fruits.

The anthesis timing influences blueberry fruit growth with
yearly variations in pollination periods and bloom initiation. Strik
and Vance (2019) reported that in Oregon, USA, in 2009, a 5%
bloom of blueberries began around April 15, with full bloom
by May 15, whereas in 2010, a 5% bloom started around March
25, with full bloom by May 5. These variations not only affect
cultivation practices, with multiple harvest times, but also influence
interaction with pollinators and whole-plant physiology, leading to
variations in fruit qualities. Therefore, our model has the potential
to enhance cultivation strategies for optimising fruit yield in
response to climatic conditions.

4.4. Conclusions and future directions

The presented fruit growth model, developed within the Cropbox
modelling framework, captures the dynamics of fruit development
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by integrating biophysical growth with endogenous ABA within
the fruit. By leveraging the capabilities of Cropbox, we success-
fully simulated fruit growth across different climates, replicating
observed growth patterns and highlighting ABA’s regulatory role
in ripening. This integration offers valuable insights into the effects
of various environmental conditions and helps assess the potential
impacts of climate change on fruit development. Our approach
also enables plant physiologists to focus on high-level abstractions
of variable relationships and system structures, allowing them to
expand and adapt the fruit model without dealing with low-level
implementation details. However, the current model empirically
estimates endogenous ABA accumulation, lacking a process-based
approach for its biosynthesis, degradation and transport. The mod-
ular and flexible nature of the Cropbox framework provides an
excellent platform for future enhancements. To extend the appli-
cability of the model for evaluating various environmental effects
and fruit qualities linked to ABA, future improvements should
focus on modelling ABA dynamics based on the enzymatic reac-
tions involved in its metabolism. Incorporating ABA transport
via phloem and xylem, particularly from leaves in response to
water stress, as demonstrated in recent studies (McAdam et al.,
2016), and integrating source-sink dynamics would enhance model
accuracy and robustness. Moreover, integrating the fruit module
with a whole-plant hydraulic and carbon-allocation framework
– thus capturing the upstream supply of water and assimilates
– would substantially deepen mechanistic insight and strengthen
the practical applicability. Despite these limitations, the blueberry
model contributes to both academic research and agricultural prac-
tices, aiding in the development of effective strategies for crop
management and improvement. For example, the model can help
optimise fruit size to meet consumer preferences and inform pre-
cise temperature thresholds for deploying agricultural practices
such as shading or automated climate-control systems. By offering
a detailed understanding of the interplay between hormonal regu-
lation and biophysical growth, the model serves as a valuable tool
for predicting how fruits may respond to future climatic scenarios,
ultimately supporting efforts to ensure food security amidst global
environmental changes.
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