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Shock refraction in a gas—liquid interface is ubiquitous in nature and engineering. This
study investigates the shock refraction phenomena in air—water interfaces for various
inclination angles. The interface inclination angles are achieved using a tiltable vertical
shock tube. The time-resolved schlieren images are compared with numerical simulations
performed using the BlastFoam solver in the OpenFOAM software. The stiffened gas
equation of state is used to model water in the simulations. The shock polar analysis
using modified shock relations for a stiffened gas is used to elucidate the refraction
patterns. A regular refraction pattern with a reflected shock wave and a bound precursor
refraction with a regular reflection are observed experimentally for the first time in an
air—water system. Further, a new free precursor refraction pattern with a Mach reflection
is observed. The transition criteria and the corresponding boundaries for each refraction
pattern are demarcated in the (Ms, 65,)-plane. The refraction sequence and the range for
various incident shock strength regimes are also identified.
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1. Introduction

A shock wave moving through a compressible medium reflects off with zero or very
little transmission when it encounters a solid boundary. In comparison, the interaction
of a shock wave with an interface separating two fluids of different densities can create
interesting flow features and shock dynamics owing to significant transmission into the
second fluid apart from its reflection at the interface. This interaction can be analysed
in two distinct time periods. When the shock wave comes in contact with the interface
during the initial times, the refraction phenomena dominate the problem, where the
shock wave undergoes a change in its direction and intensity due to the variation in the
acoustic impedance from one medium to the other. The class of studies dealing with such
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phenomena is called the shock-refraction problems, where inviscid Euler equations are
known to govern the dynamics.

At a later period, once the shock traverses over the interface, the resulting entrainment,
instability development and turbulent mixing come into play. The instability associated
with the shock impingement on a usually perturbed interface is the celebrated
Richtmyer—Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1969). Misalignment of
pressure and density gradients, quantified by the baroclinic vorticity, drives this interfacial
instability. The RMI development in inclined interfaces has also been studied in detail over
the years (refer to McFarland et al. (2013) and Luo et al. (2016)). The present work focuses
on the initial time period when there is refraction of the shock wave on the interface and
not the ensuing interfacial instability (the RMI).

The refracting media can be of the same phase or two different phases. The interface is
called a slow—fast interface when the speed of sound is faster in the second medium where
the transmitted wave travels and vice versa for a fast—slow interface. Shock refraction
studies in gas—gas interfaces started with the pioneering works of Polachek & Seeger
(1951), who suggested analytical expressions for a regular refraction wave system. Regular
refraction is a three-wave system similar to its reflection counterpart, referred to as RR
(Ben-Dor 2007), with the addition of a transmitted wave in the second medium. In regular
refraction, all three waves are locally straight and intersect at a single point on the interface.
Two types of regular refraction wave systems were identified by Polachek & Seeger
(1951): regular refraction with a reflected shock wave (RRR) and regular refraction with a
reflected expansion wave. Jahn (1956) verified these refraction patterns experimentally
and observed other irregular refraction patterns. Irregular refraction systems are those
comprising more than three waves. Henderson (1966) gave analytical explanations
for these refraction patterns in both slow—fast and fast—slow interfaces using shock
polars. Shock polars are graphical representations of the Rankine—Hugoniot equations
in the pressure ratio-flow deflection angle plane (Keith & John 2006). Abd-El-Fattah
& Henderson (1976, 1978a,b) classified the refractions in fast-slow and slow-fast
interface groups into subclasses based on the incident shock strength. They identified four
subclasses in fast—slow interfaces: very weak; weak; strong; and stronger incident shocks.
Further, three subclasses were identified in slow—fast interfaces: very weak; weak; and
strong incident shocks.

Henderson (1989) included the acoustic impedance in the boundary conditions of the
analytical expressions for the oblique shock refractions in the gas—gas interfaces, where
the acoustic impedance is a function of density and speed of sound of the medium. He
also studied the transition from one refraction pattern to another in a slow—fast interface by
increasing the angle between the incident shock and the contact discontinuity (Henderson,
Colella & Puckett 1991). Zeng & Takayama (1996) experimentally and computationally
verified the above transition conditions of refraction patterns in a slow—fast interface.
Henderson, Puckett & Colella (2004) extended his earlier studies and numerically
identified additional five anomalous refraction patterns, comprising at least five refracting
shocks. From the above studies, the current understanding of shock refraction in a gas—gas
interface indicates 12 known distinct patterns, eight in slow—fast and four in fast—slow
interfaces. These patterns are corroborated by various later numerical studies (Nourgaliev
et al. 2005; Delmont, Keppens & Van der Holst 2009).

Similar to gas—gas interfaces, shock refraction analysis can be extended to two-phase
interfaces, which can either be a liquid-gas (fast-slow) or a gas—liquid (slow—fast)
interfaces. A typical fast—slow multiphase interface is that of a water—air interface, where
the shock wave originates from the medium with a higher acoustic impedance (water).
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Such a situation can arise during an underwater explosion or a shock-induced bubble
collapse. The refraction patterns resulting from such shock-interface interactions are
distinct compared with those from a slow—fast interface, such as the situation discussed
in this paper. Only strong incident shocks are possible in water—air interfaces, and the
refraction patterns have been analysed by only a handful of studies, including those
of Menikoff & Grove (1990) and Nourgaliev et al. (2005). The two refraction patterns
identified in the above studies are (i) regular refraction with a reflected expansion wave
and (ii) concave-forwards irregular refraction or an anomalous refraction with a reflected
expansion. A more recent study by Xiang & Wang (2019) numerically and theoretically
investigated the above refraction pattern transitions and gave analytical solutions to
pressure ratio and flow Mach number behind the transmitted wave. It should be noted
here that the water is modelled in their study using Tait’s equation of state.

The current study of shock refraction is on the air—water system corresponding to
a multiphase slow—fast interface. Shock refraction on an air—water interface can occur
in wide engineering and medical applications. For example, in supersonic combustors,
shocks interact with fuel droplets. In ballistics, detonation over an ocean surface or an
explosion in a partially filled liquid tank can cause a spherical blast wave to interact with
the liquid interface. In medicinal applications such as shock wave lithotripsy, focused
shock waves are used to treat kidney stones. These extracorporeal shocks pass through
bodily fluids with different acoustic impedances, resulting in various shock refraction
patterns.

The phenomenon of a shock interacting with a gas—liquid interface can be classified
into three categories: (i) a plane shock wave sliding over a horizontal liquid interface (8 =
90°); (ii) a plane shock wave interacting with an oblique liquid interface (0° < 8 < 90°);
(iii) a curved shock wave interacting with a plane liquid surface or a plane shock wave
interacting with a curved interface or a curved shock wave interacting with a curved liquid
surface, where § varies continuously with time. Here, § is the angle between the shock
wave and the interface. The first category focuses on the liquid surface entrainment due to
Kelvin—Helmbholtz instability created by the passage of the shock front (Rodriguez et al.
2016), specifically at 8 = 90°. Such shock-induced mixing is important for its applications
in high-speed combustion (Borison et al. 1981). The second category is where the interface
is at a constant oblique angle 8 #90°, while the shock wave is planar and moving at a
constant shock Mach number, Ms. Such problems are pseudosteady in nature (Ben-Dor
2007). The third category is an unsteady problem where the shock inclination 8 and/or the
shock strength change continuously, creating different reflection patterns through shock
transitions (Borisov, Kogarko & Lyubimov 1965; Hosseini et al. 2014; Sembian et al. 2016;
Xiang & Wang 2017; Arun Kumar, Rajesh & Jagadeesh 2022). An example of such an
unsteady phenomenon is when a blast wave interacts with a water column. A recent study
by Wang, Zhai & Luo (2022) classifies and illustrates such unsteady shock reflections
from a solid wedge into 10 different types. However, to understand and classify such an
unsteady phenomenon at a multiphase interface, the second category discussed above is
fundamental, and the literature available on such shock refractions is minimal (to the best
of our knowledge).

Owing to the considerable impedance mismatch between a gas and a liquid, shock
refraction has similarities with the shock reflection from solid surfaces. Takayama &
Ben-Dor (1989) conducted experiments on the shock reflection phenomena from an
oblique air-water interface (water wedge). They were motivated to use a water wedge
because the RR to Mach reflection (MR) transition on solid wedge flows was affected
significantly by the boundary layer developed just behind the incident shock. They found
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that the transition angles agreed well with the detachment criterion (Ben-Dor 2007) for a
specific range of shock Mach numbers (Ms). For Mg < 1.47, however, the match between
theoretical and experimental transition angles was poor. It should be noted that the authors
were interested in studying only the reflection, not the refraction patterns. Henderson et al.
(1990) used impedance relations to calculate the reflection and transmission coefficients
for an air—water interface along with the modified Tait equation (Dymond & Malhotra
1988). They experimented with a tilted shock tube and validated the refraction patterns
against the numerical results. Nourgaliev et al. (2005) computationally simulated the shock
refraction patterns for both liquid—gas and gas—liquid interfaces. They reported that unlike
in gas—gas interfaces, a bound precursor refraction (BPR) was absent in the air—water
interface. The refraction sequence for an air—water interface in the very weak incident
shock regime was summarised to be RRR — FPR — FNR (free precursor refraction with
a regular reflection (FPR) and free precursor von Neumann refraction (FNR)).

Recently, Wan et al. (2017) performed high-resolution numerical simulations of
air—water interface for shock Mach numbers up to 4 and compared the transition angles
from RR with irregular reflection and the triple point trajectories with solid wedge cases.
They also experimented with an inclined shock tube for Mg < 1.5 and pointed out that the
transition angles were off by approximately 9% from the theoretical detachment condition
values. The discrepancy between observed and theoretical transition angles was lower for
low Mg and became appreciable at higher Mg, which is attributed to increased transmission
for stronger incident shocks.

It is understood from the above literature that, unlike the shock reflection phenomenon,
which has rich and intensive analytical, computational and experimental documentation,
the shock refraction phenomenon has not been investigated rigorously other than those in
a few isolated studies, especially in multiphase interfaces. The experimental investigation
of shock refraction at gas-liquid interfaces presents significant challenges primarily
due to complexities in experimental set-up and constraints associated with high-speed
imaging of the multiphase phenomena. This paper discusses a systematic study of
the shock refraction phenomenon in an air—water interface, theoretically defending the
experimentally observed transition criteria. We also present RRR and BPR patterns,
hitherto unobserved experimentally. We conclude with a complete map of the refraction
patterns, including all incident shock regimes, supported by shock polar analysis. The
experimental and computational set-up are discussed in § 2, followed by the discussion
of various shock refraction patterns in § 3. We consolidate with a map of different shock
refraction patterns in Mg-complementary wedge angle plane.

2. Methodology
2.1. Experimental set-up: vertical shock-tube

A compression-driven closed-ended tiltable vertical shock tube has been designed and
fabricated to create a planar shock. It is specifically designed to have an oblique air—water
interface so that shock impinges at the interface at a predetermined angle. The Vertical
Shock Tube (VST) facility at the Ballistics and High-Speed Flow Lab at IIT, Madras is
shown in figure 1 along with the schematic. It is a square shock tube with a cross-section
of 90 mm x 90 mm. The shock tube consists of two main parts: the driver and the driven
sections, separated by a scored plastic diaphragm of thickness 400 wm. The driver section
is 0.6 m long with a high-pressure (HP) inlet on the top, while the driven section is
2.4 m long, with an inlet and drain for the liquid (water) at the bottom (see figure 1).
A 25.4-mm-thick quartz glass window of 70 mm x 300 mm is used to provide optical
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(a) (b)
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section

—— e
Figure 1. (a) The VST facility at the Ballistics and High-speed Flow lab in IIT Madras. (b) Schematic
diagram of the VST. The solid red lines indicate the incident shock with Mach number Mj.

access for schlieren visualisation towards the end of the driven section. A Z-type schlieren
set-up is used for the visualisation with a Cavilux smart laser (640 nm) with a minimum
pulse width of 10 ns and an IX-726 high-speed camera, with a maximum frame rate of
1 x 10° f.p.s. and a minimum exposure time of 293 ns. The experiments have been carried
out in the bulb-setting mode of the camera with an exposure time of 1 ws and 10 ns for
the laser pulses. The strobing frequency is set to 30 kHz, corresponding to 30 000 f.p.s. for
the camera. The entire shock tube is 3 m long and is designed for a maximum shock Mach
number of 2.4 using air as the operating gas.

The shock tube contains pressure ports, marked Sg to S3. The driver pressure is measured
from Sp using ASPT-11u, a piezo-resistive sensor with a sampling frequency of 2 kHz. The
diaphragm rupture pressure ratio is calculated from the maximum driver pressure recorded
up to the diaphragm rupture. The driven section is maintained at atmospheric conditions,
and it has three PCB-113B26 series dynamic pressure sensors located at Sy, S7 and S3,
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separated by 400 mm from each other. The incident shock Mach number My (indicated by
the red solid line in figure 1b) is evaluated from these sensor readings. All PCB sensors
have a maximum sampling frequency of up to 500 kHz.

The shock tube is mounted on a rail to allow for vertical (up and down) motion and is
actuated by a motor and pulley system. This allows easy access to the diaphragm section
to change the diaphragm after each experiment. It also has a stepper motor that permits
the rotation of the entire shock tube about the axis perpendicular to the plane of the shock
tube. A maximum tilting angle of up to 65° can be achieved in the current set-up with an
accuracy of 0.1°. After placing the diaphragm between the driver and the driven section,
the shock tube is rotated to the desired angle, measured by a digital inclinometer. Water
at room temperature (300 K) is fed slowly through the bottom inlet until it reaches the
required height to be visible in the test-section window. The generated shock wave is
always perpendicular to the axis of the shock tube, while the air—water interface remains
horizontal due to gravity. Therefore, the inclination angle  between the shock wave and
the interface is decided by the angle of rotation of the shock tube axis with respect to the
vertical, as shown in figure 1(b).

The experiments are carried out at a shock strength, ¢ =~ 0.43 4= 0.005, where

i 2 !
¢ = Ppre-shock _ (1 + Y (M_% _ 1)> . @.1)
Ppost-shock v+ 1

The literature on similar problems (Takayama & Ben-Dor 1989; Nourgaliev et al. 2005)
identifies this shock strength to be in the weak incident shock regime with a shock Mach
number, Mg = 1.46. The shock Mach number is measured experimentally using three
different approaches: (i) diaphragm rupture pressure ratio (measured from Sp); (ii) pressure
sensors in the driven section; (iii) postprocessing the schlieren image and verified to be
within the 2 % error margin.

2.2. Numerical methodology

A compressible multiphase solver based on the OpenFOAM software framework called
BlastFoam is used to simulate the shock refraction phenomenon over an air—water interface
(Heylmun, Vonk & Brewer 2022). BlastFoam is a robust solver generally used to simulate
explosive detonations and airblasts with high accuracy, as it has higher-order numerical
method implementations, various equation of state models, including the stiffened gas
equation of state and precise interface capturing techniques.

The current study uses the finite volume method with a second-order accurate Harten,
Lax and van Leer contact approximate Riemann solver, based on the work of Toro,
Spruce & Speares (1994) for flux evaluation and an explicit strong stability preserving
four-stage fourth-order Runge—Kutta method (Spiteri & Ruuth 2002) with adjustable time
stepping, for temporal discretisation. The gradients are calculated using the least square
discretisation scheme and van Leer flux limiters (van Leer 1974). The volume of fluids
method is used to capture the interface. The volume fraction («) is a bound value ranging
from O to 1, and typically, o; = 0.5 is considered to be the interface between the two fluids.
The following sections discuss the details of the models and governing equations.

2.2.1. Modelling of water: stiffened gas equation
Over the years, water has been modelled using different equations of states, such as Tait’s
equation (Dymond & Malhotra 1988) and the stiffened gas equation (Le Métayer, Massoni
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& Saurel 2004). In this study, the stiffened gas equation is used to model water. Solids and
liquids can be assumed as ideal gases with a specific ratio of heat capacities, y, after a
particular stiffening pressure characterised by the constant p.. The stiffened gas equation
of state and its thermodynamic property relations are given by Harlow & Amsden (1968)
as

p(p,e) = p(y —1)(e — erf) — ¥Poo, (2.2)
e(p.T) = ¢, + ’%’O + ey, (2.3)

TY
s(p,T) = cyIn P— + Sref 2.4)

where p, p, T, e, e, s, sref and ¢, are the pressure, density, temperature, specific internal
energy, reference specific internal energy, specific entropy and reference specific entropy
and specific heat capacity at constant volume, respectively. Substituting (2.3) into (2.2)
yields the thermal equation of state as

p(p,T)=p(y — DeyT — peo. (2.5)

The thermodynamic relations between the specific heat capacities at constant pressure
(cp), constant volume (c,), the gas constant (R = ¢, — ¢,) and the ratio of specific heats
(¥ = ¢p/cy) of the gas still holds. It should be noted that the ideal gas equation of state
is recovered if po, = 0. The speed of sound in a stiffened gas is given by the following

modified equation:
a= |V P TP 2.6)
1)

Following Yeom & Chang (2013) for water, y = 2.8 and po, = 850 MPa is used in
the current study. This combination, along with ¢, = 1495 J (kg K)~!, maintains the
physical properties of water, such as density (p = 1053 kg m~), specific heat capacity
(cp = 4186 J (kg K)~!) and speed of sound (a = 1503 m s~1) at standard atmospheric
conditions.

2.2.2. Governing equations
The basic governing equation of the multifluid BlastFoam solver is that of the five-equation
model (Zheng et al. 2011) given as

oU+V.F=S§, 2.7)

where U, F and S are the vectors of the conservative variables, fluxes and source terms,
respectively, defined as

o ou a1V-u
aip1 a1p1U 0
U=| wp2 |, F= oo U , S= 0 (2.8a—c)
ou pu@u+pl 0
pE (PE+plu 0

In the above definitions, u, p and E are the mixture velocity, density and total energy. The
individual phase density and volume fraction are p; and «;, respectively, where subscript i
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Fluid Y Poo (Pa) pkgm™) ¢ I kegK)™) T kgK)T)  Mw (gmol™h)

Air 1.4 0 1.176 1005 718 28.97
Water 2.8 8.5 x 108 1053 4186 1495 3.09

Table 1. Gas constants used in the numerical simulation.

v

5m

\ 4
A

5Sm

A

Driven section : LP water (o= 1)
p=10°Pa
T=308.15K

Driver section : HP air (« = 0)
p=10°Pa
T=308.15K

Figure 2. Schematic of the air—water shock tube test case.

represents fluid 1 or 2. It has mass conservation equations for each phase and a transport
equation for the volume fraction. Pressure is defined using the respective equations of
state. As there are only two phases involved in the current problem, volume fraction and
mixture density are defined as follows:

o] +ay =1, 2.9)
o =o1p1 +azp2, (2.10)
pi = (vi — Dpiei — via;. (2.11)

In this study, air is modelled as an ideal gas, while water is modelled as a stiffened gas.
Equation (2.11) represents the equation of state in the Mie—Griineisen form (Zheng et al.
2011), where y; is the specific heat ratio, and q; is the reference pressure (poo). €; is the
specific internal energy of the fluid defined as

ei=c,T+ 2. 2.12)
0

The gas constant values used in modelling air and water are tabulated in table 1. Inviscid
simulations are carried out by setting viscosity (i) to zero.

2.2.3. Solver validation: air—water shock tube test case

A one-dimensional, two-fluid (air—water) shock tube test case from Liou et al. (2008) is
simulated using the BlastFoam solver. The shock tube is 10 m in length, as shown in
figure 2. The driver is initialised to high-pressure air, and the driven section is initialised
to low-pressure water. The initial pressure ratio between the driver and driven section is
10*. The gas constants mentioned in the previous section are used to model air and water.
As time progresses, a strong shock travels inside the water to the right and expansion
waves travel left into the air. The results are extracted at ¢t = 2.5 ms for three different grid
systems of 200, 500 and 1000 grid points, respectively. Figure 3 shows the comparison of
pressure and volume fraction in comparison with the exact analytical solution. As the grid
is refined, the shock and interface locations become more defined and follow the exact
solution accurately.
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Figure 3. Air-water shock tube test case results at r = 2.5 ms: (a) pressure plot; (b) volume fraction plot.
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Figure 4. Set-up for the numerical simulation of a shock wave refraction over a water wedge.

Air
Flow variables Postshock conditions Preshock conditions Water
o 0 0 1
p (Pa) 235173.823 101 325 101 325
o (kgm3) 2.109 1.17665 1053.018
u(ms™) 224.236 0 0

Table 2. The initial conditions used to simulate a moving shock of strength ¢ = 0.43.

2.2.4. Numerical domain

Simulating the entire 3-m-long two-dimensional (2-D) shock tube with air and water can
be computationally expensive. Hence, a reduced 2-D rectangular domain is considered
wherein simulations are set up such that the incident shock wave is initially at a fixed
distance from the inclined interface and carried out until the shock reaches the end of the
interface. The numerical domain is a rectangle consisting of three regions, as shown in
figure 4. The shock wave is initialised in air, with post and preshock conditions mentioned
in table 2, such that it travels towards the right. Water is initialised to be on the right-hand
side of the domain with the required inclination angle at atmospheric temperature and
pressure. The shock wave induces a flow velocity from left to right as it moves, and
hence, the left-hand face of the domain is set to be an inlet boundary with the postshock
conditions. All the other boundaries are set as inviscid walls. The domain is discretised
evenly using a structured cartesian grid (5x = §y = 0.25 mm). The inclined interface
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(a) ()

m ‘m

Figure 5. Wave schematics of an RRR in (a) the laboratory frame of reference and (b) the shock stationary
frame of reference: m—m, undeflected interface; m—m’, deflected interface; i, incident shock; r, reflected shock;
t, transmitted shock; R, refraction point.

in a Cartesian grid is not aligned with the cells, resulting in a sawtooth-shaped rough
interface. This roughness effect is minimised by considering finer grids. Surface tension
and viscosity effects come into the picture only at later time scales where the RMI develops
(Carles & Popinet 2002). In experiments, surface tension results in the development of a
liquid meniscus at the walls of the shock tube. The shock refraction pattern is analysed
over the interface away from the walls, where the interface inclination remains constant.
Therefore, surface tension, along with gravity, is neglected in the simulations.

3. Results and discussion

The following section presents experimental and numerical results for a shock Mach
number Mg = 1.46, along with the shock polar diagrams to justify the observed shock
refraction patterns at the interface. To draw these shock polars, the analytical shock
relations for a stiffened gas are required. Although the stiffened gas equation of state has
been used widely to model liquids, shock relations have not been specifically derived.
Therefore, the isentropic relations and explicit closed-form Rankine—-Hugoniot jump
conditions are derived (refer to Appendix A for the analytical relations).

3.1. Refraction with transmitted shock

From the existing knowledge of shock refraction at a slow—fast interface, for a small
inclination angle (8), the observed refraction pattern should comprise of three shocks, all
intersecting on the interface at a single point. This type of refraction pattern is known as
RRR. Although the existence of an RRR for the air—water system is known from previous
works, it should be noted that the exact 2-D refraction pattern has not been verified or
visualised experimentally until now.

Figure 5(a) is a schematic representation of a typical regular shock refraction pattern at
an interface in the laboratory frame of reference. In this case, the incident shock wave i
reflects from and transmits into the second medium as r and ¢ shocks, respectively, at the
refraction point R on the interface, in addition to deflecting the shocked interface (mm’).
The interface is inclined at an angle 8 = 90° — 6,,, where the wedge angle, 6,,, is the angle
between the interface and the horizontal.

Assuming all waves to be planar and travelling at a constant velocity, these refracting
systems can be transformed from the pseudosteady laboratory frame of reference to a
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shock-stationary frame of reference (shown in figure 5b) using the following equation:

My

The shock stationary frame of reference is with respect to the refraction point R on the
interface for regular refraction. In (3.1), My is the incoming flow Mach number in
the transformed frame of reference. To maintain an undisturbed interface upstream of
the shock, the incoming flow velocity in the second medium should be equal to the flow
velocity along the interface in the first medium (Henderson 1966), i.e.

vp = V. 3.2)

Therefore, the incident flow Mach number in the second medium (M}) can be obtained as
a function of My and the speed of sound of the two media (see (3.3)). It is calculated by
using the stiffened gas parameters mentioned in table 1 in the following equations:

My, = My (“—0) (3.3)
ap
10\ (Mw.p
My =M,y |2 2. 3.4
’ 0 (Vb) (MW,O) G

Figure 6 shows the experimental schlieren images (on the top of the panel) and
numerical pressure gradient contours (bottom of panel images, which are mirror images
about the horizontal axis) of an incident shock wave (Mg = 1.46), refracting from an
air—water interface at § = 15° corresponding to 6,, = 75°, at various time instances.
The shock wave moves from left-hand side (air) to the right-hand side (water). The
first time instant at which the shock wave enters the experiment window is taken to be
the reference time, ¢t = 0 s. The schlieren images are processed to find the initial shock
distance from the interface. This shock stand-off distance is given as the location of the
shock in the simulations to obtain time-resolved numerical pressure gradient contours. The
images clearly show that the numerical simulation matches accurately with the experiment
(figure 6a,b). At a later time, shown in figure 6(c), the incident shock i reflects back as a
shock wave r, forming a reflection pattern that resembles an RR in air. Also, it transmits
a shock wave ¢, into water that travels along the interface attached to the refraction point
R. Figure 6(c) also clearly shows the corner-generated wave (a curved brighter wave) from
the leading edge of the wedge, trailing just behind the transmitted shock. This interaction
is responsible for the curvature of the transmitted shock towards the bottom wall of the
shock tube. The incident shock looks thin in the experimental schlieren images due to the
difficulty in positioning the knife edge to obtain proper intensity variations in air and water
simultaneously.

The shock polar diagram is constructed to gain further insight into this shock refraction
pattern. From figure 5, it can be seen that for an RRR, the shock angle ¢ is the same as the
inclination angle of the interface 8. With the My and ¢; as known variables, the incident
polar (i-polar) can be drawn using (A15) and the 6—¢—M relation (see (A17)). Similarly,
using the Mach number behind the incident shock M1, the reflected polar (r-polar) can be
drawn with 61, the transformed deflection angle for the incident shock, as the anchor point
on the i-polar. The transmitted polar (z-polar) is drawn using (A15), also at 8 = 0°, as the
flow velocity is along the interface. The solution point is the intersection of all three polars,
and the deflection angle at this point corresponds to the deflection angle of the interface.
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Figure 6. Combined images of experiment and numerical simulation of an incident shock (Ms = 1.46)
refracting over water interface (8 = 15°) at various time instances producing an RRR: m-m, interface;
i, incident shock; r, reflected shock; 7, transmitted shock; R, refraction point. Here (a) t = 66 s, (b) t = 100 s,
(c) t = 133.33 s, (d) t = 166.66 ps.

The shock polar for 8 = 15° is drawn in figure 7. In the transformed frame of reference,
with respect to the reflection point R, the i, r-polars correspond to the flow Mach numbers
of 5.6 and 4.81, respectively, whereas the t-polar is drawn for a flow Mach number M} =
1.3 in water, obtained from (3.4). The pressure jump caused by a normal shock in water is
orders of magnitude higher than that in air, and hence the #-polar is much larger compared
with the i-, r-polars. Therefore, it appears to be a vertical line on smaller scales of p/pg
(green line in figure 7). The region of interest is enlarged in the inset in figure 7, where
the solution is given by the intersection of the transmitted polar and the weak part of the
reflected polar, indicated with a yellow marker. The deflection angle at the solution point
is the interface deflection angle behind the shock wave. From the shock polar solution in
figure 7, it can be seen that for the present case of 8 = 15°, the interface deflection angle
is approximately 0.005°. For a given shock Mach number, 3.1 and 3.4 indicate that M}, is
inversely proportional to 8. Therefore, any 8 less than 15° also produces an RRR. On the
other hand, as B increases, M}, becomes progressively less supersonic. This leads to the
flattening of the transmitted polar. Hence, the RRR solution point shifts rightward along
the r-polar and upwards along the weak part of the z-polar. Consequently, the interface
deflection angle (§) and the transmitted shock angle (¢p) increase with an increase in S.
This clarifies the forward-leaning nature of the transmitted wave (increasing ¢) in an RRR
until it becomes normal to the interface at a critical inclination angle, where it transitions
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Figure 7. Shock polar solution of an RRR: Mg = 1.46; 8 = 15°.

into the next refraction pattern in the sequence. Nourgaliev et al. (2005) also reported this
phenomenon in their numerical simulations. By virtue of the variation in the energy being
reflected owing to the transmission of the wave into water, Wan et al. (2017) noted that the
reflected shock structure in a water wedge is not quite equivalent to that in a solid wedge.
Therefore, the above discussion leads to two observations of interest;

(i) an RRR solution exists until a critical inclination angle is reached, after which the
t-polar becomes too small to intersect with the r-polar;

(i) in water wedges, although the interface deflection angles (&) are negligible, the
reflections from a solid wedge and water wedge are not directly comparable, as the
energies of the transmitted waves into the second medium are different in each case.

3.2. Bound precursor refraction

Beyond the critical inclination angle discussed above, the corner-generated wave inside
water catches up to the refraction point and alters the curvature of the already weak
transmitted shock as shown in figure 8(a). Therefore, the shock refraction pattern obtained
immediately after the critical inclination angle is identified as the BPR. Bound precursor
refraction is characterised by a regular reflection in the slow medium (air) and a curved
transmitted shock in the fast medium (water), and all shocks intersect at the refraction
point R on the interface. Figure 8(b) shows the BPR pattern obtained in the experiment and
numerical simulation for an inclination angle of 19.7°. (The accuracy of the VST facility
is only 0.1° and the inclination angle of 19.7° is the closest we could get to the BPR
transition point. Theoretically, this angle should correspond to an RRR with a transmitted
shock angle, ¢ = 90 — €, where € is a very small angle. The analytical transmitted shock
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Figure 8. (@) Schematic of a BPR in the shock stationary frame of reference. (b) Comparison of
experimental schlieren image and numerical pressure gradient contours of a BPR: Mg = 1.46; § = 19.7°. Here
m—m, interface; 7, incident shock; r, reflected shock; 7, transmitted shock; R, refraction point.
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Figure 9. The RRR — BPR transition point. (a) The shock polar solution: Mg = 1.46; 8 = 19.7148°.
(b) Enlarged view showing the intersection point of r-, f-polars.

angle (¢p) for an inclination angle of 19.7° is calculated to be 89.995°.) It is seen that the
transmitted wave is near normal at the refraction point, travelling at the same speed as that
of the incident shock along the interface. Therefore, a crucial difference between an RRR
and a BPR is the nature of the transmitted shock structure inside water.

From a shock polar perspective, the transition from RRR — BPR occurs at a point
of tangency between the r-polar and the z-polar. It should also be noted that M}, is only
slightly supersonic (1 + ¢) in BPR. In gas—gas interfaces, the RRR — BPR transition
is defined as the tangency condition between the reflected and the transmitted polars
at a particular positive deflection angle (§ > 0) while the transmitted wave is at some
shock angle (¢ #90°) to the interface. In the present case of an air—water interface, the
transmitted polar is so small in comparison with the reflected polar, and the tangency
condition hence occurs almost close to the normal shock point of the #-polar as shown
in figure 9. The BPR domain exists up to an inclination angle where M; becomes sonic.
It is identified that the inclination angles for the transition RRR — BPR and the sonic
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Figure 10. Wave schematics of precursor refractions in shock stationary frame of reference: (a) FPR; (b) free

precursor Mach refraction (FMR). Here m—m, interface; i, incident shock; r, reflected shock; m, Mach stem;
t, transmitted shock; R, refraction point.

condition of M}, lie very close to each other for a given shock Mach number. Hence, the
BPR domain extends only for a very small range of 8 (= 0.0001°), where the transmitted
polar is no longer tangent to the reflected polar. Therefore, for practical considerations
of air—water interfaces, BPR can be considered a transition pattern rather than a separate
refraction pattern, unlike that of gas—gas interfaces.

3.3. Free precursor refractions

Increasing the inclination angle further, beyond the BPR domain, results in free precursor
refractions, where there is no transmitted shock (M}, < 1) but rather a transmitted pressure
wave travelling ahead of the refraction point. In this domain, M}, remains subsonic,
decreasing further with an increase in 8. Figure 10 shows the schematic (shock stationary
frame of reference) of the two different types of refractions possible in this domain: free
precursor refractions with RR and MR in air, respectively.

After the BPR transition point, for the same shock strength, with the increase in
inclination angle, it can be seen that the incident shock reflects as an RR in air with a
weak transmitted curved pressure wave, previously referred to as ‘spherical’ transmitted
shock (Takayama & Ben-Dor 1989), in water. This f-wave travels at the speed of sound of
water and is much faster than the shock speed. Therefore, it detaches itself free from the
refraction point R and travels ahead. Hence, the refraction pattern shown in figure 10(a)
that includes an RR in air and the precursor f-wave is termed as an FPR. An inclination
angle (B) of 30° corresponds to such a condition, and the refraction patterns obtained in the
experiment and numerical simulation are shown in figure 11. Nourgaliev et al. explained
that this precursor wave is evanescent in nature and that very little back transmission
was observed. From the present experimental schlieren images, it is verified that there
is no significant back-transmission of the precursor wave into air. Therefore, the reflection
pattern in air is not affected by the presence of a transmitted forerunning pressure wave.
The shock polar solution of an FPR at § = 30° inclination is also drawn in figure 11. The
solution consists only of the reflection in air, given by the RR solution point, as there is
no t-polar owing to the subsonic nature of the transformation-induced flow Mach number
inside water.

Upon further increase in inclination angle (8), M) becomes increasingly subsonic, with
a difference that the reflection pattern (in air) transitions from regular to MR as shown
in figure 10(b). In Nourgaliev et al. (2005), the above refraction pattern was identified as
an FNR. An FNR is characterised by an MR modified by the back-transmitted precursor
shock wave and the presence of centred expansion waves generated from the foot of the
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Figure 11. Free precursor refraction with a regular reflection at Mg = 1.46, B = 30° and its shock polar
solution.
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Figure 12. Schematic wave diagrams of (a) FNR; (b) FMR. Here m—m, initial interface; m—m’, deformed
interface; 7, incident shock; r, reflected shock; e, expansion waves; m, Mach stem; ¢, transmitted shock/wave;
¢, back-transmitted ¢ shock/pressure wave; ¢, modified 7'; i/, modified incident shock; /, modified reflected
shock.

Mach stem in the lighter medium as shown in figure 12(a). Also, an FNR deflects the
interface to a finite angle. FNR is a complex wave system comprising nine waves, whereas
the current refraction pattern comprises only four waves as the evanescent precursor wave
does not back-transmit into air. Despite being similar, these are two very different shock
systems. Henceforth, this refraction system will be referred to as an FMR. The differences
between an FNR and an FMR can be understood from the comparative schematic diagrams
shown in figure 12.

For an FMR, the transformation from the pseudosteady laboratory frame of reference
to the shock stationary frame of reference is with respect to the triple point 7" and not the
refraction point R. Therefore, in the transformed frame of reference, the apparent interface
(mm?) is aligned parallel to the triple-point trajectory and inclined at an angle equal to
90° — 0y,, where 6, is the sum of 6,, and the triple point trajectory angle x (see figure 10b).
It should be noted that for an FMR, in (3.1), 6, should be used to calculate the incoming
flow Mach number M in the transformed frame of reference instead of 6,,. Also, for an
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Figure 13. Free precursor Mach refraction: Mg = 1.46; B = 50°.

RRR and FPR, the shock angle ¢; is the same as the inclination angle of the interface g,
while it is equal to 90 — 6}, for an FMR.

Figure 13 shows the experimental and numerical images of an FMR obtained at
B =50°. A small Mach stem and a slip line (SL) are clearly visible, along with the
presence of a transmitted precursor wave (t-wave), confirming a FMR. The shock polar
solution for such a reflection is given by the intersection of the r-polar with the i-polar.
It should be noted that the shock polar solution drawn in figure 13 corresponds to the
apparent interface inclination angle (90 — 6¢). The triple point trajectory x is measured
from the experimental schlieren image to be &~ 2° + 0.1°. The FMR domain includes
all irregular reflection patterns possible in air, such as double Mach reflection (DMR),
transitional Mach reflection, von Neumann reflection, single Mach reflection and weak
shock reflections (Vasilev reflection, Guderley reflection) (Ben-Dor 2007) with a free
precursor wave in water.

Wan et al. investigated the first and second triple point trajectories of DMR cases for a
shock Mach number of 4 in both solid and water wedges and reported them to be linear.
Therefore, the irregular reflections from a water wedge were proved to be self-similar.
However, no comment was made on the self-similar nature of the transmitted wave and,
by extension, the refraction pattern as a whole. Figure 14(a) shows the numerical contours
of an FMR occurring at Mg = 2.2 and 8 = 50°. In the figure, the triple point trajectory,
highlighted as a dashed green line, is found to be linear, once again confirming the
self-similar nature of the reflection pattern. Figure 14(b) shows the distance travelled
by the transmitted free precursor wave inside water along the bottom wall (marked
S; in figure 14a) as a function of time. The pixel error for these measurements is
0.11 mm pixel~'. The linearity of the plot verifies that the refraction pattern as a whole
is self-similar. Also, the slope of this line gives the velocity of the transmitted precursor
wave as 1503 m s~ !, the speed of sound of water.

In the shock stationary frame of reference with respect to the triple point, for a given
shock Mach number, another critical inclination angle exists beyond which the flow
behind the incident shock M becomes subsonic. In reflections over solid wedges, various
combinations of (Mg, 6)) that correspond to this particular reflection type fall into the no
reflection domain (NRD) (Vasilev, Elperin & Ben-Dor 2008). It should be noted that this
domain exists only in the (Mg,05,)-plane. In the physical (Mgs,0,,)-plane, these reflections
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Figure 14. Self-similar nature of the irregular refraction (FMR) over an air—water interface at an inclination
angle B = 50° and a shock Mach number Mg = 2.2. (a) The triple point trajectory (x). (b) The distance
travelled by the transmitted precursor wave (S;) inside water along the bottom wall at various time instances.

mostly correspond to single Mach reflections (Ben-Dor 2007), and so for the air—water
refraction system, they fall into the FMR category.

3.4. Refraction sequence

The refraction sequence for Mg = 1.46 is identified from experiments and numerical
simulations as RRR — FPR — FMR, with BPR being a transition pattern from RRR
to FPR. Figure 15 shows the numerical pressure gradient contours for various cases
considered in the order of increasing angle of inclination, including head-on impingement
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Figure 15. Numerical pressure gradient contours of shock refraction at an air—water (air on the left-hand
side and water on the right-hand side) interface for Mg = 1.46 exhibiting (a) shock transmission for head-on
impingement; (b—d) RRR; (¢) BPR; (f.g) FPR; (h—j) FMR - the red line (¢ = 0.5) indicates the interface.
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Figure 16. Refraction patterns obtained at a higher shock Mach number in the very weak incident
shock regime: i, incident shock; r, reflected shock; ¢, transmitted shock; R, refraction point. Here (a)
RRR, Mg = 1.7,  =22.2°; (b)) BPR, Mg = 1.7, B = 23.1°.

(B = 0°). In addition to Mg = 1.46, experiments and numerical simulations are done for
higher shock Mach numbers within the very weak incident shock regime. Experiments are
carried out for Mg = 1.7. The critical angle at which the BPR transition pattern occurs
is calculated to be 23.13° from the analytical transition criterion. Figure 16 shows the
refraction patterns obtained at two different inclination angles. At an inclination angle of
22.2°, figure 16(a) clearly shows the presence of a transmitted oblique shock inside water
attached to the refraction point R, indicating that the refraction pattern is an RRR. Whereas
at 23.1°, it can be seen that a BPR occurs, as shown in figure 16(b). Numerical simulations
for a higher shock Mach number of 2.2 are performed to reinforce the results further. The
refraction patterns obtained for various interface inclination angles are shown in figure 17.
Bound precursor refraction occurs at 8 = 30.56° as predicted by the analytical transition
criterion (M = 1). Also, the refraction sequence is still RRR — (BPR) — FPR — FMR.

3.5. Transition lines

With the help of the understanding from shock polars, it is now possible to draw the
transition lines from one refraction pattern to another. From § 3.2, it is understood that
an RRR transforms into BPR when the reflected polar becomes tangent to the transmitted
polar at the normal shock conditions. Therefore, for a given Mz, it reduces to solving a set
of nine equations: (3.1), (3.3), Mach number, 6—¢—M and pressure ratio relations for the
incident, reflected and transmitted shocks, along with the following conditions to get the
inclination angle corresponding to RRR — BPR transition:

6 —6, =0, (3.5)

(12) (12) _ (@) . (3.6)
P1 Po Pt/ Ns

In the numerical study of Nourgaliev et al. (2005) (referred to as N2005), for a shock
strength of ¢ = 0.426 (Mg = 1.467), BPR was predicted to occur at 8 = 37.5°. The
present experimental schlieren image in figure 8(b) confirms that this transition pattern
occurs at a much lower inclination angle of § = 19.7°. The overprediction BPR transition
in N2005 must be from the improper modelling of the physical properties of water as
discussed below.
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Figure 17. Numerical pressure gradient contours of shock refraction at an air—water (air on the left-hand side
and water on the right-hand side) interface for Mg = 2.2 exhibiting (a) RRR; (b) BPR; (c¢) FPR; (d,e) FMR -
the red line (@ = 0.5) indicates the interface.

The stiffened gas parameters used by N2005 are y = 2.8, poo = 3.036 x 103 Pa,
while the current study uses y = 2.8, poo = 8.5 x 10 Pa (Yeom & Chang 2013) to
model water at low pressures. The combination of (Y, px) and initial conditions of
N2005 give the following physical properties of water as a stiffened gas: specific heat
capacity ¢, = 1297.6 J (mol K)~!; speed of sound a, =902.89 m s~'; molecular

weight My, =9.967 g mol~!. The (y, poo) combination used in the current study gives
the following physical properties of water as a stiffened gas: specific heat capacity
cp = 4186 ] (mol K)~ L speed of sound a, = 1503.5 m s~!: molecular weight My, =

3.09 g mol~!. It should be noted that the speed of sound of water in N2005 is much less
than the actual value of 1500 m s~ !.

To verify if the overpredicted BPR transition angle in N2005 is from the incorrect
modelling of water, the authors performed numerical simulations by modelling water
with both sets of stiffened gas parameters of water mentioned above. These numerical
simulations are carried out for the shock Mach number 1.467 and an inclination angle
of 37.5°. Figure 18(a) shows the numerical pressure gradient contours using N2005
parameters and figure 18(b) using Yeom & Chang (2013). The prediction of N2005 is
reproduced and shows BPR in figure 18(a), whereas using the realistic values of the
stiffened gas parameter predicts FPR.

To get the BPR — FPR transition line, M} is set to 1 in (3.3) and is solved for
B. In the precursor refraction domain, it is established that there is no significant
back-transmission to alter the reflection pattern. Therefore, FPR — FMR transition is
given by the detachment criterion (fp). For the NRD line, the following equation, given
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Figure 18. Refraction patterns obtained for an Mg = 1.46 and 8 = 37.5° using (a) the stiffened gas parameter
used in N2005 and (b) the current study’s stiffened gas parameter. The prediction of N2005 is reproduced and
shows BPR in (a), whereas using the realistic values of the parameter from Yeom & Chang (2013) predicts
FPR as in (b). Here (a) Poo = 3.036 x 108 Pa for BPR; (b) Po = 8.5 x 108 Pa for FPR.

by Vasilev et al. (2008), is used:

sin? ¢ = ! {1<yo—3)+1(yo+1>M§+(yo+1>1/2
2y0M} | 2 2
1 1 1 1/2
x [Z(Vo+9)+5(V0—3)M§+Z(Vo+1)M3} } (3.7)

Based on the above discussion, the transition lines separating various shock refraction
domains in an air—water system are drawn in figure 19. It is evident that there are three
different regimes based on refraction pattern sequences: very weak; weak; and strong
shock regimes. When the shock Mach number increases (in the weak incident shock
regime), it accommodates larger inclination angles until a free precursor refraction can
occur. Hence, it is possible for an MR to occur in air along with a transmitted shock in
water, giving rise to an IRMR. Wan et al. (2017) has reported observing such refraction
patterns for shock Mach numbers 3 and 4 at 6,, = 45°. Therefore, with the absence of FPR
in the weak shock regime, RRR transitions directly into an IRMR. Upon further increase
in B8, IRMR transitions into an FMR through a bound precursor refraction with a Mach
reflection. On the other hand, the shock Mach numbers of the strong shock regime are large
enough to eliminate free precursor refraction altogether. This regime has a transmitted
shock wave at all inclination angles, and the only possible refraction patterns are RRR and
IRMR. Table 3 presents the refraction sequences identified for the three shock strength
regimes and their ranges.

3.6. Comparison of numerical simulations with previous experimental studies in the very
weak incident shock regime

3.6.1. Experiments by Takayama & Ben-Dor (1989)

Takayama & Ben-Dor studied the shock wave reflections off a water wedge for a wide
range of shock Mach numbers (1.06 < Mg < 2.35). From figure 19, it is clear that these
shock Mach numbers fall under the very weak incident shock regime. They reported a
weak transmitted spherical ‘shock’ wave inside water, centred exactly at the beginning of
the interface in all their experimental cases. From the present study, it is now understood
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Figure 19. Shock strength regimes and transition lines for various shock refraction patterns in (Mg, 65;) plane
for air—water (s/f) interface: FPR, free precursor refraction with a regular reflection; FMR, free precursor Mach
refraction; IRMR, irregular refraction with a MR; I, very weak shock regime; II, weak shock regime; II1, strong
shock regime.

Regime Mg range Refraction sequence with increasing 8
Very weak shock 1 < Mg <2725 RRR — FPR — FMR

Weak shock 2.725 < Mg < 4.325 RRR — IRMR — FMR
Strong shock Mg > 4.325 RRR — IRMR

Table 3. Refraction sequences of a shock wave over an air—water interface in various shock strength regimes.

that they observed the transmitted spherical precursor wave, as all their cases lie in the
FPR domain in the (Mg, 65,)-plane, and that the RR — MR transition they had investigated
was actually FPR — FMR transition. To elucidate their results, numerical simulations are
carried out. For a shock Mach number of 1.47 and wedge angle of 44.3° (8 = 45.7°),
Takayama & Ben-Dor reported an RR (FPR) as shown in figure 20. The wedge angle
corresponding to the detachment criteria for this shock Mach number is 48.7°, indicating
that the reflection should be an MR. From the numerical pressure gradient contours in the
inset of figure 20, it is seen that the reflection in air is indeed an MR with a very small
Mach stem (x = 0.3°). A smaller domain 80 mm x 40 mm mesh of x = §y = 0.025 mm
is used to resolve such fine details. It seems that the experiments carried out by Takayama
& Ben-Dor failed to capture the small Mach stem in the FMR due to poor frame resolution,
leading them to conclude the reflection as an RR. The shock polar analysis confirms an
FMR for the said (Mg, 6,,) combination. The experimental interferogram photographs
of three other cases (Mg = 1.52, 6,, = 26.5°), (Ms = 2.3, 6,, = 46.7°) and (M5 = 2.33,
6,, = 50°) with a relatively stronger incident shocks reported by Takayama & Ben-Dor,
also belong to the FMR configuration: single Mach reflection with a free precursor, CMR
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Figure 20. Comparison of the Takayama & Ben-Dor (1989) under-resolved experiment and OpenFOAM
simulation showing FMR along with shock polar solution for Mg = 1.47, B = 45.7° (6,, = 44.3°).
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Figure 21. Shock polar solution and comparison of the Takayama & Ben-Dor (1989) experimental
interferogram photograph of a complex Mach reflection (CMR) with OpenFOAM simulation (superimposed)
showing FMR for Mg = 2.3, B = 43.3° (6,, = 46.7°).

(from the new-state-of-knowledge (Li & Ben-Dor 1995), this corresponds to a transitional
Mach reflection, evident from the presence of a kink and supersonic flow behind the
incident shock wave in the lab frame of reference.) with a free precursor and DMR with a
free precursor respectively. To demonstrate the correctness and the reproducibility of the
numerical simulations and the shock polars, a comparison of the FMR pattern obtained
for an (Mg, 6,,) combination of (2.3, 46.7°) is shown in figure 21.

3.6.2. Experiments by Wan et al. (2017)
Most recently, Wan et al. (2017) performed experiments and numerical simulations of a
shock wave refracting over water wedges. To the best knowledge of the authors, this is the
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Figure 22. Shock polar solution and the numerical contours of FMR cases identified to be FPR by Wan ez al.
(2017): (a) Ms = 1.38, B = 45° (6, = 45°); (b) Mg = 1.52, B = 43° (6,, = 47°).

only other experimental work that has been conducted with respect to 2-D planar shock
refraction over oblique air—water interfaces. They conducted experiments for several shock
Mach numbers in the very weak incident shock regime, namely, 1.2, 1.38 and 1.52. The
RR — MR transition angles over water wedges were identified and compared with the
solid wedges and the detachment criterion. For five cases in the very weak shock regime,
experimental schlieren images were reported: Mg = 1.38, B = 45°,47° and Mg = 1.52,
B = 40°,43°,65°. Cases 1, 3 and 4 were identified as RR, while cases 2 and 5, with
higher g value, were identified as MR, which are equivalent to FPR and FMR from the
perspective of refraction patterns. It should be noted that in the work of Wan et al., the
primary focus was on the reflections above the water and no attempts were made to classify
the observed refraction patterns.

OpenFOAM simulations are carried out in a rectangular domain (60 mm x 38.1 mm)
with 25 pm grid size for all five cases. The shock polar analysis of 45° and 43° inclination
for shock Mach numbers 1.38 and 1.52 (cases 1 and 4) both correspond to an FMR with
x = 0.15° and y = 0.1°. The numerical pressure gradient contours of these cases shown
in figure 22 confirm the presence of an MR in air. As explained earlier, the sawtooth
nature of the interface generates the ‘ripple waves’ on either side of the interface. As
numerical contour plots the pressure gradient magnitude, the slip line cannot be seen in
MR. The authors suspect that these MRs were not resolved in their experiments because
the Mach stem heights of these FMR configurations are too small to be captured over the
finite apparent thickness of the interface due to insufficient resolution. Furthermore, as
the incident shock moves over the interface, the Mach stem height growth is also very
small. The minuscule nature of this MR can be understood better from the contour image
in figure 22 when the incident shock is almost at the top end of the water wedge where the
Mach stem is approximately three cells tall. The reasons mentioned above could explain
the underpredicted RR(FPR) — MR(FMR) transition angles from the experiments. They
also ran high-resolution simulations for Mg = 4, 6,, = 40°, 50° and reported numerical
schlieren images corresponding to IRMR and RRR. They are consistent with refraction
patterns expected at Mg = 4 in the weak incident shock regime from figure 19.
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4. Conclusion

This study employs experiments and numerical simulations to investigate the phenomenon
of pseudosteady refraction of a 2-D planar moving shock wave when it interacts with
an inclined air-water interface. To analyse the refraction patterns analytically, shock
and isentropic flow relations are derived for a stiffened gas to generate shock polars in
water. Two refractions previously reported from numerical simulations, namely, RRR and
BPR, are observed experimentally for the first time. Two different types of free precursor
refractions are also observed in the present study: one with a regular reflection (FPR) and
one with a Mach reflection (FMR). These cases are numerically verified using OpenFOAM
simulations.

The overpredicted transition point from RRR — FPR in the previous work due to the
improper modelling of water properties has been corrected in the present work with
verifications from experiments, numerical results and shock polars. Furthermore, the
shock structures of an FMR were initially thought to be the same as that of an FNR.
The need for a separate refraction pattern is ascribed by highlighting the key differences
between the two. Transition criteria from one refraction pattern to another are obtained
and are used to draw the transition lines in an (Mg, 6;,)-plane. Three regimes are identified
based on the refraction pattern sequence as very weak, weak and strong incident shock
regimes. In the weak and strong regimes, the refraction sequences are predicted to
be RRR — IRMR — FMR and RRR — IRMR, respectively, which was not reported
previously. Experimental results from the prior literature on shock reflections off a water
wedge in the very weak incident shock regime are compiled and classified into various
refraction patterns in their respective shock strength regimes. It is also observed that
the reason for under-predicted experimental RR(FPR) — MR(FMR) transition points in
earlier experimental studies is the minuscule value of the triple point trajectory angle,
which is practically challenging to visualise in shock tubes with a smaller width.
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Appendix A. Shock relations for a stiffened gas
A.l. Isentropic relations

For any thermodynamic process from state 1 to state 2 in water, from (2.4), change in
entropy (As) can be written as

14 14
T2 Tl

-2 1 (A1)
(P24p) " (p1+poo)’ !

$2— S =cyln

For As = 0, the above equation with some rearrangement can be recast to obtain the
pressure ratio relation as

Pz _ (1 + p;’o) <2>y/(y—l) _ P (A2)
P p1 /) \T p1
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From the stiffened gas equation of state (2.5), it can be seen that (p + pso)/pT = (y —
1)c, is constant. Hence, the density ratio for an isentropic process is obtained to be

T\ /=D
P _ <_2) . (A3)
P1 T,
Therefore, the isentropic relations for stiffened gas can be summarised as
T (r=D/y y—1
n_ (P_z +P<>o) _ (2) | (Ad)
Ty Pl +Poo P1

A.2. Normal-shock relations

The one-dimensional adiabatic equations for the flow across the normal shock are given
by the continuity, momentum and energy equations as

piup = pauy, (AS5)
p1+ prur? = p2 + poud?, (A6)
2 2
u up
ot — 2 AT
1+ 5 2+ 5 (A7)

where p, u, p and h denote the density, velocity, pressure and enthalpy. The alternate
energy equation derived by substituting the stiffened gas equation of state is the same as
that of an ideal gas. Therefore, the relation of the characteristic Mach number M* to the
flow Mach number is

2+ (y — DM
The above equation is the same as that of an ideal gas (Liepmann & Roshko 2001).
Consequently, the Mach number, density and temperature relations derived using (A9),

(A5) and (A7) for a flow across a normal shock wave, remain unchanged for a stiffened
gas as follows:

(A8)

MIM; =1, (A9)

-1
1+ (_y > )M12
M52 (A10)

2w (y+ DM

= = (A11)
pr w2 24 (y —DHM?
y—1 5
T, Ty T 2 M,
o To/T, . v—1 (A12)
1 0/12 - 2
1+ TMZ
The ratio of pressure, however, is modified by substituting (2.6) in (A6) to be
2
12:1+—V(Mf—1)<1+pi°>. (A13)
D1 y+1 4
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(a) (b)

Figure 23. Bound precursor refraction patterns obtained for shock Mach number Mg = 1.46 at 8 = 19.7° in
different Cartesian meshes. The blue dashed line indicates the y-location at which the data shown in figure 24
is extracted: (@) §x = 6y = 1 mm; (b) 5x = §y = 0.5 mm; (¢) 6x = §y = 0.25 mm; (d) 6x = §y = 0.1 mm.

Hence, (A10), (A11), (A12) and (A13) give the jump conditions across a normal shock
wave in a stiffened gas.

A.3. Oblique-shock relations

As changes across an oblique shock wave are governed only by the component of velocity
normal to the wave, the equations of normal shock are valid for an oblique shock, given
that the normal component of the velocity (M, 1) is used. Hence, for an oblique shock
wave from (A10) and (A12) and (A13), the following relations are used:

;2w (Y + DMy

—h 2, (Al4)

P1 u 24y —1DM,,

2y
b2 1+—( 1—1)<1+1’ﬁ>, (A15)
P1 y +1 D1
o)
T p1+pco \ 02 (1+ )(pz)
p1

L1
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Figure 24. Mesh independency plots for the BPR case: (a) pressure plot; (b) volume fraction plot.

M12 sin2¢ —1

tan6 = 2 cot¢ 3 .
Mi(y + cos2¢) +2

(A17)

Also, there is no change from ideal gas in the 6—¢—M relation as it is derived only from
geometric relations and continuity equation.

Appendix B. Mesh independency

The transition patterns and angles can be sensitive to the mesh used. Therefore, a mesh
independency study for RRR to FPR transition through BPR is performed for the shock
Mach number 1.46. The analytical BPR transition angle for this shock Mach number
is 19.715°. Four different meshes of éx = §y = 1 mm, 0.5 mm, 0.25 mm, 0.1 mm are
considered for the transition case. Figure 23 shows the resulting pressure contour plots.

From figure 23, it is clear that the shocks are finer as the mesh density increases,
whereas, at lower mesh densities, they are smeared. It should be noted that the transition
angle is a geometrical parameter in the computational domain for a given shock Mach
number. From figure 23, it is clear that all the contour plots give a BPR at the same
inclination angle. Hence, the transition angle does not seem to depend on the mesh size.
To clarify this further, the pressure and volume fraction variation is extracted along a
horizontal line (marked as a dashed blue line in figure 23d) located at the centre of this
domain (y = 0.045 m), just below the refraction point on the interface. Figure 24(a)
shows that the shock strengths are captured accurately for meshes with a grid spacing
of 6x = §y < 0.25 mm, while figure 24(b) shows that except for the mesh with the largest
grid spacing (§x = dy = 1 mm), all the other meshes generate a sharp interface. Therefore,
for all the simulations in the current study, the 0.25 mm grid is used. Exceptions are those
where a finer grid is used to capture the small Mach stems, as explained in § 3.6.
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