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A flow model for the polar caps of Mars
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ABSTRACT. A mechanical model with circular symmetry is examined to test the
hypothesis that the Martian ice caps are composed of flowing water ice, together with
some rock debris. In contrast with most or all previous models, no assumption of a steady
state is made. Instead the accumulation and ablation is assumed to be insignificant, and it
1s suggested that after a sufficient time the profile would have settled down to a particular
collapsing form calculated by Halfar (1983). Higher modes of flow would have decayed
relatively quickly. To calculate the time constant, it is necessary to consider carefully the
distribution of temperature with depth. The time constant is sensitive to the grain-size,
which is assumed to be 1-10 mm and is a significant unknown, as is also the effect of pre-
ferred crystal orientation. Apart from this, the main uncertainty is the value of the up-
ward heat flux. With a heat flux of 30 mW m % the water-ice hypothesis is consistent
with an age of about 10’ years for both the north and the south polar caps, the north cap

being the younger by a factor of about 7.

1. INTRODUCTION

The permanent polar caps on Mars are recognizable from
the topography as domes rising above the surrounding
layered terrain (Zuber and others, 1998; Smith and others,
1999; Schenk and Moore, in press; see also the extensive
review by Clifford and others, 2000). One has to distinguish
them from the seasonal caps, whose visible extent varies
through the Martian year and which are probably surface
layers of solid carbon dioxide. There are such seasonal carbon
dioxide surface layers in both the north (Haberle and Jakosky,
1990; Kieffer, 1990) and the south (Herkenhoff and Murray,
1990; Paige and others, 1990). On the other hand, it is plausi-
ble to suppose that the north and south permanent polar caps
of Mars are made of water ice, possibly with a substantial
admixture of rock particles, but this is not yet firmly estab-
lished. Water ice is observed in the north (Kieffer, 1990), but
an alternative hypothesis that the entire thickness of the
south polar cap is solid carbon dioxide seems to fail on
mechanical grounds; Nye and others (2000) concluded that
such a material is far too weak to support a cap of the
observed height of 3000 m for the necessary time of 107 years.
The flow model used in Nye and others (2000) was com-
paratively crude in its treatment of the effect of temperature
on the flow, but the simplification was justified because the
solid-carbon-dioxide hypothesis gave lifetimes that were
orders of magnitude too small even on the most extreme
assumptions. However, to use such a flow model to make a
fuller test of the assumption that both caps are made of
water ice requires a more careful treatment of the effect of
temperature, and that is the purpose of the present paper.
Budd and others (1986) took full account of the complex
topography of the north cap by a numerical approach, and
related their results to a steady state. In contrast, the present
paper uses analytical methods to study an ice cap having
circular symmetry and does not assume a steady state. It cal-
culates what flow would occur in a cap of carefully chosen
profile in the absence of any accumulation or ablation (it
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being supposed that there has been none of significance in
the relevant period). The central parts will tend to fall, the
outer parts will rise, and at the same time the perimeter will
move outwards.

A crucial question is what profile to assume, because
slight differences in the profile result in totally different distri-
butions of the rate of change of thickness. The profile chosen
will, in fact, be close to, but not identical with, that of the Via-
lov (1958) model, as seen in Figure 1. The rather similar Nye
(1959) model is less appropriate for comparison here because
it is based on a sliding law rather than on a flow law. Both the
Vialov and the Nye model assumed a steady state and a uni-
form distribution of accumulation; there was accumulation
over the cap but no ablation. The rate of discharge of ice
across the outer edge was therefore finite although the thick-
ness was zero; as a result, the velocity at the edge was infinite.
For a terrestrial ice cap that is bounded by the sea, perhaps
this singularity in the model could be tolerated; it corres-
ponds to concentrating all the ablation into the perimeter
and not allowing the cap to expand sideways. For an ice cap
that ends on land and spreads laterally under its weight, it is
not appropriate.

The present model is quite different in conception, in
that it calculates for zero accumulation and ablation and de-
rives an evolving profile (a changing shape) from a similar-
ity hypothesis. Most notably, it avoids the edge singularity
in the above models and allows the cap to spread laterally.

Vialov: steady state,
uniform accumulation

Halfar: no
accumulation

Fig. 1. Comparison of two profiles, the Vialov (1958) model
and the present model, both withn = 1L.6.
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2. THE MODEL

The required solution of the flow equations, a similarity
solution, was introduced into glaciology by Halfar (198])
for two-dimensional flow and Halfar (1983) for radial flow,
as here. Hindmarsh (1990) has discussed the two-dimen-
sional solution. Here, prompted by the latter paper, we de-
duce the radial-flow solution from a similarity hypothesis,
rather than simply state it. Our model is then essentially
the same as that of Halfar (1983), but with two additions.
First, it is found possible to include isostatic depression of
the base with minimal change in the mathematics; second,
we take account of the effect on the flow law of the variation
of temperature with depth and with time.

At radius r and time ¢ the thickness is (7, t) (Fig. 2a). The
thickness at the centre h(0,t) is denoted by hy(t), and the
radius of the base is 79 (t). The base, originally horizontal, is
depressed by the weight of the ice by a fraction f of the ice
thickness, that is by fh(r, t), so that the elevation of the upper
surface is (1 — f)h(r,t). Define a scaled radial co-ordinate
p =r/ro(t) and a scaled thickness 7 (Fig. 2b)

_ h(r,t) _ h(rop, )
K ho(t) ho(t)

We look for a solution of the flow equations in which
1n = n(p), independent of ¢; that is, the scaled shape keeps
the same analytical form. It does not remain geometrically

=n(p,1). (1)

similar (Fig. 3); the aspect ratio changes.

Let g(r, t) be the radial flux (volume per unit time cross-
ing an area of height h and unit circumferential length). By
conservation of volume

)@

the second term of which is

(&) =5 =iy (1)
3)

Because the overall volume is fixed and 7 =n(p),
(d/dt)(hor3) = 0, and hence 7o = —(ro/2hg)he. Since
p=r/m,

Op T, p
) = =Ly 4
<at> B 2 W
Thus, from Equation (3)
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Fig. 2. Notation for the model cap: (a) dimensional lengths,
(b) scaled dimensionless lengths.
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and Equation (2) becomes, in terms of p

Nap)\ |1 d
— —rohy— =0. 6
< p t+27"0 odp(P n) (6)
The crucial step is in Equation (5), where (9/0t), is con-
verted to d/dp. Equation (6) may now be integrated with
respect to p at constant ¢; thus

1 .
ap+ 5 moho - pn = g(t), say . (7)

Dividing by p, and demanding that ¢ =0 at p = 0 for all ¢,
sets g(t) =0, so that

1 .
q:—EToho-Pﬁ- (8)

We now introduce a flow law of the form
é1 = Apexp(—Q/RgT)c",

where €7 1s the uniaxial compression rate of polycrystalline
ice under uniaxial compressive stress o, Ap and n are con-
stants, () is the activation energy, R is the gas constant
(83143 JK 'mol ') and T is the absolute temperature. The
corresponding relation for the simple shear rate 7y under
shear stress 7 is

4= Eexp(-Q/RcT)™", E=3""A,.  (9)

It is convenient to assume at first that the temperature is
uniform in space and constant with time, but later this
restriction will be removed. Taking the flow of the cap to be
predominantly by horizontal shearing and assuming the
slope a of the top surface to be small, we have at given radius
and time (Nye, 1952)

q=Ch"?a" (10)
— O (1~ )(@h/on),]"
M- panal .
where
O = Besp(~Q/RaT)(dg) f(n+2). (12

p' is the density, and the full stop in Equation (11) separates
the time-dependent part from the p-dependent part. Oh/dr
and dn/dp are negative. Note that the flow law of ice at the
appropriate temperature is included in the constant C. At
the extreme edge the slope becomes infinite, and Relation
(10) must break down; it should be replaced by different
physics, but because the region affected is very narrow we
shall ignore this defect. A similar problem arises in all

Fig. 3. The thickness distribution for n = 1.8 at three successive
wnstants t = 0, 2tg, 4tg. The intersection point of successive
curves moves outwards as the profile collapses, because
Oh /0t = 0 at fixed p not fixed r. The value of T_for which
Oh/Ot =0att = 01is indicated.
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models of this kind. In view of Equation (8) the equation to
be integrated is therefore

2n+2
n ho

c(1-f) o

n n 1 .
"2 (=dn/dp)" = —§Toh0.p7]. (13)
0

After division by 1), the variables may now be separated to give
2C(1 = f)"n" " (=dn/dp)" = Kp (14)

and
ho = =K (hy"™* /™), (15)

where K is a constant.
The thickness distribution will follow from integrating
Equation (14):

i 1 K 1/n A
_ 1+1/n —_ - (== 1/n
N
1 0

First, use for the upper limits 7 = 0 at p = 1, to yield the
value of K as

K =20(1- f)" (22111>n‘ (16)

Then, on integration, the scaled thickness distribution is
p1+1/7L + ,’72+1/n =1, (17)

as found by Halfar (1983) for the case f = 0. It is fortunate
that non-zero f makes no difference to this equation.

Integration of Equation (15) gives the time dependence. It
is convenient to think of ¢ = 0 as the present, when the central
height is Hy = ho(0) and the radius of the cap is Ry say. Then
horg = const. = HyR2, and Equation (15) becomes

}i() _ *K(HUR(Q))7(n+1)/2h(()5/2)(n+1) '
This integrates to give the decay of the central height as

' ) —2/(5n+3)

ho(t) = H, (1 + % (18)

with, using Equation (16),

1 2n +1\" Ry
ty = . 19
o= e ET (1) w19

t = —tp is the time at which the central height is asymptoti-
cally infinite (Fig. 4). Equation (19) will be central in what
follows.

Since hor? is constant the corresponding equation for
the expansion of the outer rim is

¢ 1/(5n+3)
’I“()(t) = RO (1 + t_) 5 (20)
0

-t O t
Fig. 4. The decay of the central thickness with time.
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and the aspect ratio diminishes according to

ho(t) _Hy (1 th) —3/(5n+3) (1)
ro(t)  Ro to '

In Equation (19) Ry and Hj are observable quantities, C
can be estimated as discussed below, and so, with an estima-
tion of the isostatic fraction f, ¢y can be calculated. In the
model the cap spreads out from an initial delta-function
shape at t = —t¢. In Figure 3, h(r) is computed at successive
times ¢t = 0 (the present) and 2tj, 4¢y (in the future) by
using Equations (17), (18) and (20). Halfar (1983) has shown
that the resulting evolving profile is stable against all pertur-
bations that preserve the total volume. That is the justifica-
tion for using this special profile, and its decay with time, as
a model of the real situation. Whatever the real history of
the cap may have been, the profile would have settled down
quite quickly (in a time much less than ty) to the steady
mode calculated; an analogous situation occurs when syrup
falls from a spoon on to a plate to form a spreading dome. ¢y
is the age of the model cap. Making the assumption that the
real caps have evolved to their present shapes by non-New-
tonian viscous spreading, we shall interpret £y as the age of
the real cap, even though it began in a different way from
the model cap.

3. ESTIMATION OF C

By taking C, which incorporates the flow law, as a constant,
the calculation has assumed that the temperature is both
uniform in space and constant with time. We shall continue
to assume that the surface temperature remains constant
with time (in the absence of reliable evidence to the con-
trary), thus ignoring the obliquity cycle of 1.25 x 10° years
(Clifford and others, 2000), but we wish to take explicit ac-
count of the fact that the temperature is non-uniform with
depth by using a parallel-sided slab model. Specifically, with
z measured downwards from the surface, we assume a non-
uniform temperature gradient that conducts the geother-
mal heat flux ¢ upwards:

¢ = K(T) (22)

0z’

The gradient is non-uniform because the thermal con-
ductivity k depends upon temperature. (In terrestrial ice
caps an additional non-uniformity is caused by advection
due to the downward vertical motion of the ice, but in the
present model the slowness of the downward motion makes
such an effect negligible) The flow law now depends on
depth.

If u 1s the outward velocity at depth 2z we have, at radius
r, where the surface slope is a,

du . n
5= v = Eexp(—Q/RcT)™"

= Fexp(—Q/RcT)(p'ga)" 2" .
Hence, assuming zero velocity on the bed,

h

u= /duzE(p’ga)"/exp[—Q/RgT(z)}zn’ dz. (23)
0

z
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A further integration gives the discharge as
h h h

q= / udz = E(dga)” / dz / dzexp[~Q/RcT(2)]2".

0 0
(24)

It 1s useful to define an effective temperature Ty as the
uniform temperature that would give the same discharge as
the actual non-uniform temperature. If T'(z) in the above
integrand is replaced by a constant T, the double integral
becomes exp(—Q/RgTest) - K2 /(n + 2), as used in Equa-
tion (12). Thus Ty 1 given by

h h

0/ dz / dzexp[-Q/ RaT(2))" (25)

= eXp(fQ/R(;Teff) . h””/(n + 2) .

To apply Equation (19), where C is constant, it is necessary
to choose a single value for Ty that is representative of the
whole cap and indeed of its whole history. This means a single
representative value of h for the thermal calculation. There-
fore, to choose h we first average 7 over the area of the ice
cap—for n = 1.8 (see below) the average is 0.6766 — and
hence, using the observed central elevation with an assumed
f, we find the average thickness at ¢ = 0 (the present). Then,
to take some account of the greater thickness in the past, we
scale it up by a factor corresponding to halfway through the
period of interest, t = —ty to 0, found from Equation (18) as
22/n+3). for n, = 1.8 this amounts to an increase of 12% (the
decay curve in Figure 4 is quite flat).

Having chosen h in Equation (25), the next task is to
evaluate the function T'(z) using Equation (22). The tem-
perature dependence of the thermal conductivity of pure
ice is well represented by the relation (Hobbs, 1974, p. 358)

A
K(T) = T+B A= 488.19Wm™*,

B=04685Wm K.

By integration of Equation (22) downwards from the sur-
face, where T' = Tj,

:% Aln%-l—B(T—TS) .

To invert this to find T'(z) we select a desired value zy
and solve the equation zg — z(T') = 0 numerically for T, by
Newton’s method, given the gradient 2'(T') = k(T)/¢, from
Equation (22). This gives T'(z) for a chosen value of ¢. The
double integral in Equation (25) is evaluated by Simpson’s
rule, and hence Ty, is found.

The numerical consequences of applying these results,
especially Equation (19), to the Martian caps will be dis-

2(T)

cussed in section 5. The next section will trace some formal
consequences of the model.

4. REMARKS ABOUT THE FLOW SOLUTION
4.1. Shapes of craters

A small circle (crater) drawn at an instant on the surface of
the cap will, in general, become elliptical, according to the
difference between the radial and the circumferential strain
rates. However, we now show that in the Halfar model these
strain rates are very nearly equal, so that a circular crater
remains approximately circular.
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Let % denote the outward radial velocity averaged
through the thickness. Then from Equation (8)

_ q q 1 ’I“()h.,o
=-=——=———0p. 26
TR T hon 2 P (26)
Thus @ varies linearly with p. The radial strain rate is
o 1 (0a 1h
@A)
or t To ap t 2 ho
and the circumferential strain rate is
TR 1h
L (28)

rorp  2hg

It is remarkable that not only are the two rates identical
but they are independent of p: the strain rate, averaged
through the thickness, is not only isotropic but uniform over
the cap at any given time. It follows from constancy of
volume that the vertical strain rate ¢, = ﬁg/ho will also be
uniform. These results are a consequence simply of the scal-
ing assumption that 7 = n(p), independent of ¢, together
with conservation of volume; they are independent of the
assumed flow law.

To calculate the change of shape of a crater, we need to
consider not @ but the surface velocity us. From Equation
(23) with (12), assuming uniform temperature, the relation
between them is us = [(n + 2)/(n 4 1)]a. Thus the radial
strain rate at the surface is &5 = [(n +2)/(n + 1)]é,. On
the other hand, the circumferential strain rate at the surface
is still £g as calculated above, so there is now a difference
between them. Over the time interval t = —7" to 0 a small
circle of radius 7 becomes an ellipse with semiaxes a (radial)
and b (circumferential) given by

0 0
a = Texp / Ersdt, b=Texp / Epdt;
=T -7

so that

0
2
a/b=exp (Z—J—lil_l) /égdt
Gy
0

1
= — 2o dt
P n+1/50

-T

Equation (28) with (18) gives &g = 1/[(5n + 3)(fo + t)], so
that, carrying out the integration,

a_(_t
b \to—-T

Taking, for example, T = %to, we find

) 1/(n+1)(5n+3)

g — 21/(n+1)(5n+3) )
For n = 1.8 the ratio is 1.0208. Using ug instead of @ has
changed the result by merely 2%. The conclusion is that a
crater that was initially circular would have remained nearly
so. But would a crater tend to be circular when it was first
formed? The answer is probably yes. Melosh (1989), writing
on craters in general, says “it has long been known that the
angle of impact has little effect on the shape of the ... crater,
except for very low angles of incidence”. Highly oblique inci-
dence is quite rare, and systematically elliptical craters have
not been reported on the Martian caps. Although this would
support our theoretical conclusion that flow does not cause
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appreciable distortion, it has to be added that in fact very few,
if any, definite craters have been seen on the caps at all.

The uniformity of the radial (longitudinal) strain rate,
averaged over depth, in this model is quite different from
what is usually found in a valley glacier (Paterson, 1994).
There the velocity is generally expected to reach a maxi-
mum in the neighbourhood of the equilibrium line, thus giv-
ing longitudinal extension in the upper parts and
compression in the lower parts. However, this difference
seems to be no reason for rejecting the Halfar model.

4.2. Accumulation and ablation

Figure 3 shows that the surface of the model cap falls in the
central part and rises in an outer annulus. (9h/0t), has to
be distinguished from the derivative following the ice,
dh/dt, which is equal to hé., €, being uniform. The relation

Oy _dh . (Oh
o) ~at “\ar),

The two terms on the right have opposite signs, and so can
cancel. The relation & = ¢/h and Equation (8) for ¢ trans-

form this to
oh . 1 [dn
(a): o [’”? (d—p)] '

Equation (18) for the time dependence of hg, and Equation
(17) for n, then give

oh, HO 1 ¢ —5(n+1)/5n+3
=) == 14—
(3) % (3)

_ on + 3 :
(1 — 1+1/n\—(n+1)/(2n+1) 1+1/n 2] .
(L=p /") o1’

between them is

This is plotted as a function of p for ¢ = 0 in Figure 5. The
rate passes through zero at p[2(2n + 1)/(5n + 3)]"/ "1,
which is p = 0.843 forn = 1.8.

The physical significance of this result is that ¢f one
added to the model (which we do not) a distribution of ac-
cumulation (and ablation) equal to —(0h/0t),, the result
would be a steady state; the upper surface would not
change. The equilibrium line would be at the value of p just
calculated. (It may be noted that the wnstantaneous effect of
any accumulation and ablation that might be present could
readily be accommodated within this model, because the
effect would simply be to add to and subtract from the cal-
culated thickness changes at the corresponding rates.)

At this point it is also instructive to consider the Vialov
(1958) profile (Paterson, 1994), which is derived for a steady
state. It was originally calculated for the case of two-dimen-
sional (unidirectional) flow, but a Vialov-type model with a
circular base of fixed radius gives the same profile, when ex-
pressed in terms of p and 7, as the two-dimensional model,
namely,

p1+1/n + n2+2/71, =1

)

which is to be compared with the very similar Halfar profile
(Equation (17)). The Vialov model has a uniform accumu-
lation rate ag over the whole cap, which must be balanced
with infinite ablation rate at the edge, the rate being

1
a=ay— §a0r06(r — 7).

The model is internally quite consistent (provided one adds
the O-function ablation), but without accumulation and
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(9h/dt),

P =0843

Fig. 5. The rate of increase of the thickness as a function of the
Jractional radial distance p.

ablation the profile would instantaneously fall with uniform
velocity, and the outward velocity would be infinite at the
edge. Of course, this would be inconsistent with a base of
fixed radius. Thus, taking the accumulation and ablation
as zero in the Vialov model does not lead to a consistent
result. This comparison demonstrates clearly how a small
difference in the profile leads to a totally different distribu-
tion of (Oh/0k),.

5. NUMERICAL RESULTS FOR THE MARS CAPS

The central elevation is 2950 m for both caps (Zuber and
others, 1998; Schenk and Moore, in press); for the north cap
T, = 175 K; for the south cap, Ty =155 K. For the radius of
the north cap, whose outline is rather irregular and uncer-
tain, we adopt the ice volume reported by Zuber and others
(1998) (1.5 x 10° km”® for a mean value of the isostatic fraction
f) and place it in a cap of central elevation 2950 m with the
profile of Equation (17) (with n =18, asjustified below). This
gives Ry = 430 km. For the south cap we take Ry = 225 km
(Schenk and Moore, in press). For the north cap Zuber and
others (1998) suggest that f lies between 0.15 and 0.29. For the
south cap we assume the same range. Other values adopted
are: p) =920kgm °, g =372ms >

The Martian heat flux has not been measured. A nominal
value often assumed, by analogy with the Earth, is ¢y =
30mW m ? and we express the flux used in the computation
as a multiple A of this; thus ¢ = A¢g. With A =1and f =0.15,
Tir = 196 K for the north cap and 174 K for the south cap.
With A =1 and f = 029 the corresponding temperatures
are 201 and 179 K (giving an overall mean of 188 K).

The physical mechanism of the deformation changes with
the applied stress. The flow law of Durham and others (1997),
namely, Ap =126 x10° MPa "s ', n =4, Q =61000] mol
1s applicable for higher stresses, where dislocation creep
mechanisms dominate, while that of Goldsby and Kohlstedt
(1997), with n = 1.8, is appropriate at lower stresses where
mechanisms such as grain-boundary sliding become favoured.
The latter authors find that creep rate depends on grain-size d
with an exponent p =14 (€ &< d™P); extrapolating their results
to a grain-size of 1.0 mm (see below) gives Ap = 62 MPa "s ',
Q = 49000 ] mol . We shall assume that both laws operate for
all stresses, and that the total deformation rate is the sum of
the rates from the two different processes. However, at low
stresses the Goldsby and Kohlstedt mechanism will be more
effective and the law will appear to have n = 1.8. Thus, look-
ing first at the curve in Figure 6 for d = lmm, we see the
result of taking the total shear strain rate as the sum of the
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Fag. 6. The result of combining two flow laws forn = 1.8 and
n = 4. The basal shear stresses estimated for the two caps are
indicated.

rates given by the two laws with n = 1.8 and 4, respectively.
Explicitly, if subscript “2” refers to the two laws,

’ﬂ/ = Z 3%(HI+I)ADJ eXp(—Qi/RgT)T"’ .
i=1,2

(The factor 32+ s 47 for n = 1.8 and 156 for n = 4)

The change in slope from 1.8 to 4 in this log-log plot
occurs at the shear stress where the two rates are equal. For
T = 199K (north cap) the crossover is at 049 MPa, while
for T'= 177K (south cap) it is at 0.74 MPa. These values
must be compared with the actual stresses in the caps. The
shear stress near the base of the cap at a radius where the
thickness is %Ho may be estimated as

1 __ H
T:p'g.hazp'g.EHoR—z

= 0.035 MPa (north cap) and 0.066 MPa (south cap).

Both values are well below the crossover stresses, and are
therefore in the region where the flow law with n = 1.8 should
apply. The curve in Figure 6 for d = 10 mm shows that this
conclusion still holds for a larger grain-size. We also note that
Durham and others (1992) found that up to 10% of added
quartz sand has little effect on the flow properties of ice. We
shall therefore use the n = 1.8 law, but recognizing that there
are still uncertainties, which we shall refer to later; these arise
primarily from the unknown preferred orientation of the
crystals in relation to the stress configuration. The flow law
recommended by Paterson (1994) with n = 3 is intermediate
between the above two laws.

Figure 7 shows a semi-log plot of #y against A using
Equation (19). A high value of A means greater heat flux,
higher temperature at depth, weaker ice, and so a shorter
lifetime t(. Lines are shown for the two extreme values of
f. The lines for the two caps are not very different, and the
effect of changing f is not great.

In quoting observational evidence for the age of the caps
one must distinguish them from the so-called layered deposits
which appear to underlie them. The layered deposits are
more extensive than the caps, especially in the south, and
consist of horizontal layers of varying relative abundance of
dust and water ice, which are thought to reflect climatic vari-
ations. The polar caps, on the other hand, are recognizable
from their dome-shaped topography and high albedo.
Although there are extensive observations, reviewed by
Clifford and others (2000), the precise relation between these
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Fig. 7. The age to of the caps as a function of the thermal flux,
expressed as amultiple X of 30 mW m % Full lines: north cap;
thin lines: south cap.

two geologic units remains far from clear. Crater densities on
the layered deposits indicate their ages. Clifford and others
(2000) quote observational evidence for an age of the exposed
surface of the deposits in the north of less than about 10” years,
and in the south of 7-15 x10° years. But for the caps them-
selves we must distinguish between the age of their surfaces
and how long the bulk of their material has been there. They
are very sparsely cratered and we shall tentatively assume
they are 10° to 10° years old.

It is striking that, if we select the mean value ¢y = 10’
years in Figure 7, the A values for both caps fall into a fairly
narrow band about A = 1.1, although it would not have been
surprising if A had been somewhat different from this. With
to = 10° years the values centre on A = 0.6.

It is as well to end on a note of caution. Strain rates in
glaciology have always been notoriously difficult to calculate
ab initio, because of uncertainties in extrapolating laboratory
measurements to low strain rates, and in the effect of factors
like grain shape, grain-size, preferred crystallographic orien-
tation, recrystallization and bubbles. In the present problem,
where grain-boundary effects are dominant, grain-size is per-
haps the most troublesome unknown. Observations of the
surface of the north cap (Kieffer, 1990) suggest a grain-size
of 0.1 mm or more, and we have assumed 1 mm as a reasonable
value at depth. A larger grain-size would lead to a smaller
strain rate (¢ oc d14), and the value of t, would be corres-
pondingly increased; for example, d = 10 mm instead of
1 mm would raise all the curves in Figure 7 by a factor 10"
= 25.1. The A values for ty = 10" and 10° years would then fall
in bands about A = 2.0 and 1.4 (instead of 1.1 and 0.6).

In Figure 7 the north cap is rather younger than the
south cap. The reason is revealed by using Equations (19)
and (12) to find the ratio of their ages, taking n, f and H,
to be the same for both caps:

toN (Ro,N> "oy
tos Ros Cn

B RO,N n+lex 7& iii
~ \Ros PR\ 1))

where the subscripts “N” and “S” refer to the two caps, and
Tx and Tg are the effective temperatures for A =1 and a
mean value of f. The first factor on the right is 6.13: larger
Ry (north cap) means lower slopes and therefore smaller
stresses and strain rates and longer times. The second factor
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on the right is 1/40.5: higher temperature (north cap) means
higher strain rates and shorter times. The temperature effect
1s the greater of the two opposing influences, so the cal-
culated lifetime of the north cap is shorter by a factor 40.5/
6.13 = 6.6. Clifford and others (2000) quote observations im-
plying that the layered terrains in the north are two orders
of magnitude younger that those in the south. If this differ-
ence for the layered terrains also applies to the polar ice
caps, the flow model has predicted an age ratio with the
same sign as that observed, but rather smaller in magnitude.

Looked at differently, Figure 7 places a constraint on the
heat flux; it cannot be greater than A =~ 2.5, because that
would imply that the ice caps were younger than about
10° years old. As regards the possibility of basal melting
(Clifford, 1987), the present model finds that this would be
achieved with the present thicknesses at the centres if the
heat-flux factor were A = 2.1-2.5 (north cap) and 2.7-3.2
(south cap).

In summary, Figure 7 shows that the dimensions and
surface temperature of both caps are consistent with a heat
flux not far removed from that of the Earth (A =1), which is
what is usually assumed for Mars. This supports the hypoth-
esis that the material of both caps 1s flowing water ice, with
an unknown amount of rock debris added.
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