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In this paper, we consider the steady-state base flow for natural convection in a
vertical porous slab with permeable boundaries. Although recent work proposed a
one-dimensional solution for this flow, we make a strong case for this flow to be
two-dimensional; this centres on an oversight in the use of the Oberbeck–Boussinesq
approximation in the earlier work. Two-dimensional numerical solutions for this flow are
then obtained using a pressure–temperature formulation, and the results are backed up
using asymptotic analysis. The relevance of these findings to other recent work on the
stability of convection in porous slabs with permeable boundaries is also briefly discussed.
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1. Introduction

Variants of the problem of natural convection in a porous vertical slab where there
is a temperature differential between the vertical bounding planes, both of which are
impermeable, have been considered by numerous authors since the original work by Gill
(1969); for a summary, see Barletta (2015). More recently, however, there has also been
interest in the problem when both bounding planes are permeable, in particular since
this situation is believed to be of relevance to systems such as ‘breathing walls’ (Imbabi
2006; Barletta 2015; Alongi, Angelotti & Mazzarella 2021), which are a novel concept in
the building industry that is aimed at achieving better indoor air quality by allowing air
inflow/outflow through insulated building walls.

A common strand through most of this body of work has been to establish the
steady-state flow and then to consider its stability to perturbations. More specifically, for
the problem with impermeable boundaries, Gill (1969) established that the steady-state
base flow, consisting of a vertical velocity component and temperature that are both linear
functions of the horizontal spatial variable, would always be stable; on the other hand, for
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the problem with permeable boundaries, Barletta (2015) showed that the steady-state base
flow would be the same as that in Gill (1969), but the flow may be unstable. Subsequently,
there have appeared many works that have considered porous layers with permeable
boundaries, all of which have used a one-dimensional steady-state base flow (Barletta
2016; Celli, Barletta & Rees 2017; Barletta & Celli 2018; Barletta & Rees 2019).

Here, however, our purpose is to investigate whether the steady-state base flow actually
is one-dimensional when the bounding planes are permeable; for simplicity, we limit
ourselves to the case of a porous vertical slab. In fact, we will find that there is a very
strong case for the base flow to be two-dimensional (2-D), which in turn will mean that
the resulting stability analysis would need to be revisited; we do not do that here, but we
will consider whether the steady-state solutions can be recovered via a time-dependent
model.

The layout of the paper is as follows. In § 2, we formulate the governing equations,
which we then non-dimensionalize and rescale in § 3. In § 4, we analyse the problem in two
asymptotic limits, which helps us to interpret the subsequent 2-D numerical solution to the
problem; the method and validation for this are given in § 5, and the solutions themselves
are given in § 6. The relevance and significance of the results for ‘breathing walls’ are
considered in § 7, and conclusions are drawn in § 8.

2. Mathematical formulation

As in Barletta (2015), we consider a vertical porous slab bounded by two vertical planes
at x = ±L/2 where uniform temperatures T1 and T2 are prescribed, with T2 > T1; a
schematic is shown in figure 1. The x-axis is horizontal and perpendicular to the bounding
planes, while the y-axis is vertical and oriented upwards. The external environments in
the regions x < −L/2 and x > L/2 are considered as isothermal fluid reservoirs in a
motionless state and kept at different uniform temperatures, T1 and T2. In these reservoirs,
the pressure distribution is purely hydrostatic. Assuming that the two vertical boundaries
are permeable, it is then reasonable to assume that the pressure is hydrostatic there also.

Considering a 2-D formulation with x and y as the independent spatial variables,
employing the Darcy law for the local momentum balance equation and assuming thermal
equilibrium between the fluid and solid matrix of the porous medium, the governing
equations are

ρt + (ρu)x + (ρv)y = 0, (2.1)
μu
κ

= −px, (2.2)

μv

κ
= −py − ρg, (2.3)

γTt + ρc
(
uTx + vTy

) = χ
(
Txx + Tyy + Tzz

)
, (2.4)

where t is time, u and v are, respectively, the x- and y-components of the velocity, p is the
pressure, ρ is the density of the fluid, μ is its viscosity, g is the acceleration due to gravity,
and κ is the permeability of the porous layer, which is assumed to be isotropic. In addition,
γ and χ are given by

γ = (1 − φ) ρscs + φρc, χ = (1 − φ) ks + φk, (2.5a,b)

respectively, where φ is the porosity, c and k are, respectively, the specific heat and thermal
conductivity of the fluid, and the subscript ‘s’ refers to a property of the solid matrix of
the porous medium.
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Natural convection in a vertical porous slab
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Figure 1. Schematic of a vertical porous slab.

Equations (2.1)–(2.4) are subject to

p = ph, T = T1 at x = −L/2, (2.6)

p = ph, T = T2 at x = L/2, (2.7)

where ph is the hydrostatic pressure, given by

ph = pref − ρgy, (2.8)

with pref as a reference pressure. Although no further motivation was given in Barletta
(2015) for boundary conditions (2.6) and (2.7), we detail in Appendix A how they can
be obtained by considering both the porous layer and the surrounding reservoirs. Also,
assuming the vertical slab to be of infinite extent, boundary conditions will be required as
y → ±∞, but we defer discussion of these until § 6. In addition, we now specify the fluid
density, ρ, as

ρ = ρ0 (1 − α (T − T0)) , (2.9)

with α > 0 as the thermal expansion coefficient, T0 as a reference temperature, and ρ0 as
the density at T = T0; without loss of generality, we take T0 = (T1 + T2)/2, as in Barletta
(2015).

It is worth noting at this stage that although (2.6) and (2.7) may suggest that the pressures
at x = ±L/2 are equal, it should be clear from (2.8) and (2.9) that they are not, because
the temperatures at x = ±L/2 are not equal; consequently, unless one invokes some kind
of approximation, it is not possible to subtract off the hydrostatic pressure from p to give a
problem where the dynamic pressure is zero at x = ±L/2, as was done in Barletta (2015).
We discuss this in more detail in § 3.
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3. Non-dimensionalization and rescaling

Non-dimensionalizing via

X = x
L
, Y = y

L
, t∗ = t

γ0L2/χ
, U = u

χ/ρ0cL
, V = v

χ/ρ0cL
,

P = p − pref + ρ0gy
μχ/ρ0cκ

, θ = T − T0

T2 − T1
, ρ∗ = ρ

ρ0
, (3.1a–h)

where γ0 = (1 − φ)ρscs + φρ0c, we obtain, on dropping the asterisks on t and ρ,

−βρt + ((1 − βθ)U)X + ((1 − βθ)V)Y = 0, (3.2)

U = −PX, (3.3)

V = −PY + Ra θ, (3.4)

(1 − βΓ θ) θt + (1 − βθ) (UθX + VθY) = θXX + θYY , (3.5)

where

β = α (T2 − T1) , Γ = φρ0c
(1 − φ) ρscs + φρ0c

, (3.6a,b)

and Ra denotes the Rayleigh number, given by

Ra = κLρ2
0cgα (T2 − T1)

μχ
; (3.7)

the boundary conditions are now

P = −1
2 Ra Y, θ = −1/2 at X = −1/2, (3.8)

P = 1
2 Ra Y, θ = 1/2 at X = 1/2. (3.9)

The Oberbeck–Boussinesq approximation is now seen as simply the statement that
β � 1 while holding Ra fixed; although this almost goes with saying, we nevertheless
reiterate it here, as it is the heart of the reason why we retain non-zero boundary conditions
for P. Thus, and with Γ a constant that is no larger than O(1), we obtain

UX + VY = 0, (3.10)

U = −PX, (3.11)

V = −PY + Ra θ, (3.12)

θt + UθX + VθY = θXX + θYY , (3.13)

subject to (3.8) and (3.9). Observe that (3.8), (3.9) and (3.12) now imply that

V = 0 at X = ±1/2. (3.14)

Furthermore, we can now rescale via

U = RaŪ, V = RaV̄, P = RaP̄, t = t̄
Ra

; (3.15a–d)
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Natural convection in a vertical porous slab

on dropping the bars, we arrive at the most convenient form, which is

UX + VY = 0, (3.16)

U = −PX, (3.17)

V = −PY + θ, (3.18)

θt + UθX + VθY = 1
Ra
(θXX + θYY) , (3.19)

subject to

P = −1
2 Y, θ = −1/2 at X = −1/2, (3.20)

P = 1
2 Y, θ = 1/2 at X = 1/2. (3.21)

We should now comment on why this formulation is different to that in Barletta (2015)
and why ours is more appropriate. Traditionally, the Oberbeck–Boussinesq approximation
has been taken to mean that one neglects the density variation in the continuity equation
and the heat equation, but retains it in the momentum equation (Landman & Schotting
2007); indeed, if one follows this line, one would obtain P = 0 in (3.8) and (3.9), as in
Barletta (2015), leading to the solution

U = 0, V = X, P = 0, θ = X. (3.22a–d)

Moreover, there is no difficulty with this approach in problems containing one boundary
at which the total pressure is prescribed; however, in the current problem, it is clear that
we have two boundaries at which the pressures are different. In this case, one is on safer
ground if one views the Oberbeck–Boussinesq approximation as corresponding to β � 1,
rather than just maintaining the density variation in the momentum equation alone. It is
for this reason that we have displayed β explicitly in (3.2)–(3.5), before dispensing with it
in (3.16)–(3.19), although it will make a further appearance in the discussion in § 4.2.1.

4. Analysis

In § 4.1, we first show that there cannot be any one-dimensional steady-state solutions;
then, in § 4.2, we consider the nature of the solutions in the asymptotic limits Ra � 1 and
Ra � 1.

4.1. Steady solution
Introducing a stream function ψ such that

U = ψY , V = −ψX, (4.1a,b)

(3.16)–(3.19) can be reformulated as

ψXX + ψYY = −θX, (4.2)

ψYθX − ψXθY = 1
Ra
(θXX + θYY) , (4.3)

subject to

ψX = 0, θ = −1/2 at X = −1/2, (4.4)

ψX = 0, θ = 1/2 at X = 1/2. (4.5)
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Now, if θ = X were to be a solution, as suggested in Barletta (2015), then we would need
ψY = 0 in (4.3); thence, from (4.2),

ψXX = −1. (4.6)

Integrating once with respect to X, we obtain ψX = −X + C, where C is a constant of
integration, whence it is clear that the boundary conditions for ψ in (4.4) and (4.5)
cannot both be satisfied. Hence this cannot be the base flow, and there is no other
obvious one-dimensional base flow in an analytical closed form either; consequently,
any steady-state base flow must be two-dimensional and, in general, must be found
numerically. Nevertheless, we can note that the problem does possess symmetries, in that

θ (X, Y) = −θ (−X,−Y) , P (X, Y) = P (−X,−Y) ,

U (X, Y) = −U (−X,−Y) , V (X, Y) = −V (−X,−Y) ,

}
(4.7)

and thence ψ(X, Y) = ψ(X,−Y).
However, some analytical progress is possible when Ra � 1 and Ra � 1, and we turn to

these regimes next, as these results are of use for interpreting the later numerical solutions.

4.2. Asymptotics

4.2.1. Ra � 1
Considering regular perturbation expansions for θ , ψ and P of the form

θ = θ(0) + O (Ra) , ψ = ψ(0) + O (Ra) , P = P(0) + O (Ra) , (4.8a–c)

(4.2)–(4.5) become, at leading order,

θ
(0)
XX = 0, (4.9)

subject to
θ(0) = ±1/2 at X = ±1/2, (4.10)

whence θ(0) = X. Thus we are left with

ψ
(0)
XX + ψ

(0)
YY = −1, (4.11)

subject to

ψ
(0)
X = 0 at X = ±1/2. (4.12)

From (4.11) and (4.12), it is clear that there can be a solution of the form ψ(0) = ψ(0)(Y);
specifying ψ(0) = 0 at (−1/2, 0) gives

ψ(0) = −Y2

2
. (4.13)

Moreover, having determined θ(0) and ψ(0), we have

P(0) = XY. (4.14)

Also, for later use, we set U(0) = ∂ψ(0)/∂Y , giving

U(0) = −Y. (4.15)

Finally, we point out that although we have given the regular perturbation expansion as
in (4.8a–c), strictly speaking this will be valid for β � Ra � 1 rather than Ra � 1.
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Natural convection in a vertical porous slab

4.2.2. Ra � 1
This time, (4.2) and (4.3) give, respectively,

ψXX + ψYY = −θX, (4.16)

ψYθX − ψXθY ≈ 0, (4.17)

the second of which implies that θ = θ(ψ); thus θ will be a constant along streamlines.
From (4.4) and (4.5), it is clear that streamlines must begin at X = ±1/2. Moreover, since
θ is constant at X = ±1/2, this will suggest that θ is constant in the interior of the flow,
although it is perhaps not clear at this point – indeed, not before doing the full numerical
computations – how this is reconciled with the fact that θ is equal to different constants
at the vertical boundaries. Consider first the streamlines that emanate from X = −1/2; on
each of these, θ = −1/2, but it is clear that θ cannot satisfy the boundary condition at
X = 1/2. This suggests that there must be a thermal boundary layer there, across which θ
changes from −1/2 to 1/2; its width, δ, can be identified easily, as follows. Withψ, θ, Y ∼
O(1) and 1/2 − X ∼ δ, we have

ψXX ≈ 0, (4.18)

ψYθX ≈ 1
δ Ra

θXX, (4.19)

giving just ψ = ψ(Y) in the boundary layer and δ = 1/Ra. Note that −ψXθY cannot be
part of the leading-order balance in (4.19), because ψX = 0 at X = 1/2. To see in more
detail why, suppose first that

ψX ∼ (1/2 − X)λ , for (1/2 − X) � 1, (4.20)

where λ > 0; if −ψXθY were to balance the θXX/Ra term in (4.3), then we would
have δ ∼ Ra−1/(2+λ). However, this would imply that ψXθY , θXX/Ra ∼ Ra−λ/(2+λ), but
ψYθX ∼ Ra1/(2+λ), i.e. much larger, giving a contradiction. Of course, we have no
guarantee that ψX behaves algebraically as supposed in (4.20), but this is immaterial, since
a corresponding result would also be obtained even if the behaviour of ψX near X = 1/2
were not algebraic, although we do not give details here. Moreover, the exact behaviour
does not affect the forthcoming analysis.

Now, we formally set 1/2 − X = Ra−1ξ , so that (4.3) gives

− ψ ′ (Y) θξ = θξξ , (4.21)

where the prime denotes differentiation with respect to Y , subject to

θ = 1
2 at ξ = 0, (4.22)

θ → −1
2 , as ξ → ∞. (4.23)

In fact,ψ ′(Y) can be scaled out of (4.21)–(4.23) to give a canonical problem for θ , although
it is better not to do this at this stage as the sign of ψ ′(Y) has not yet been determined. The
general solution of (4.21) is

θ = B+ (Y) e−ψ ′(Y) ξ + C+ (Y) , (4.24)

where B+ and C+ are functions to be determined, and it becomes apparent that the
boundary-layer structure is consistent only if ψ ′(Y) > 0; assuming that this is the case,

935 A21-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.16


M. Vynnycky and S.L. Mitchell

we obtain B+(Y) = 1, C+(Y) = −1/2, and hence

θ = e−ψ ′(Y)ξ − 1
2 . (4.25)

Note, however, that the boundary-layer analysis does not determine what ψ is, other
than that it is a function of Y throughout the layer. Since it must be matched to the
flow outside the boundary layer, this implies that ψ must be a function of Y outside
of the boundary layer also. By symmetry, clearly the same argument can be applied for
streamlines emanating from X = 1/2. This time, for the boundary layer at X = −1/2, we
would set 1/2 + X = Ra−1ξ , giving

θ = 1
2 − eψ

′(Y) ξ ; (4.26)

thus the boundary-layer structure is consistent only if ψ ′(Y) < 0.
Interestingly, this ψ − θ formulation gives no suggestion as to whether one should

expect streamlines to emanate from X = −1/2 or X = 1/2; on the other hand, the P − θ

formulation does. From (3.8) and (3.9), one may expect that PX > 0 for Y > 0, and PX < 0
for Y < 0; hence, from (3.11), U < 0 for Y > 0, and U > 0 for Y < 0, so ψ ′(Y) < 0 for
Y > 0, and ψ ′(Y) > 0 for Y < 0.

Furthermore, since ψ ′(Y) must change sign at Y = 0 and |ψ ′(Y)| becomes smaller as
Y → 0, it is clear from (4.25) and (4.26) that the boundary layers, which have now been
identified near X = −1/2 for Y > 0 and X = 1/2 for Y < 0, must thicken near Y = 0.
Once this happens, any rigorous asymptotic analysis becomes difficult, although the later
numerical results suggest that a much thicker interior layer forms about Y = 0 between
X = −1/2 and X = 1/2. More analytical details are given in Appendix B.

5. Numerics

5.1. Implementation
At this stage, the remaining numerical task is to solve (4.2)–(4.5). However, we are still
missing boundary conditions as Y → ±∞. At first sight, it may appear that the ψ − θ

formulation given by (4.2)–(4.5) is not the best for solving the problem numerically.
This is because the computational domain needs to be of finite extent in the Y-direction,
implying that boundary conditions must be set at Y = ±Y∞, where Y∞ denotes the value
of computational infinity; however, there are no obvious conditions available for ψ or ψY .
On the other hand, V → 0 might seem appropriate, in view of the boundary conditions
at X = ±1/2; this would imply that ψX → 0, whence ψ is a function of Y , but there is
no way to determine what this function of Y should be. Also, because (4.2) requires a
Dirichlet-, Neumann- or Robin-type boundary condition at Y = ±Y∞, we cannot simply
set ψX = 0 there, as it is none of these. Another issue with setting V = 0 at a finite value
of Y is that it turns the problem into one for a vertically bounded slab, whereas our initial
intention was to consider an unbounded slab.

In view of these considerations, a better resolution turns out to be to take a form
for P that satisfies the boundary conditions for P at X = ±1/2; the simplest would be
P ∼ XY for large |Y|. Moreover, this was already found, in § 4.2.1, to be the behaviour at
leading order for Ra � 1; however, we will also find that this choice will not introduce any
undesired end effects into the numerical simulations, with the results being independent
of the value chosen for Y∞ provided that it is large enough and the mesh is adequately
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refined. It may therefore appear that a better approach is the P − θ formulation, whereby
(3.16)–(3.19) become

PXX + PYY = θY , (5.1)

1
Ra
(θXX + θYY) = −PXθX + (−PY + θ) θY , (5.2)

subject to

P = −1
2 Y, θ = −1/2 at X = −1/2, (5.3)

P = 1
2 Y, θ = 1/2 at X = 1/2. (5.4)

For the conditions at Y = ±Y∞, we set

P = XY, θY = 0, (5.5a,b)

where the second of these is consistent with the boundary conditions for θ at X = ±1/2;
hence (5.5a,b) implies that we are setting neither V nor θ explicitly at Y = ±Y∞.
Nevertheless, it will be beneficial to compute ψ , but this can be done after solving the
P − θ problem. In particular, ψ satisfies

ψXX + ψYY = −θX, (5.6)

subject to

ψX = 0 at X = ±1/2, (5.7)

ψY = U at Y = ±Y∞, (5.8)

where U is obtained from the solution to the P − θ problem. Also, since the solution to
(5.6)–(5.8) is unique only up to a constant, we need to prescribe ψ at one point; thus we
set ψ = 0 at (−1/2,−Y∞).

Nevertheless, although the P − θ approach is the one that we adopted, it turns out
that the ψ − θ formulation can also be employed. Since we set P = XY at Y = ±Y∞,
we must have that ψY = −Y there. This will mean that only derivatives of ψ appear in
the governing PDEs and boundary conditions; hence, to avoid an indeterminacy in the
numerical system of equations, a value for ψ must be specified at one point, although the
actual value chosen will be immaterial, as it will not affect the computed values of U, V ,
P and θ .

To solve (5.1)–(5.5a,b), the finite-element-based software Comsol Multiphysics was
used. Second-order quadrilateral elements were employed for (5.1) and (5.2) on refined
mapped meshes. There are several issues to be considered as regards the solution approach:
first, to determine how large Y∞ should be, but also the range of interest for Ra. As the
analysis indicates boundary layers of thickness Ra−1, it is clear that even for Ra as low
as 100, of the order of several hundred elements would be required in the X-direction if a
uniform mesh were to be used. On the other hand, if we take Y∞ to be too large, then the
number of elements required in the Y-direction will also escalate very quickly; it is thus
of interest to establish how a small a value of Y∞ would be tolerable. Thus, in what will
follow, we will restrict the study to Ra ≤ 100.
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For all cases, the same convergence criterion, namely,

⎛
⎝ 1

Ndof

Ndof∑
i=1

|Ei|2
⎞
⎠

1/2

< ε, (5.9)

was applied; here, Ndof is the number of degrees of freedom and is related to the number
of elements used, Ei is the estimated error in the latest approximation to the ith component
of the true solution vector, and ε = 10−10.

Whilst the above describes the solution to the steady equations, it also proved necessary
to consider the associated transient problem, in order to verify the stability of the solutions
to the steady problem. To do this, we employed Comsol Multiphysics’ transient solver
to solve (3.16)–(3.19), subject to (3.20), (3.21) and (5.5a,b); initial conditions are also
required, and these are discussed in § 6.3. The same types of elements were employed as
for the steady solver, and the convergence criterion at each time-like step was taken as

⎛
⎝ 1

Ndof

Ndof∑
i=1

( |Ei|
Ai + R |Ui|

)2
⎞
⎠

1/2

< 1, (5.10)

where (Ui) is the solution vector corresponding to the solution at each time step, Ai is the
absolute tolerance for the ith degree of freedom, and R is the relative tolerance; for the
computations, R = 10−3, Ai = 10−4 for i = 1, . . . ,Ndof were used.

5.2. Verification
First, we check the influence of the value of Y∞ on the solution. Figures 2 and 3 show,
respectively, results for θX and U, at X = 1/2, obtained using Y∞ = 5 and 10 when Ra = 1
and 100, respectively. For these computations, we use 100 × 100 and 100 × 200 meshes,
corresponding to Ndof = 40 000 and 80 000, respectively, for Y∞ = 5 and 10, respectively,
which are refined in the X-direction, but uniform in the Y-direction; the refinement in
X is carried out in such a way that there are four elements within a distance of 0.01
from the boundaries at X = ±1/2, i.e. the order of magnitude of estimated boundary-layer
thickness at this value of Ra. Both figures indicate that the effect of setting a finite value
for computational infinity is limited to the end regions, but otherwise the agreement is
very good for U for |Y| � 4.5 and for θ for Y � −4.5. The interpretations of these figures
will be given later, when the contour plots are presented.

Figure 4 makes use of the same data, but shows a different comparison. The asymptotic
result from (4.25) indicates that at high Ra, θX ≈ U at X = 1/2 for Y < 0, as well as at
X = −1/2 for Y > 0; thus figure 4 shows this comparison for X = 1/2, Y < 0, and for the
two values of Y∞. A noticeable feature here is that the agreement is worse when Y∞ = 10
than when Y∞ = 5. This can be explained by considering asymptotic results. From (4.25),
it is evident that the boundary layer becomes thinner if Ψ ′(Y) becomes larger. Since Ψ ′(Y)
is identifiable with U at X = 1/2, we see from figures 3(a) and 4 that this is indeed what
happens as Y becomes more and more negative. The conclusion is that the mesh refinement
used in the X-direction is not adequate for all Y if Y∞ is taken to be as large as 10.

Henceforth, all computations are carried out with the 100 × 100 mesh and Y∞ = 5.
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Figure 2. Effect of Y∞ on the numerical solutions at X = 1/2 when Ra = 1 for (a) U, (b) θX .
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Figure 3. Effect of Y∞ on the numerical solutions at X = 1/2 when Ra = 100 for (a) U, (b) θX .
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Figure 4. Comparison of numerical solutions for U and θX at X = 1/2 when Ra = 100 for (a) Y∞ = 5,
(b) Y∞ = 10.

6. Results

6.1. Numerical results
Figure 5(a) shows heat maps for θ when Ra = 1, 10, 100; from these, we see that there
is a thermal boundary layer at the warm boundary for Y < 0, and at the cold boundary
for Y > 0. This helps to explain the features seen in figure 3(b), namely that θX is large
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Figure 5. (a) Heat map for θ ; (b) heat map for P; (c) contours for ψ . For all plots: (i) Ra = 1, (ii) Ra = 10,
(iii) Ra = 100.

for Y < 0, but practically zero for Y > 0. In addition, the plots show the appearance of an
interior layer as Ra is increased, as discussed in § 4.2.2 and Appendix B; however, even at
Ra = 100, the layer is still some way off from being oriented horizontally, as suggested in
Appendix B. Nevertheless, the fact that the isotherms in this interior layer are still visible
in figure 5(a)(iii), whereas those in the thermal boundary layers are not, indicates that
the results of the asymptotic analysis, which estimate the width of the interior layer and
the vertical thermal boundary layers as being O(Ra−1/3) and O(Ra−1), respectively, are
qualitatively correct.

Figure 5(b) shows heat maps for P when Ra = 1, 10, 100. In fact, these appear to be
practically identical, with only minor adjustments in the interior near Y = 0. Figure 5(c)
shows contour plots for ψ when Ra = 1, 10, 100. Here also, the plots are very similar to
each other. We comment here that although we have not included the velocity vector plots
here, the vectors point from right to left for Y > 0, and left to right for Y < 0.

6.2. Comparison of asymptotic and numerical results
We can also note that although the problem becomes more nonlinear as Ra is increased,
the profile for ψ in figure 5(c) remains more or less unchanged. To explore this
further, figure 6(a) shows ψ at X = 0 for −Y∞ ≤ Y ≤ Y∞ for Ra = 1, 10, 100, as well
as the solution for ψ(0) from (4.13), which has been shifted by a constant so that
ψ(0)(−1/2,−Y∞) = 0; figure 6(b) shows U at X = 0 for −Y∞ ≤ Y ≤ Y∞ for the same
values of Ra, as well as the solution for U(0) from (4.15). Surprisingly, even though ψ(0)
ought not to be relevant for this discussion, since it was obtained for the Ra � 1 regime,
it turns out that it provides an adequate approximation for ψ even outside of this regime,
with even the curve for Ra = 100 being indistinguishable from that for ψ(0); in a similar
vein, away from Y = 0, the isobars in figure 5(b) resemble the hyperbolae XY = constant
that are suggested by (4.14). Overall, this appears to be another example of an asymptotic
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U (0)
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Figure 6. (a) Plots of ψ at X = 0 for Ra = 1, 10, 100, as computed numerically, and ψ(0) at X = 0 from
(4.13); (b) plots of U at X = 0 for Ra = 1, 10, 100, as computed numerically, and U(0) at X = 0 from (4.15).
The curves in (a) are more or less indistinguishable.
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Figure 7. Comparison of numerical solutions for U and θX at X = 1/2 when Ra = 100 for Y∞ = 5 with
−Ra Y .

result being numerically useful far beyond its nominal range of validity, as discussed by
Crighton (1994) and Andrianov & Awrejcewicz (2005).

Moreover, the result for ψ suggests that ψ ′(Y) = −Y , which would explain the linear
behaviour of U and θX at X = 1/2 away from Y = 0 in figure 4. With this in mind, figure 7
superimposes the curve for −Ra Y over the data from figure 4; hence it is clear that there
is very good agreement away from the interior layer near Y = 0.

A further comparison of the asymptotic and numerical solutions is given in figure 8,
which shows θ as a function of X for Y = −9 and −4.5 in the vicinity of X = 1/2 for
Ra = 100; note that the computation was carried out using Y∞ = 10, whereas for the
asymptotic solution we have used (4.25), which yields

θ = eRa Y(1/2−X) − 1
2 . (6.1)

935 A21-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.16


M. Vynnycky and S.L. Mitchell
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–0.5

0

0.5(b)(a)

Figure 8. Comparison of numerical and asymptotic solutions for θ near X = 1/2 when Ra = 100 with
Y∞ = 10 for (a) Y = −9, (b) Y = −4.5. The curves in (b) are more or less indistinguishable.

It is notable that the agreement in figure 8(a) for Y = −9 is not particularly good, since the
mesh is not adequately resolved for these values of Ra and Y; in figure 8(b) for Y = −4.5,
the agreement is excellent. These results reinforce the comments made in conjunction with
figure 4.

6.3. Stability
To determine whether the calculated steady states are stable, we used them as initial
conditions in a 2-D initial value problem solver. Focusing on Ra = 100, we found that
indeed the steady-state solution was recovered. However, to test this further, we also
performed a run for Ra = 100, but using the steady-state solution obtained for a much
lower value of Ra (= 1) as the initial condition. Once again, the steady-state solution for
Ra = 100 was recovered, suggesting that steady-state solutions up to at least this value of
Ra would indeed be stable to 2-D perturbations; however, in the interests of brevity, we
have not included the corresponding heat maps for the temperature as it evolves with time.

It is beyond the scope here as to whether these solutions are stable to 3-D perturbations
and whether or not there is a critical Rayleigh number above which these 2-D steady
solutions would be linearly unstable.

7. Relevance and significance for breathing walls

As mentioned in § 1, the problem studied here is believed to be of relevance to breathing
walls; we now examine this statement in more detail.

Breathing walls are more frequently linked to the concept of dynamic insulation,
whereby fresh air from the outside is sucked into a building whose walls are made of a
porous insulating layer, with the required pressure difference being provided by a fan. On
its way through the pores, the fresh air is warmed by the heat conducting out through
the material in the opposite direction, assuming that the outside surroundings are cooler
than the interior of the building; in addition, the wall can act as a filter of airborne
pollutants. As regards the porous material, one example is no-fines concrete, which is a
cement-based mixture involving large aggregates only, i.e. gravel with an average diameter
in the 6–12 mm range and having a highly interconnected porous matrix (Alongi et al.
2021); other examples are mineral wool (Alongi et al. 2021) and cellulose (Ascione et al.
2015).
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However, in hindsight, the formulation that we have considered here appears to be more
akin to diffusive insulation (Taylor, Cawthorne & Imbabi 1996), in the sense that a pressure
difference has been established across the porous material indirectly as a consequence of
the temperature difference. As a result, this leads to the possibility of flow into the building
at the lower part of the insulating layer, and flow out at the upper part; this is different to
what one would expect in the case of dynamic insulation, where air flow would be into the
building everywhere. As a consequence, the problem depends not only on the coordinate
normal to the insulating layer, but also on the coordinate parallel to it, which is what we
have seen in our solutions. Moreover, were the steady flow to become unstable at values
of the Rayleigh number higher than those considered here, it is clear that this would lead
to either a more complex, steady, inflow/outflow scenario or an entirely unsteady one; the
latter would appear to be far removed from the desired situation that occurs for the case
of dynamic insulation, and therefore unfavourable. Even all of the above comes with the
caveat that the inside of a building is not always necessarily warmer than outside; typically,
to a rough approximation, one expects the outside temperature to undergo daily periodic
oscillations, with maxima and minima on either side of the constant indoor temperature
(Alongi, Angelotti & Mazzarella 2020; Alongi et al. 2021).

8. Conclusions

This paper has revisited the problem of natural convection in a vertical porous slab
bounded by two permeable planes, both of which are kept at uniform, although different,
temperatures (Barletta 2015). On re-analysing the problem, it was demonstrated that
there is no one-dimensional steady-state solution, contrary to the result given in Barletta
(2015). Two-dimensional solutions for the steady state were then obtained numerically
using a pressure–temperature formulation for values of Ra as high as 102; the main
characteristics of the flow were backed up, both qualitatively and quantitatively, by
asymptotic analysis. Furthermore, the analysis given here would have implications for
the results in Barletta (2016), Celli et al. (2017), Barletta & Celli (2018) and Barletta
& Rees (2019), wherein pressure boundary conditions at permeable boundaries were
considered and one-dimensional steady-state solutions for the base flow were found and
used for stability analyses. We also performed 2-D transient computations and found that
the steady-state solutions for Ra as high as 102 would be stable to 2-D perturbations.
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Appendix A. Boundary conditions (2.6) and (2.7)

Here, we consider how boundary conditions (2.6) and (2.7) can be arrived at from a more
general model that takes into account the field equations for both the insulation layer and
the reservoirs. Without loss of generality, we will consider only (2.7).

In order to avoid having to discuss the complications associated with the Beavers–Joseph
conditions at the interface of a porous medium and a clear fluid (Beavers & Joseph
1967; Ochoa-Tapia & Whitaker 1995a,b, 1998a,b; Jager & Mikelic 2000), we assume for
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simplicity that the reservoir is itself a porous medium, having permeability κres, where
κres � κ , and porosity φres, where φres > φ; in addition, let kres denote the thermal
conductivity of the solid matrix of this porous medium. In the reservoir, the velocity,
pressure and temperature fields satisfy (2.1)–(2.4), with the physical parameters replaced
accordingly, whereas far from the interface at x = L/2, we can reasonably suppose that

p → ph, T → T2. (A1a,b)

At x = L/2, we would expect the continuity of pressure, continuity of normal velocity,
continuity of temperature, and continuity of normal heat flux; thus, respectively,[

p
]+
−= 0, (A2)

− κ
μ

(
∂p
∂x

)
−
= −κres

μ

(
∂p
∂x

)
+
, (A3)

[T]+−= 0, (A4)

−
(

[(1 − φ) ks + φk]
∂T
∂x

)
−
= −

(
[(1 − φres) kres + φresk]

∂T
∂x

)
+
, (A5)

with [ ]+− denoting the difference in the value of a function above and below x = L/2, and
( )± denoting the value of a function in the limit as x tends to L/2 from above and below,
respectively.

Now, since κres � κ , (A3) reduces to(
∂p
∂x

)
+

≈ 0; (A6)

moreover, (A5) reduces to (
∂T
∂x

)
+

≈ 0 (A7)

if (1 − φres)kres + φresk � (1 − φ)ks + φk. Thence, with (A6) and (A7) as boundary
conditions at x = L/2, it is clear that p ≈ ph, T ≈ T2 for the reservoir, which then leads to
(2.7), as required.

Appendix B. Interior layer for Ra � 1

Supposing that ψ = 0 on Y = 0, and that the interior layer is of width O(ε), where ε � 1
and is to be determined, we may at least be able to make an estimate for ε in terms of Ra.
Supposing that ψ ∼ [ψ], where [ψ] is also to be determined, we set

Y = εη, ψ = [ψ]Ψ, (B1a,b)

so that (4.2) and (4.3) become, at leading order,

[ψ]
ε2 Ψηη = −θX, (B2)

[ψ]
ε

(
ΨηθX − ΨXθη

) = 1
Ra ε2 θηη. (B3)
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Hence (B2) and (B3) suggest that

[ψ] ∼ ε2,
[ψ]
ε

∼ 1
Ra ε2 , (B4a,b)

leading to

ε ∼ Ra−1/3, [Ψ ] ∼ Ra−2/3. (B5a,b)

So the problem at hand is, for −∞ < η < ∞ and −1/2 ≤ X ≤ 1/2,

Ψηη = −θX, (B6)

ΨηθX − ΨXθη = θηη, (B7)

subject to boundary conditions as η → ±∞, as well as initial-like conditions for θ , since
(B7) contains a term in θX , where X plays the role of a time-like variable. The boundary
conditions for θ seem to be fairly straightforward and are just

θ → ±1
2 as η → ±∞. (B8)

As regards Ψ , (B6) and (B8) suggest that Ψηη → 0 as η → ±∞, from which we might
infer that Ψη should, in general, tend to different functions of X as η → ±∞, although it
is not clear at present how these functions would be determined; indeed, we cannot even
rule out the simplest possibility that just Ψη → 0 as η → ±∞. The initial-like conditions
are even less straightforward. In view of the orientation of the velocity vectors, which can
be inferred from figure 5(c) and indicate ψY > 0 for Y < 0 and ψY < 0 for Y > 0, we
can surmise that there should be one condition for θ at X = −1/2 for η ≤ 0 and another
at X = 1/2 for η ≥ 0; moreover, no initial-like conditions are required on Ψ , since there
are no X-derivatives of Ψ in (B6). In fact, the situation is similar to that in Fowler &
Robinson (2018) for flow in a volcanic conduit, in that we have counter-current convection
in a thin layer; in that case, there was no equivalent of (B6) and Ψ = −η2/2, meaning that
a solution for θ could be found by using Laplace transforms and solving a resulting integral
equation, as originally done in Carrier, Krook & Pearson (1966) and Howard & Veronis
(1987), so as to determine θ(X, 0). Of course, the current problem is nonlinear and there
is no possibility of finding a solution by Laplace transforms. Moreover, these initial-like
conditions should reflect what is coming from the vertical boundaries at X = ±1/2, which
would require us to consider more closely what happens in the vicinity of (−1/2, 0) and
(1/2, 0).

Consider, without loss of generality, the point (−1/2, 0). For the boundary layer near
X = −1/2 for Y > 0, we have X + 1/2 ∼ Ra−1, and in the vicinity of (−1/2, 0) we could
reasonably expect that X + 1/2 ∼ Y . Supposing then that X + 1/2 ∼ Δ, Y ∼ Δ, where
Δ(� 1) is to be determined, (4.2) and (4.3) would give, on setting X + 1/2 = ΔX̄ and
Y = ΔȲ ,

ψX̄X̄ + ψȲȲ = −ΔθX̄, (B9)

ψȲθX̄ − ψX̄θȲ = 1
Ra

(
θX̄X̄ + θȲȲ

)
, (B10)

respectively. This would imply that we have self-consistency if ψ ∼ Δ and Δ = 1/Ra,
with all second derivatives being retained and it therefore being possible to satisfy all
boundary conditions at X̄ = 0 and Ȳ → ±∞, as well as matching conditions as X̄ → ±∞.
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Figure 9. Asymptotic structure of the problem as Ra → ∞.

X = –1/2

X = 1/2

X

η

θ → –1/2

θ → 1/2

θ = –1/2

θ = 1/2

Figure 10. Structure of the interior layer, with boundary and initial-like conditions for θ .

This would mean that the extent of this region in the Y-direction, Ra−1, is much smaller
than the extent of the interior layer in the Y-direction, Ra−1/3. In turn, this suggests that
near X = −1/2, the interior layer merely sees the value of θ at the lower outer edge of this
O(Ra−1)× O(Ra−1) region, i.e. θ = −1/2 for η ≤ 0. Using an analogous argument near
X = 1/2 for η ≥ 0, we would obtain the following initial-like conditions:

θ =
{−1/2, X = −1/2, for η ≤ 0,

1/2, X = 1/2, for η ≥ 0.
(B11)

The reason for not using the upper outer edge near X = −1/2 and the lower outer edge
near X = 1/2 is to do with the direction of the flow, as discussed in the previous paragraph.

The above considerations are summarized schematically in figures 9 and 10. Figure 9
shows how the suggested interior layer and the O(Ra−1)× O(Ra−1) regions near
(−1/2, 0) and (1/2, 0) fit into the overall asymptotic structure of the problem, whereas
figure 10 indicates the structure of the interior layer. Finding solutions of (B6) and
(B7), subject to (B8), (B11) and a suitable condition on Ψη as η → ±∞, constitutes an
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interesting, but challenging, numerical task, although the result will not affect the earlier
work in this paper.
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