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Abstract
Numerous works have been proposed to generate random graphs preserving the same properties as real-
life large-scale networks. However, many real networks are better represented by hypergraphs. Fewmodels
for generating random hypergraphs exist, and also, just a few models allow to both preserve a power-law
degree distribution and a high modularity indicating the presence of communities. We present a dynamic
preferential attachment hypergraph model which features partition into communities. We prove that its
degree distribution follows a power-law, and we give theoretical lower bounds for its modularity. We com-
pare its characteristics with a real-life co-authorship network and show that our model achieves good
performances. We believe that our hypergraph model will be an interesting tool that may be used in many
research domains in order to reflect better real-life phenomena.
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1. Introduction
The area of complex networks concerns designing and analyzing structures that model well large
real-life systems. It was empirically recognized that the common ground of such structures are
small diameter, high clustering coefficient, heavy tailed degree distribution, and visible com-
munity structure (Bollobás & Riordan, 2003). Surprisingly, all those characteristics appear, no
matter whether we investigate biological, social, or technological systems. An important growth
of research in this field has been observed roughly since 1999 when Barabási and Albert intro-
duced probably the most studied preferential attachment graph nowadays (Barabási & Albert,
1999). Their model is based on two mechanisms: growth (the graph is growing over time, gaining
a new vertex and a bunch of edges at each time step) and preferential attachment (an arriving ver-
tex is more likely to attach to the other vertices with a high degree rather than with a low degree). It
captures two out of four universal properties of the real networks, which are a heavy tailed degree
distribution and a small world phenomenon.

A number of theoretical complex networks models were presented since then. For the inter-
esting extensions of the Barabási-Albert model, one may check, for example, Dorogovtsev et al.
(2000), where preferential attachment rule includes also, so-called, initial attractiveness of each
vertex, Cooper & Frieze (2003) where insertion of edges between existing vertices is allowed, or
spatial preferential attachment (SPA) model (Aiello et al., 2008, Jacob & Mörters, 2015, Kaiser &
Hilgetagr, 2004) in which vertices are given a spatial position and preferential attachment rule
favors short connections. A noticeable disadvantage of many preferential attachment models
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meant to reflect real-life networks is the lack of a visible community structure, that is, low
modularity.

Modularity is a parameter measuring how clearly a network may be divided into communities.
It was introduced in Newman & Girvan (2004). A graph has high modularity if it is possible to
partition the set of its vertices into communities inside which the density of edges is remarkably
higher than the density of edges between different communities (we give its precise definition
in the next section). Modularity is known to have some drawbacks (for a thorough discussion
check Lancichinetti & Fortunato, 2011). Nevertheless, today it remains a popular measure, and
it is widely used in most common algorithms for community detection (Blondel et al., 2008,
Fortunato & Hric 2016, Traag et al., 2019). Most of the up-to-date results on the modularity
for various classes of graphs are summarized in the appendix of McDiarmid & Skerman (2020).
One finds there, among others, the results for random d-regular graphs (McDiarmid & Skerman,
2018; Prokhorenkova et al., 2017), random planar graphs (McDiarmid & Skerman, 2018), treelike
graphs, that is, graphs with low treewidth (McDiarmid & Skerman, 2018), Erdős-Rényi graphs
(McDiarmid & Skerman, 2020), and preferential attachment graphs. The latter ones were studied
by Prokhorenkova et al. in (2016) and (2017) in the context of the Barabási-Albert model. For very
recent results on the modularity for random graphs (3-regular ones, the ones with a given degree
sequence and the ones on the hyperbolic plane) consult Chellig et al. (2021), Chellig et al. (2022).
Also, for a new result on the modularity of minor-free graphs one may check Lasoń & Sulkowska
(2022).

It is well known that the real-life social or biological networks are highly modular (Fortunato,
2010; Girvan & Newman 2002). On the other hand, just several power-law models featuring exis-
tence of communities were introduced so far. One may check LFR (Lancichinetti et al., 2008) and
ABCD (Kamiński et al., 2021) benchmarks as one of the few examples. In these models, not only
the degrees but also the sizes of communities follow a power-law. Some asymptotic results for the
modularity of ABCDwere given recently in Kamiński et al. (2022). Both LFR and ABCD are, how-
ever, static graphs (the number of nodes must be given in advance at the generation phase). Good
modularity properties are obtained also by geometric models, like already mentioned SPA graphs
(Aiello et al., 2008; Jacob &Mörters, 2015; Kaiser &Hilgetagr, 2004) (for themodularity analysis of
SPA model presented in Aiello et al., 2008, one may check Prokhorenkova et al., 2016). However,
they additionally use a spatial metric. An interesting proposition appears also in papers by Avin
et al. (2020) and (2015), where a preferential attachment model featuring two types of vertices,
reflecting minority and majority in the society (thus featuring two communities), is introduced.
We present it in more details in the light of our results in Section 6.

Note that almost all the up-to-date complex networks models are graph models; thus, they
mirror only binary relations. In practical applications, k-ary relations (co-authorship, groups of
interests, protein reactions) are often modeled in graphs by cliques which may lead to a profound
information loss.

1.1. Results
Within this article, we propose a dynamic model with high modularity by preserving a heavy
tailed degree distribution and not using a spatial metric. Moreover, our model is a random hyper-
graph (not a graph), thus, it can reflect k-ary relations. A first preferential attachment hypergraph
model was introduced by Wang et al. (2010). However, it was restricted just to a specific sub-
family of uniform acyclic hypergraphs (the analogue of trees within graphs). The first rigorously
studied non-uniform hypergraph preferential attachment model was proposed only in 2019 by
Avin et al. (2019). Its degree distribution follows a power-law. However, our empirical results
indicate that this model has a weakness of low modularity (see Section 7). To the best of our
knowledge, the model proposed within this article is the first dynamic non-uniform hypergraph
model with degree sequence following a power-law and exhibiting clear community structure. We
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experimentally show that the features of our model correspond to the ones of a real co-authorship
network built upon Scopus database.

1.2. Paper organization
Basic definitions are introduced in Section 2. In Section 3, we present a universal preferential
attachment hypergraphmodel which unifies many existing models: from classical Barabási-Albert
graph (Barabási & Albert, 1999) to Avin et al. preferential attachment hypergraph (Avin et al.,
2019). In Section 4, we use it as a component in a stochastic block model to build a general hyper-
graph with goodmodularity properties. Theoretical bounds for its modularity one finds in Section
5. In Section 6, we compare our model with minority-majority graphs introduced in Avin et al.
(2020), (2015), and experimental results on a real data are presented in Section 7. Further works
are discussed in Section 8. The Appendix contains several technical proofs.

2. Basic definitions and notation
We define a hypergraph H as a pair H = (V , E), where V is a set of vertices and E is a multiset
of hyperedges, that is, non-empty, unordered multisets of V . We allow for a multiple appearance
of a vertex in a hyperedge (self-loops) as well as a multiple appearance of a hyperedge in E. The
degree of a vertex v in a hyperedge e, denoted by d(v, e), is the number of times v appears in e. The
cardinality of a hyperedge e is |e| = ∑

v∈e d(v, e). The degree of a vertex v ∈V in H is understood
as the number of times it appears in all hyperedges, that is, deg (v)= ∑

e∈E d(v, e). If |e| = k for all
e ∈ E, H is said to be k-uniform.

We consider hypergraphs that grow by adding vertices and/or hyperedges at discrete time steps
t = 0, 1, 2, . . . according to some rules involving randomness. The random hypergraph obtained
at time t will be denoted by Ht = (Vt , Et) and the degree of u ∈Vt in Ht by degt (u). By Dt , we
denote the sum of degrees at time t, that is, Dt = ∑

u∈Vt degt (u).
Nk,t stands for the number of vertices in Ht of degree k. We write f (k)∼ g(k) if

f (k)/g(k) k→∞−−−→ 1. We say that the degree distribution of a random hypergraph follows a
power-law if the fraction of vertices of degree k is proportional to k−β for some exponent β ≥ 1.
Formally, we will interpret it as limt→∞ E

[
Nk,t
|Vt |

]
∼ c · k−β for some positive constant c and β ≥ 1.

We say that an event A occurs with high probability (whp) if the probability P[A] depends on a
certain number t and tends to 1 as t tends to infinity.

As the hypergraph gets large, the probability of creating a self-loop can be well bounded and is
quite small provided that the sizes of hyperedges are reasonably bounded.

Introduced by Newman and Girvan, modularity measures the presence of community struc-
ture in the graph.

Definition 1 (Newman and Girvan, 2004). Let G= (V , E) be a graph with at least one edge. For a
partitionA of vertices of G, we define its modularity score on G as

qA(G)=
∑
A∈A

(
|E(A)|

|E| −
(
vol(A)
2|E|

)2
)
,

where E(A) is the set of edges within A and vol(A)= ∑
v∈A deg (v) (deg (v) stands for the degree of

v in G). The modularity of G is then given by q∗(G)=maxA qA(G).

Conventionally, a graph with no edges has modularity equal to 0. The value
∑

A∈A
|E(A)|

|E| is

called an edge contribution while
∑

A∈A
(
vol(A)
2|E|

)2
is a degree tax. A single summand of the mod-

ularity score is the difference between the fraction of edges within A and the expected fraction of
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edges within A if we considered a random multigraph on V with the degree sequence given by G.
The value of q∗(G) always falls into the interval [0, 1).

Several approaches to define a modularity for hypergraphs can be found in contemporary liter-
ature. Some of them flatten a hypergraph to a graph (e.g. by replacing each hyperedge by a clique)
and apply a modularity for graphs (see e.g. Kumar et al., 2020; Neubauer & Obermayer, 2009).
Others are based on information entropy modularity (Yang et al., 2017). We want to stick to the
classical definition from Newman & Girvan (2004) and preserve a rich hypergraph structure, thus
we work with the definition proposed by Kamiński et al. (2019).

Definition 2 (Kamiński et al., 2019). Let H = (V , E) be a hypergraph with at least one hyperedge.
For � ≥ 1, let E� ⊆ E denote the set of hyperedges of cardinality �. For a partitionA of vertices of H,
we define its modularity score on H as

qA(H)=
∑
A∈A

⎛
⎝ |E(A)|

|E| −
∑
�≥1

|E�|
|E| ·

(
vol(A)
vol(V)

)�
⎞
⎠ ,

where E(A) is the set of hyperedges within A (a hyperedge is within A if all its vertices are con-
tained in A), vol(A)= ∑

v∈A deg(v) and vol(V)= ∑
v∈V deg(v). The modularity of H is then given

by q∗(H)=maxA qA(H).

A single summand of the degree tax is the expected number of hyperedges within A if we
considered a random hypergraph on V with the degree sequence given byH and having the same
number of hyperedges of corresponding cardinalities.

Remark 1. In the above definition, only the hyperedges that are all contained in a single com-
munity may increase the edge contribution. This is, so-called, strict variant of the hypergraph
modularity. In the literature, one finds also the other variants, for example,majority in which the
hyperedge increases the edge contribution if majority of its vertices belong to a single community.
For a detailed discussion and other variants consult Kamiński et al. (2019) and Kamiński et al.
(2021). First algorithms for community detection in hypergraphs based on those definitions one
finds in Antelmi et al. (2020); Kamiński et al. (2019); Kamiński et al. (2021).

Remark 2. It is worth mentioning that to model k-ary relations, one may also turn to bipartite
graphs with two kinds of nodes: one kind representing actors of the network and the other the
groups to which actors may belong (e.g. scientists are actors and scientific articles constitute the
groups). Then, the edge always connects two vertices of different kinds reflecting membership of
an actor in a given group. Such representation is, in many respects, equivalent to the hypergraph
one. For example, the degree distribution of the actors’ part coincide with the degree distribution
obtained by modeling this network by a hypergraph (indeed, a degree of an actor is the number of
groups, thus hyperedges, to which she belongs). Consult Newman et al. (2002) for some explicit
work on such bipartite structures and Newman et al. (2001) for machinery to investigate its prop-
erties. In Ghoshal et al. (2009), generalization to tripartite graph is presented. For random variants
(called random intersection graphs), onemay check the surveys Bloznelis et al. (2013a; 2013b) and
for some variants of bipartite graph generators the chapter Penschuck et al. (2022).

3. General preferential attachment hypergraphmodel
In this section, we generalize a hypergraph model proposed by Avin et al. (2019). The model from
Avin et al. (2019) allows for two different actions at a single time step—attaching a new vertex
by a hyperedge to the existing structure or creating a new hyperedge on already existing vertices.
We allow for four different events at a single time step, admit the possibility of adding more than
one hyperedge at once, and draw the cardinality of newly created hyperedge from more than one
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distribution. The events allowed at a single time step in our model Ht are as follows: adding an
isolated vertex, adding a vertex and attaching it to the existing structure bym hyperedges, adding
m hyperedges, or doing nothing. The last event “doing nothing” is included since later we put Ht
in a broader context of a stochastic block model, where it serves as a single community. “Doing
nothing” indicates a time slot in which nothing associated directly with Ht happens but some
event takes place in the other part of the whole stochastic block model (see Section 4).

3.1. ModelH(H0, p, Y, X, m, γ )
The general hypergraph model H is characterized by the six following parameters:

(1) H0—the initial hypergraph, seen at t = 0;
(2) p= (pv, pve, pe)—the vector of probabilities indicating, what are the chances that a particu-

lar type of event occurs at a single time step; we assume pv + pve + pe ∈ (0, 1]; additionally
pe is split into the sum of r probabilities pe = p(1)e + p(2)e + . . . + p(r)e which allows for
adding hyperedges whose cardinalities follow different distributions;

(3) Y = (Y0, Y1, . . . , Yt , . . . )—independent random variables, giving the cardinalities of the
hyperedges that are added together with a vertex at a single time step;

(4) X = ((X(1)
1 , . . . , X(1)

t , . . . ), . . . , (X(r)
1 , . . . , X(r)

t , . . . )) - r sequences of independent random
variables, representing the cardinalities of the hyperedges that are added at a single time
step when no new vertex is added;

(5) m—the number of hyperedges added at once;
(6) γ � 0—a parameter appearing in the formula for the probability of choosing a particular

vertex to a newly created hyperedge.

Here is how the structure of H =H(H0, p, Y , X,m, γ ) is being built. We start with some non-
empty hypergraph H0 at t = 0. We assume for simplicity that H0 consists of a hyperedge of
cardinality 1 over a single vertex. Nevertheless, all the proofs may be generalized to any fixed
initial H0. “Vertices chosen from Vt in proportion to degrees” means that vertices are chosen
independently (possibly with repetitions) and the probability that any u from Vt is chosen is

P[u is chosen]= degt (u)+ γ∑
v∈Vt ( degt (v)+ γ )

= degt (u)+ γ

Dt + γ |Vt| .

For t� 0 we form Ht+1 from Ht choosing only one of the following events according to p.

• With probability pv: Add one new isolated vertex.
• With probability pve: Add one vertex v. Draw a value y being a realization of Yt . Then
repeatm times: select y− 1 vertices fromVt in proportion to degrees; add a new hyperedge
consisting of v and y− 1 selected vertices.

• With probability p(1)e : Draw a value x being a realization ofX(1)
t . Then repeatm times: select

x vertices from Vt in proportion to degrees; add a new hyperedge consisting of x selected
vertices.
...

• With probability p(r)e : Draw a value x being a realization of X(r)
t . Then repeatm times: select

x vertices from Vt in proportion to degrees; add a new hyperedge consisting of x selected
vertices.

• With probability 1− (pv + pve + pe): Do nothing.
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We allow for r different distributions fromwhich one can draw the cardinality of newly created
hyperedges. Later, when Ht serves as a single community in the context of the whole stochastic
block model, this trick allows for spanning a new hyperedge across several communities drawing
vertices from each of them according to different distributions. This reflects some possible real-
life applications. Think of an article authored by people from two different research centers. Our
experimental observation is that it is very unlikely that the number of authors will be distributed
uniformly among two centers. More often, one author represents one center, while the others are
affiliated with the second one.

3.2. Degree distribution of H(H0, p, Y, X,m, γ )
In this section, we prove that the degree distribution of H =H(H0, p, Y , X,m, γ ) follows a
power-law with β > 2. We assume that supports of random variables indicating cardinalities of
hyperedges are bounded. This assumption is in accord with potential applications—think of co-
authors, groups of interest, protein reactions, etc. Moreover, we assume that their expectations are
constant. First, we state a technical lemma. For its proof consult Section A in the Appendix.

Lemma 1. If limt→∞ E[Nk,t]
t ∼ ck−β for some positive constant c then

lim
t→∞ E

[
Nk,t
|Vt|

]
∼ c

pv + pve
k−β .

(Here “∼” refers to the limit by k→ ∞.)

Theorem 1. Consider a hypergraph H =H(H0, p, Y , X,m, γ ) for any t > 0. Let i ∈ {1, . . . , r}. Let
E[Yt]= μ0, and E[X(i)

t ]= μi. Moreover, let 1� Yt < t1/4 and 1� X(i)
t < t1/4. Then, the degree

distribution of H follows a power-law with

β = 2+ γ V̄ +m · pve
D̄−m · pve ,

where V̄ = pv + pve and D̄=m(pveμ0 + p(1)e μ1 + . . . + p(r)e μr) which are the expected number of
vertices added per single time step and the expected number of vertices that increase their degree in
a single time step, respectively.

Sketch of proof. (For the full proof consult Section A in the Appendix.) We prove that
limt→∞ E[Nk,t]

|Vt | ∼ c̃k−β (determining the exact constant c̃). By Lemma 1 we know that it suffices to
show that limt→∞ E[Nk,t]

t ∼ ck−β for some positive constant c.We take a standardmaster equation
approach that can be found, for example, in Chung & Lu (2006) or Avin et al. (2019). The initial
hypergraph H0 consists of a single hyperedge of cardinality 1 over a single vertex thus N0,0 = 0
and N1,0 = 1. Now, let Ft be the σ -algebra associated with the probability space at time t. Let
Qd,k,t denote the probability that a specific vertex of degree k was chosen d times to be included
in new hyperedges at time t. Moreover, let Zt be the random variable chosen at step t among
Yt , X(1)

t , . . . , X(r)
t according to (pv, pve, p(1)e , . . . , p(r)e ). For t� 1 we get that

E[N0,t|Ft−1]= pv +N0,t−1Q0,0,t

and when k� 1

E[Nk,t|Ft−1]= δk,mpve +
min{k,mZt}∑

i=0
Nk−i,t−1Qi,k−i,t ,
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where δk,m is the Kronecker delta. The proof then follows from the tedious analysis of this
recursive equation.

Remark 3. In the proof of Theorem 1, we show more than the statement tells. Not only we show
that the degree distribution of H follows a power-law but also we determine the exact constant
c̃ in the expression limt→∞ E[Nk,t]

|Vt | ∼ c̃k−β , which is c̃= c
pv+pve , where c= pvD · �(γ+D)

�(γ ) + pveD ·
�(m+γ+D)

�(m+γ ) and D= D̄+γ V̄
D̄−mpve

(�(x) stands for the gamma function).

Below we present a bunch of examples showing that our theorem generalizes the results for
well known models.

Example 1 (Barabási-Albert graph model; Barabási & Albert, 1999). In a single time step, we
always add one new vertex and attach it withm edges (in proportion to degrees) to existing struc-
ture. Thus pv = 0, pve = 1, pe = 0, V̄ = 1, Yt = 2, D̄= 2m, γ = 0 and we get β = 2+ m

2m−m = 3.

Example 2 (Preferential attachment scheme with vertex- and edge-step; Chung & Lu, 2006,
Chapter 3). In a single time step: we either (with probability p) add one new vertex and attach
it with an edge (in proportion to degrees) to existing structure; otherwise, we just add an edge (in
proportion to degrees) to existing structure. Thus pv = 0, pve = p, pe = 1− p, V̄ = p, Yt = 2, r = 1,
X(1)
t = 2, D̄= 2,m= 1, γ = 0 and we get β = 2+ p

2−p .

Example 3 (Avin et al., hypergraph model; Avin et al., 2019). In a single time step, we either (with
probability p) add one new vertex and attach it with a hyperedge of cardinality Yt (in proportion
to degrees) to existing structure; otherwise, we just add a hyperedge of cardinality Yt to existing
structure. The assumptions on Yt and the sum of degrees Dt are as follows:

(1) limt→∞ E[Dt−1]/t
E[Yt]−pve =D ∈ (0,∞),

(2) E[| 1
Dt

− 1
E[Dt] |]= o(1/t),

(3) E

[
Y2
t

D2
t−1

]
= o(1/t).

The result fromAvin et al. (2019) states that the degree distribution of the resulting hypergraph
follows a power-law with β = 1+D. Note that in our model limt→∞ E[Dt−1]/t

E[Yt]−pve = D̄
D̄−pve

. Setting

pv = 0, pve = p, pe = 1− p, V̄ = p,m= 1, γ = 0 we get β = 2+ pve
D̄−pve

= 1+ D̄
D̄−pve

= 1+D.

Remark 4. Even though our result from this section may seem similar to what was obtained by
Avin et al., it is easy to indicate cases that are covered by our model but not by the one from Avin
et al. (2019) and vice versa. Indeed, the model from Avin et al. (2019) admits a wide range of
distributions for Yt . In particular, as authors underline, three mentioned assumptions hold for Yt
which is polynomial in t. This is the case not covered by our model (we upper bound Yt by t1/4)
but we also cannot think of real-life examples that would require bigger hyperedges. However,
we can think of some natural examples that break requirements from Avin et al. (2019) but are
admissible in our model. Put Yt = 2 if t is odd and Yt = 3 if t is even. Then, lim

t→∞
t - even

E[Dt−1]/t
E[Yt]−pve = 5/2

3−pve

and lim
t→∞
t - odd

E[Dt−1]/t
E[Yt]−pve = 5/2

2−pve ; thus, the limit limt→∞ E[Dt−1]/t
E[Yt]−pve does not exist. Whereas in our model

we are allowed to put r = 2, p(1)e = p(2)e = 1/2, X(1)
t = 2, X(2)

t = 3 which probabilistically simulates
stated example.
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4. Hypergraphmodel with high modularity
In this section, we present a new preferential attachment hypergraph model which features parti-
tion into communities. We prove that its degree distribution follows a power-law. Its structure
benefits from the stochastic block model for graphs (Holland et al., 1983). In the stochastic
block model, a vertex set is partitioned into disjoint communities C(1), . . . , C(r) while the edge
set is sampled according to a symmetric matrix Pr×r of probabilities: vertices v ∈ Ci and u ∈ Cj
are connected with probability Pij, independently of the others. There exist other graph mod-
els with a built-in community structure, for example, LFR (Lancichinetti et al., 2008) or ABCD
(Kamiński et al., 2021) benchmarks; we chose a stochastic block model for its simplicity. To
the best of our knowledge, no mathematical model so far consolidated preferential attachment,
possibility of having hyperedges and clear community structure. We denote our hypergraph by
Gt = (Vt , Et). At each time step, either a new vertex (vertex-step) or a new hyperedge (hyperedge-
step) is added to the existing structure. The set of vertices of Gt is partitioned into r communities
Vt = C(1)

t ∪̇ C(2)
t ∪̇ . . . ∪̇ C(r)

t . Whenever a new vertex is added to Gt , it is assigned to just one out
of r communities and stays there forever.

4.1. Model G(G0, p,M, X, P, γ )
Hypergraph model G is characterized by six parameters:

(1) G0—initial hypergraph seen at time t = 0 with vertices partitioned into r communities
V0 = C(1)

0 ∪̇ C(2)
0 ∪̇ . . . ∪̇ C(r)

0 ;
(2) p ∈ (0, 1)—the probability of taking a vertex-step;
(3) vectorM = (m1,m2, . . . ,mr) with allmi positive, constant and summing up to 1;mi is the

probability that a randomly chosen vertex belongs to C(i)
t ;

(4) d-dimensional matrix Pr×...×r of hyperedge probabilities (Pi1,i2,...,id is the probability that
communities i1, . . . , id share a hyperedge); d is the upper bound for the number of distinct
communities shared by a single hyperedge (d ≤ r);

(5) X = ((X(1)
1 , . . . , X(1)

t , . . . ), . . . , (X(d)
1 , . . . , X(d)

t , . . . )) - d sequences of independent random
variables indicating the number of vertices from a particular community involved in a
newly created hyperedge;

(6) γ � 0—parameter appearing in the formula for the probability of choosing a particular
vertex to a newly created hyperedge.

Remark 5. Observe that storing hyperedge probabilities in d-dimensional matrix P we use much
more space than we actually should. The same probabilities may repeat many times in P. For
example, when d = 2 we get 2-dimensional symmetric matrix P such that

∑r
i=1

∑i
j=1 pij = 1 and

the probability of creating hyperedge between two distinct communities C(i) and C(j) is in matrix
P doubled—as pij and pji. If we allow for bigger hyperedges it may be repeated much more times.
In fact, we need to store at most 2r − 1 different probabilities (one for each non-empty subset of
the set of communities) while in P we store dr values (in particular, if d = r we store rr instead
2r − 1 values). Nevertheless, for formal proofs this notation is convenient; thus, we use it at the
same time underlining that implementation may be done much more space efficiently.

We build a structure of G(G0, p,M, X, P, γ ) starting with some initial hypergraph G0. Here G0
consists of r disjoint hyperedges of cardinality 1. All vertices are assigned to different communities.
(Nevertheless, the proofs may be generalized to any fixed initial G0 with vertices splitted into
r communities.) “Vertices are chosen from C(i)

t in proportion to degrees” means that vertices are
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chosen independently (possibly with repetitions) and the probability that any u fromC(i)
t is chosen

equals

P[u is chosen]= degt (u)+ γ∑
v∈C(i)

t
( degt (v)+ γ )

,

(degt (v) is the degree of v in Gt). For t� 0, Gt+1 is obtained from Gt as follows:

• With probability p add one new isolated vertex and assign it to one of r communities
according to a categorical distribution given by vectorM.

• Otherwise, create a hyperedge:

– according to P selectN communities that will share a hyperedge being created, say C(i1)
t ,

C(i2)
t , . . . , C(iN )

t (N is a random variable depending on P, N ≤ d);
– assign selected communities to N random variables chosen from {X(1)

t , . . . , X(d)
t }

uniformly independently at random, say to X(j1)
t , . . . , X(jN )

t ;
– for each s ∈ {1, . . . ,N} select X(js)

t vertices from C(is)
t in proportion to degrees;

– create a hyperedge consisting of all selected vertices (thus a newly created hyperedge is
of cardinality X(j1)

t + . . . + X(jN )
t ).

Remark 6. The distribution of random variable N is given by matrix P. For example, if we allow
only for hyperedges of size at most 2, we get a 2-dimensional, symmetric matrix Pr×r such that∑r

i=1
∑i

j=1 pij = 1. Then, P[N = 1]= ∑r
i=1 pii and P[N = 2]= 1− ∑r

i=1 pii.

4.2. Degree distribution of G(G0, p,M, X, P, γ )
A power-law degree distribution of G comes from the fact that each community ofG behaves over
time as the hypergraph model H presented in the previous section. Thus, the degree distribution
of each community follows a power-law.

The number of vertices in Gt is a random variable satisfying |Vt| ∼ B(t, p)+ r, while for the
number of hyperedges in Gt we have |Et| ∼ B(t, 1− p)+ r. Note that since |Vt| follows a binomial
distribution, Lemma 1 holds also in case of Gt if we replace pv + pve by p.

Recall that Nk,t stands for the number of vertices in Gt of degree k. For i ∈ {1, 2, . . . , r} by N(i)
k,t

we denote the number of vertices of degree k in Gt belonging to community C(i)
t . Thus Nk,t =∑r

i=1 N
(i)
k,t .

Lemma 2. Consider a single community C(j)
t of a hypergraph Gt . Let E[X(i)

t ]= μi and 1� X(i)
t <

t1/4 for i ∈ {1, . . . , d}. Then, the degree distribution of vertices from C(j)
t (we refer to the degrees in

Gt) follows a power-law with

βj = 2+ γ V̄j

D̄j

where V̄j is the expected number of vertices added to C(j)
t at a single time step and D̄j is the average

number of vertices from C(j)
t that increase their degree at a single time step, thus V̄j = pmj and D̄j =

(1− p)sj μ1+...+μd
d , where sj is the probability that by creating a new hyperedge a community j is

chosen as the one sharing it (we obtain sj from matrix P ).
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Remark 7. The value sj can be derived from P; it is the sum of probabilities of creating a hyperedge
between C(j) and any other subset of communities.

Proof. Note that the community C(j)
t+1 arises from community C(j)

t choosing at time t only one of
the following events according to p,M and P.

• With probability pmj: Add one new isolated vertex.

• With probability (1−p)sj
d : Select X(1)

t vertices from C(j)
t in proportion to their degrees; these

are vertices included in a newly created hyperedge, their degrees will increase.
...

• With probability (1−p)sj
d : Select X(d)

t vertices from C(j)
t in proportion to their degrees; these

are vertices included in a newly created hyperedge, their degrees will increase.
• With probability 1− (pmj + (1− p)sj): Do nothing.

Now, apply Theorem 1 with pv = pmj, pve = 0, p(1)e = p(2)e = . . . = p(d)e = (1−p)sj
d and m= 1.

Then, the degree distribution of vertices from C(j)
t follows a power-law with

βj = 2+ γ V̄j

D̄j
= 2+ γ pmj

(1− p)sj μ1+...+μd
d

.
�

Theorem 2. Consider a hypergraph G=G(G0, p,M, X, P, γ ). For all t > 0, let E[X(i)
t ]= μi and

1� X(i)
t < t1/4 for i ∈ {1, . . . , d}. Then the degree distribution of G follows a power-law with β =

2+ γ ·minj∈{1,...,r}{V̄j/D̄j},where V̄j is the expected number of vertices added to C(j)
t at a single time

step and D̄j is the expected number of vertices from C(j)
t that increase their degree at a single time

step. That is,

β = 2+ γ p
(1− p)μ1+...+μd

d
· min
j∈{1,...,r}

{mj

sj

}
,

where sj is the probability that by creating a new hyperedge a community j is chosen as the one
sharing it.

Proof. We need to prove that limt→∞ E

[
Nk,t
|Vt |

]
∼ c̃k−β for some constant c̃ and β defined as in

the statement of this theorem. By Lemma 1 (recall that since |Vt| follows a binomial distribution,
Lemma 1 holds also in case of Gt if we replace pv + pve by p), it suffices to show limt→∞ E[Nk,t]

t ∼
ck−β for some positive constant c. By Lemma 2:

lim
t→∞

E[Nk,t]
t

= lim
t→∞

E[N(1)
k,t ]
t

+ . . . + lim
t→∞

E[N(r)
k,t ]
t

∼ c1k−β1 + c2k−β2 + . . . + crk−βr

for some constants c1, . . . , cr and βj = 2+ γ V̄j
D̄j

. Thus limt→∞ E[Nk,t]
t ∼ ck−β , where

β = min
j∈{1,...,r}

{
βj

} = 2+ γ · min
j∈{1,...,r}

{
V̄j

D̄j

}
= 2+ γ p

(1− p)μ1+...+μr
r

· min
j∈{1,...,r}

{mj

sj

}
.

�
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5. Modularity of G(G0, p,M, X, P, γ )
In this section, we give lower bounds for the modularity of G=G(G0, p,M, X, P, γ ) in terms
of the values from matrix P. We analyze G= (V , E) obtained up to time t (this time we omit
superscripts t). Recall that each vertex from V is assigned to one of r communities, V = C(1) ∪̇
C(2) ∪̇ . . . ∪̇ C(r). We obtain the lower bound for modularity deriving the modularity score of the
partition C = {C(1), C(2), . . . , C(r)}. This choice of partition seems obvious provided that matrix
P is strongly assortative, that is, the probabilities of having a hyperedge inside communities are
all bigger than the highest probability of having a hyperedge joining different communities. Note
that what matters for the value of modularity is the total sum of degrees in each community, not
the distribution of degrees. Therefore, we do not use the fact that the degree distribution follows
a power-law in each community and in the whole model. We just use information from matrix
P. Thus, in fact, we derive the lower bound for the modularity of a stochastic block model with r
communities. Recall that for �� 1 E� ⊆ E is the set of hyperedges of cardinality �. First, we state
general lower bound for the modularity of G as a function of matrix P.

Lemma 3. Let G=G(G0, p,M, X, P, γ ) with the size of each hyperedge bounded by z. Let pi be
the probability that a randomly chosen hyperedge is within community C(i) (i.e. all vertices of a
hyperedge belong to C(i)). By si we denote the probability that a randomly chosen hyperedge has at
least one vertex in community C(i).Assume also that whp |E�|/|E| ∼ a� for some constants a� ∈ [0, 1]
and vol(V)/|E| ∼ δ for some constant δ ∈ (0,∞). Then whp

lim
t→∞ q∗(G)� (1+ o(1))

⎛
⎝ r∑

i=1
pi −

r∑
i=1

∑
��1

a�

(
(z − 1)si + pi

δ

)�
⎞
⎠ .

Remark 8. Note that for G being 2-uniform (thus simply a graph) this result simplifies signifi-
cantly to limt→∞ q∗(G)� (1+ o(1))(

∑r
i=1 pi − 1/4

∑r
i=1 (si + pi)2).

Proof. Let C = {C(1), C(2), . . . , C(r)}. Let also q denote the probability of adding a new hyperedge
in a single time step (hence q= 1− p, referring to notation from Section 4). Thus, whp |E| ∼ t · q
("∼" refers to the limit by t → ∞). By Definition 2:

q∗(G)=max
A

qA(G)� qC(G)=
r∑

i=1

⎛
⎝ |E(C(i))|

|E| −
∑
��1

|E�|
|E|

(
vol(C(i))
vol(V)

)�
⎞
⎠ .

We obtain that with high probability

qC(G)∼
r∑

i=1

⎛
⎝ t · q · pi

t · q −
∑
��1

a�

(
vol(C(i))
t · q · δ

)�
⎞
⎠ .

Note that if at a certain time step appears a hyperedge with all vertices contained in C(i), which
happens with probability q · pi, it adds up at most z to vol(C(i)). If at a certain time step appears
a hyperedge joining at least 2 communities with at least one vertex in C(i), which happens with
probability q(si − pi), it adds up at most z − 1 to vol(C(i)). Thus, whp

lim
t→∞ q∗(G)� (1+ o(1))

⎛
⎝ r∑

i=1
pi −

r∑
i=1

∑
��1

a�

(
t · q · (zpi + (z − 1)(si − pi))

t · q · δ
)�

⎞
⎠

= (1+ o(1))

⎛
⎝ r∑

i=1
pi −

r∑
i=1

∑
��1

a�

(
(z − 1)si + pi

δ

)�
⎞
⎠ .

�
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Remark 9. Note that the above result in most cases will not be tight. For example, the last inequal-
ity in the proof is tight only for graphs. Therefore, by some additional knowledge about the
underlying hypergraph, one should be able to improve the bound. For example, assume that there
is a node v (not alone in its community) with the property that all hyperedges containing this
node also have some nodes from other communities. Such hyperedges do not influence the value
of edge contribution (as none of them is entirely contained in one community). Therefore, putting
the node v to its own, separate community will increase the value of themodularity score (the edge
contribution will not change while the degree tax will decrease).

Below we state the lower bound for the modularity of G in a version in which the knowledge of
the whole matrix P is not necessary. Instead, we use its two characteristics: α—the probability that
a randomly chosen hyperedge joins at least two different communities (may be interpreted as the
amount of noise in the network) and β—the maximum value among pi’s. The modularity of the
model will be maximized for α = 0 (when there are no hyperedges joining different communities)
and β = 1/r (when all pi’s are equal to 1/r; thus, hyperedges are distributed uniformly across
communities).

Lemma 4. By assumptions from Lemma 3 whp

lim
t→∞q∗(G)� (1+ o(1))·

·
⎛
⎝1− α − a1

( z
δ

)
((z − 2)α + 1)−

∑
��2

a�

( z
δ

)� (
(r − 1)β� + ((z − 1)α + β)�

)⎞⎠ ,

where α = 1− ∑r
i=1 pi and β =maxi∈{1,...,r} pi.

Remark 10. ForG being 2-uniform, the result simplifies to limt→∞ q∗(G)� (1+ o(1))(1− rβ2 −
α(1+ α + 2β)). Note that for α = 0 and β = 1/r, this bound equals 1− 1/r and is tight, that is, it
is the modularity of the graph with the same number of edges in each of its r communities and no
edges between different communities.

Remark 11. Obtained bounds work well as long as the cardinalities of hyperedges do not differ
too much. This is since deriving them we bound the cardinality of each hyperedge by the size
of the biggest one. In particular, the bounds are very good in case of uniform hypergraphs (see
Section 7).

Proof. Let C = {C(1), C(2), . . . , C(r)} and for i ∈ {1, 2, . . . , r} let s̃i be the probability that a randomly
chosen hyperedge joins at least two communities and C(i) is one of them. Note that for si defined
as in Lemma 3 we get si = s̃i + pi. By Lemma 3 we get whp

lim
t→∞q∗(G)� (1+ o(1))·

·
⎛
⎝(1− α)− a1

δ

(
(z − 1)

r∑
i=1

s̃i + z
r∑

i=1
pi

)
−

∑
��2

a�

δ�

r∑
i=1

((z − 1)s̃i + zpi)�
⎞
⎠ . (1)

Now, by rk denote the probability that a randomly chosen hyperedge joins exactly k communities.
Note that

r∑
i=1

s̃i = 2r2 + 3r3 + . . . + zrz � z(1−
r∑

i=1
pi)= zα. (2)
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Thus,

a1
δ

(
(z − 1)

r∑
i=1

s̃i + z
r∑

i=1
pi

)
� a1

( z
δ

)
((z − 2)α + 1) (3)

and ∑
��2

a�

δ�

r∑
i=1

((z − 1)s̃i + zpi)� �
∑
��2

a�

( z
δ

)� (
(r − 1)β� + ((z − 1)α + β)�

)
. (4)

Plugging (3) and (4) into (1) we get the result. (See Section B in the Appendix for more
details.) �

6. Comparison with mixed preferential attachment model
The minority-majority graphs presented in Avin et al. (2020), and (2015) are the only dynamic
models we are aware of, featuring communities and power-law degree distribution. Therefore, we
devote separate section for a comparison between them and our hypergraph G(G0, p,M, X, P, γ ).
As a model presented in Avin et al. (2015) is a simpler version of a model from Avin et al. (2020),
we mainly refer to the latter one, denoting it by G∗.

6.1. Graphmodel G∗(G∗
0, r, δ, ρR, ρB), (Avin et al., 2020)

In a mixed preferential attachment model G∗, each vertex is assigned to exactly one of two com-
munities. Each vertex, on its arrival, establishes connections with δ existing vertices. A preferential
attachment rule is specific here, as it may be marked by homophily (when vertices tend to con-
nect to others from the same community) or heterophily (when vertices prefer to join a different
community).

Let r ∈ (0, 1), ρR, ρB ∈ [0, 1], and δ ∈N
+. Let G∗

0 be any graph with each vertex assigned either
to the red or to the blue community. For t ≥ 0, G∗

t+1 is constructed from G∗
t = (V∗

t , E∗
t ) as follows:

• A new vertex v arrives and is assigned to the red community with probability r and to the
blue community otherwise.

• Repeat until δ new edges are constituted:

– choose a vertex u from V∗
t in proportion to degrees (i.e. P[u is chosen]=

degt (u)∑
v∈V∗

t
( degt (v))

);
– assume that v is of color x ∈ {R, B}; if u is of the same color then with probability ρx it

becomes a neighbor of v in G∗
t+1; if u is of different color it becomes a neighbor of u in

G∗
t+1 with probability 1− ρx; multiedges are allowed (note that it may happen that no

edge will be constituted in this single procedure step).

The case with ρR = ρB = 1 (thus when new connections appear only between vertices from
the same community) is called a perfect homophily. On the other hand, by ρR = ρB = 0 one talks
about a perfect heterophily. Note also that the case ρR = ρB = 1/2 (when the appearance of a new
connection does not depend on the colors) reflects the Barabási-Albert model from Barabási &
Albert (1999).

Remark 12. In this section, we will concentrate only on the degree distribution results for G∗. It is
worth mentioning, however, that the paper Avin et al. (2015) studies the simpler version ofG∗ in a
very interesting context of a glass ceiling effect. Informally speaking, it verifies which mechanisms
in social networks cause that the vertices of minority are not represented well among vertices of
high degrees.
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The mixed preferential attachment model G∗ exhibits a power-law degree distribution for each
community, possibly with different exponents, depending on ρR, ρB and r.

Theorem 3 (Theorem 2 in [4]). Consider a graph G∗ =G∗(G∗
0, r, δ, ρR, ρB) for any t > 0. The

degree distributions of the red and the blue vertices follow a power-law with exponents

βR = 1+ 1
CR

and βB = 1+ 1
CB

respectively, where

CR = 1
2

(
(1− r)(1− ρB)
ρB + α − 2ρBα

+ rρR
1− ρR − α + 2ρRα

)
,

CB = 1
2

(
(1− r)ρB

ρB + α − 2ρBα
+ r(1− ρR)

1− ρR − α + 2ρRα

)
,

and α is a unique real number in (0, 1) satisfying the equation

2α = 1+ ρB(1− r)(1− α)
ρB(2α − 1)− α

+ rρRα
1− α + ρR(2α − 1)

.

Remark 13. The value α has its interpretation in G∗, namely α = limt→∞ E[αt], where αt is the
ratio of the sum of degrees of red vertices in G∗

t to the sum of degrees of all vertices in G∗
t .

6.2. Comparison of G∗ and G
Let us now consult the similarities and differences between G∗ and our model G. Definitely, both
models grow with time and both of them exhibit a power-law degree distribution for each com-
munity. Moreover, note that the homophilic/heterophilic behavior of G∗ may be reflected in G by
a proper parameter assignment in matrix P. What differs G∗ from G is that at time t the model
G allows for inserting edges between vertices that appeared before time t, while in G∗ a new edge
always attaches to a newly arrived vertex.

Nevertheless, we wanted to check whether it is possible to tune the parameters of G in a way
which preserves the main characteristics ofG∗ and gives the same exponents in the corresponding
power-laws. Therefore for G∗ =G∗(G∗

0, r, δ, ρR, ρB) we considered G with the following parame-
ters. The vector M was chosen to be M = [r, 1− r] (reflecting the fractions of vertices in red and
blue community, respectively), p= 1/(δ + 1) (preserving the ratio of 1 vertex per δ edges), the
vector X was chosen to have all the hyperedges of cardinality 2, the matrix P was preserving the
proper fractions of red-red, blue-blue, and red-blue edges (the calculations are given in the next
paragraph), and γ was left for an adjustment to (possibly) obtain the same exponents for the
corresponding power-laws.

We figured out the reasonable parameters for the matrix P as follows. We obtained the limiting
expected fraction of red-red edges in G∗ (denote it by qR) using the concentration result for αt
from Lemma 7 in Avin et al. (2020) and getting

qR = r · α · ρR + r · α · fR · ρR + r · α · f 2R · ρR + . . . = r · α · ρR
1− fR

where fR = α(1− ρR)+ (1− α)ρR. Indeed, r refers to the arrival of a new red vertex, α for a chance
that a red vertex is chosen in a preferential selection and ρR for a chance of constituting an edge
between red vertices in a single procedure step. Next, fR is a probability that no edge will be con-
stituted in a single procedure step, conditioned on the fact that a newly arrived vertex is red.
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Analogously, we got a limiting expected fraction of blue-blue edges in G (denoted by qB)

qB = (1− r)(1− α)ρB
1− fB

, where fB = (1− α)(1− ρB)+ α · ρB.

Thus for red-blue edges in G (denoted by qRB), we got

qRB = r(1− α)(1− ρR)
1− fR

+ (1− r)α(1− ρB)
1− fB

.

Now, setting P =
⎛
⎝ qR qRB

qRB qB

⎞
⎠ we obtain the same limiting expected fraction of red-red, blue-blue,

and red-blue edges in both models.
Having set all the parameters we could check whether the power-law exponents for G (from

Theorem 2) overlap with the ones for G∗ (from Theorem 3). The answer is negative, that is, it
is not possible to give the value of γ such that for all r ∈ (0, 1) and for all ρB, ρR ∈ [0, 1] the cor-
responding power-law exponents of two models overlap. We have repeated similar calculations
for G being a (δ + 1)-uniform hypergraph (thus choosing X such that all hyperedges were of size
δ + 1 and p= 1/2), and we also got a negative result.

We conclude that, despite many obvious similarities, models G and G∗ noticeably differ in
their power-law behavior. We see the cause in the fact that G∗ does not allow for inserting edges
between “old” vertices. The fact that adding this possibility influences a power-law exponent in a
degree distribution was already observed in Cooper & Frieze (2003).

7. Experimental results
In this section, we show how the modularity of our model G compares with the ones of Avin et
al., hypergraph A (Avin et al., 2019) and of a real-life co-authorship graph R. We also check how
good is our theoretical lower bound for modularity.

To build a real-life co-authorship hypergraph Rwe used data from the citation database Scopus
(2019). These included articles across all disciplines from the years 1990-2018. As data were col-
lected within the frame of the project investigating the impact of different sources of funding on
French research, only papers with at least one French co-author were taken into consideration.
Obtained hypergraph consisted of ≈ 2.2 · 106 nodes (authors) and ≈ 3.9 · 106 hyperedges (where
a single hyperedge represented a set of co-authors of a particular article). We narrowed down
our experiments just to the largest connected component keeping 94.22% of nodes and 99.23% of
hyperedges.

To get a partition of R into communities, we used Leiden procedure (Traag et al., 2019)—
a popular community detection algorithm for large networks. Finding a partition maximizing
modularity score is NP-hard (Brandes et al., 2008). Leiden algorithm is nowadays one of the best
heuristics trying to do that. Therefore, we treat its outcome partition as the one whose modularity
score is a quite precise approximation of the modularity of graphs in question. Leiden algorithm
was run on the flattened (2-section) hypergraph, that is, a graph obtained from a hypergraph
by exchanging hyperedges with cliques. It identified 595 communities. The modularity score
of the obtained partition, calculated according to the definition of modularity for hypergraphs
(Definition 2), was approximately 0.63.

Remark 14. Initially, to get a community structure of R, we tried to use the algorithm dedicated
directly for hypergraphs and using hypergraph modularity, (Kamiński et al., 2019; Kamiński et
al., 2021; Antelmi et al., 2020). Unfortunately, we were forced to resign due to the big scale of the
hypergraph R and our technical limitations.
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Figure 1. Distribution of the sizes of 47 largest communities in R identified by Leiden algorithm. The numbers indicate the
fraction of the nodes from a given community with respect to the total number of nodes in 47 largest communities.

(a) (b)

(c) (d)

Figure 2. The log-log plots of the complementary cumulative distribution functions of the degrees in R.

For the rest of the study, we decided to keep only the communities with at least one hundred
nodes. This eliminated only 0.44% of the authors and resulted in R having 47 meaningful commu-
nities. In Figure 1, one finds the distribution of their sizes. Figure 2 presents the log-log plots of the
complementary cumulative distribution functions of degrees in the whole R and its three largest
communities. One may notice that their characters are similar. They resemble a power-law only
piecewise; thus, probably a broken power-law (i.e. the piecewise function consisting of different
power-laws) or a power-law with an exponential cutoff could give a good fit here.

Next, we implemented our model G and Avin’s et al., model A using the parameters (distribu-
tion of sizes of hyperedges,M, P) gathered from R. Our theoretical model G features a power-law
degree distribution (compare Figure 3) which is commonly expected from the models mirroring
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Figure 3. The log-log plot of the complementary cumulative distribution function of the degrees in the theoretical model G,
t= 105.

Figure 4. Comparison of the modularity between our model G, Avin et al., hypergraph A and the real co-authorship
hypergraph R.

the real-life complex networks. Upgrading the model to obtain a broken power-law or an expo-
nential cutoff in its degree distribution (e.g. including aging or deactivating of vertices) is left as
a future work. Figure 4 compares the modularities of G, A, and R (the modularities of G and A
were approximated using the same method as for R). For R the value α equals 0.21. Then, the
modularity of our model G is around 0.69 which is very close to the modularity of R (≈ 0.63). The
modularity of A is very low (≈ 0.06), as A does not feature communities. Figure 4 also shows how
the modularity of G changes with α and one may notice that it stays at reasonably a high level
even when the number of hyperedges involving two communities increase leading to a network
less distinctly partitioned.

Finally, we wanted to confirm experimentally that our theoretical lower bounds for modularity
are indeed very good for uniform hypergraphs following our theoretical model. Figure 5(a) and
5(b) shows the lower bound from Lemma 3 in comparison with the modularity of 2- and 20-
uniform hypergraphs G̃(G̃0, p,M, X, P, γ ) on 104 vertices, whereM is uniform and of size 47 (the
choice of 47 communities may be treated here as random; however, it was obviously inspired by
the previous experiments on real data) and the matrix P has values (1− α)/47 on the diagonal
and the rest of its probability mass is spread uniformly over the remaining entries.M and P were
chosen such to deal with a possibly regular model in which we could control by a single parameter
α the fraction of hyperedges that are spread across more than one community. Note that 1− α

is the probability that a randomly chosen hyperedge is all contained within a single community,

https://doi.org/10.1017/nws.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.35


Network Science 417

The lower bound from Lemma 3
in comparison with the modularity
score obtained by Leiden algorithm on
a 2-uniform G̃

The lower bound from Lemma 3
in comparison with the modularity
score obtained by Leiden algorithm on
a 20-uniform G̃

(a) (b)

Figure 5. Experimental results on modularity.

that is, α measures the amount of noise in the network. As we expected, in this regular regime, the
theoretical bound almost overlapped with the value of modularity.

8. Conclusion and further work
We have theoretically proved and experimentally confirmed that our model exhibits high modu-
larity, which is rare for known preferential attachment graphs and was not present in hypergraph
models so far. While our model has many parameters and may seem complicated, this general
formulation allowed us to unify many results known so far. Moreover, it can be easily trans-
formed into much simpler models (e.g. by setting some arguments trivially to 0, repeating the
same distributions for hyperedges cardinalities, etc).

Our model exhibits power-law degree distribution. However, many real networks in fact
present an exponential cutoff in their degree distribution. One possible reason to explain this
phenomenon is that nodes eventually become inactive. As further work, we plan to include this
process in our model. The other direction of future study is making the preferential attachment
depending not only on the degrees of the vertices but also on their own characteristic (generally
called fitness; Borgs et al., 2007).
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A. Degree distribution of H(H0, p, Y, X,m, γ )
The number of vertices inHt is a random variable following a binomial distribution. Since |V0| = 1
we have |Vt| ∼ B(t, pv + pve)+ 1. Since |E0| = 1, the number of hyperedges in Ht is a random
variable satisfying |Et| ∼mB(t, pve + pe)+ 1.

Before we prove Theorem 1, we discuss briefly the concentration of random variables |Vt| (the
number of vertices at time t), Dt (the sum of degrees at time t) and Wt =Dt + γ |Vt|. We start
with a couple of technical lemmas that will be helpful later on.

Lemma 5 (Chernoff bounds; Mitzenmacher & Upfal, 2017, Chapter 4.2). Let Z1, Z2, . . . , Zt be
independent indicator random variables with P[Zi = 1]= pi and P[Zi = 0]= 1− pi. Let δ > 0, Z =∑t

i=1 Zi and μ =E[Z]= ∑t
i=1 pi. Then

P[|Z − μ|� δμ]≤ 2e−μδ2/3.

Corollary 1. Since |Vt| ∼ B(t, pv + pve)+ 1 setting δ =
√

9 ln t
(pv+pve)t in Lemma 5, we get

P[||Vt| −E[|Vt|]]|�
√
9(pv + pve)t ln t]≤ 2/t3.

Now, let us restate Lemma 1 and present its proof.

Lemma 1. If limt→∞ E[Nk,t]
t ∼ ck−β for some positive constant c then

lim
t→∞ E

[
Nk,t
|Vt|

]
∼ c

pv + pve
k−β .

(Here “∼” refers to the limit by k→ ∞.)
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Proof. Let (
,F , P) be the probability space on which random variables Nk,t and |Vt| are
defined. Thus, Nk,t :
 →R and |Vt| :
 →R. Let 
1 ⊆ 
 denote the set of all ω ∈ 
 such that
|Vt|(ω) ∈ (E|Vt| −

√
9(pv + pve)t ln t,E|Vt| +

√
9(pv + pve)t ln t). By Corollary 1, we know that∑

ω∈
\
1 P[ω]� 2/t3. Using the fact that for each ω
Nk,t(ω)
|Vt |(ω) � 1, we get

E

[
Nk,t
|Vt|

]
=

∑
ω∈


Nk,t(ω)
|Vt|(ω)P[ω]=

∑
ω∈
1

Nk,t(ω)
|Vt|(ω)P[ω]+

∑
ω∈
\
1

Nk,t(ω)
|Vt|(ω)P[ω]

�
∑
ω∈


Nk,t(ω)
E|Vt| −

√
9(pv + pve)t ln t

P[ω]+
∑

ω∈
\
1

1 · P[ω]

� E[Nk,t]
E|Vt| −

√
9(pv + pve)t ln t

+ 2/t3 ∼ E[Nk,t]
(pv + pve)t

.

On the other hand, since Nk,t ≤ t,

E

[
Nk,t
|Vt|

]
�

∑
ω∈
1

Nk,t(ω)
|Vt|(ω)P[ω]�

∑
ω∈
1

Nk,t(ω)
E|Vt| +

√
9(pv + pve)t ln t

P[ω]

= 1
E|Vt| +

√
9(pv + pve)t ln t

⎛
⎝E[Nk,t]−

∑
ω∈
\
1

Nk,t(ω)P[ω]

⎞
⎠

� 1
E|Vt| +

√
9(pv + pve)t ln t

⎛
⎝E[Nk,t]−

∑
ω∈
\
1

t · P[ω]
⎞
⎠

� E[Nk,t]
E|Vt| +

√
9(pv + pve)t ln t

− t · 2/t3
E|Vt| +

√
9(pv + pve)t ln t

∼ E[Nk,t]
(pv + pve)t

.

�

Lemma 6 (Hoeffding’s inequality; Hoeffding, 1963). Let Z1, Z2, . . . , Zt be independent random
variables such that P[Zi ∈ [ai, bi]]= 1. Let δ > 0 and Z = ∑t

i=1 Zi. Then

P[|Z −E[Z]|� δ]� 2 exp

{
− 2δ2∑t

i=1 (ai − bi)2

}
.

Lemma 7. Let t > 0. Let E[Yt]= μ0, and E[X(i)
t ]= μi for i ∈ {1, 2, . . . , r}. Moreover, let 2� Yt <

t1/4 and 1� X(i)
t < t1/4 for i ∈ {1, 2, . . . , r}. Let Wt =Dt + γ |Vt|. Then

P[|Wt −E[Wt]| ≥mt3/4
√
2 ln t]=O

(
1
t4

)
.

Proof. Our initial hypergraph consists of a single hyperedge of cardinality 1 over a single vertex;
thus,W0 = γ + 1. For t ≥ 1, we can obtainWt fromWt−1 by adding:

(1) either γ with probability pv,
(2) or γ +mYt with probability pve,
(3) ormX(1)

t with probability p(1)e ,
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(4) or . . .,
(5) ormX(r)

t with probability p(r)e ,
(6) or 0 with probability 1− pv − pve − pe.

Thus, we can express Wt as the sum of independent random variables Wt = γ + 1+ Z1 +
Z2 + . . . + Zt , where E[Zi]= γ V̄ + D̄ and 1� Zi �mt1/4 + γ for i ∈ {1, 2, . . . , t} and D̄ and V̄
are defined as in Theorem 1:

V̄ = pv + pve and D̄=m(pveμ0 + p(1)e μ1 + . . . + p(r)e μr).

Now, setting δ =mt3/4
√
2 ln t in Hoeffding’s inequality (see Lemma 6) we get

P[|Wt −E[Wt]|�mt3/4
√
2 ln t]� 2 exp

{
− 4 ·m2 · t6/4 · ln t
(t + 1)(m · t1/4 + γ )2

}
=O

(
1
t4

)
.

�
Lemma 8 (Chung & Lu, 2006, Chapter 3.3). Let {at} be a sequence satisfying the recursive relation

at+1 =
(
1− bt

t

)
at + ct

where bt
t→∞−−−→ b> 0 and ct

t→∞−−−→ c. Then, the limit limt→∞ at
t exists and

lim
t→∞

at
t

= c
1+ b

.

Now we are ready to give a detailed proof of Theorem 1.

Proof of Theorem 1. Here we take a standard master equation approach that can be found, for
example, in the book Chung and Lu (2006) about complex networks or in the paper by Avin et al.
(2019) on preferential attachment hypergraphs.

Recall that Nk,t denotes the number of vertices of degree k at time t. We need to show that

lim
t→∞ E

[
Nk,t
|Vt|

]
∼ c̃k−β

for some constant c̃ and β = 2+ γ V̄+m·pve
D̄−m·pve . However, by Lemma 1 we know that it suffices to show

that

lim
t→∞

E[Nk,t]
t

∼ ck−β

for some constant c.
Our initial hypergraph H0 consists of a single hyperedge of cardinality 1 over a single vertex;

thus; we can write N0,0 = 0 and N1,0 = 1. Now, to formulate a recurrent master equation we make
the following observation for t� 1. The vertex v has degree k at time t if either it had degree
k at time t − 1 and was not chosen to any new hyperedge or it had degree k− i at time t − 1
and was chosen i times to new hyperedges. Note that i can be at most min{k,mZt}, where Zt
represents a random variable chosen among Yt , X(1)

t , . . . , X(r)
t according to (pv, pve, p(1)e , . . . , p(r)e ).

Additionally, at each time step a vertex of degree 0 may appear as the new one with probability pv
and a vertex of degree mmay appear as the new one with probability pve. Let Ft be the σ -algebra
associated with the probability space at time t. Let Qd,k,t denote the probability that a specific
vertex of degree k was chosen d times to be included in new hyperedges at time t (this probability
is expressed as a random variable since it depends on a specific realization of the process up to
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time t − 1). Let alsoWt =Dt + γ |Vt|. For t� 1 we get

E[N0,t|Ft−1]= pv +N0,t−1Q0,0,t

and when k� 1

E[Nk,t|Ft−1]= δk,mpve +Nk,t−1Q0,k,t +Nk−1,t−1Q1,k−1,t +
min{k,mZt}∑

i=2
Nk−i,t−1Qi,k−i,t ,

where δk,m is the Kronecker delta. We have extracted the first two terms in the above sum since
below we prove that these are the dominating terms. Taking expectation on both sides, we obtain

E[N0,t]= pv +E[N0,t−1Q0,0,t] (5)

and for k� 1

E[Nk,t]= δk,mpve +E[Nk,t−1Q0,k,t]+E[Nk−1,t−1Q1,k−1,t] +
min{k,mZt}∑

i=2
E[Nk−i,t−1Qi,k−i,t]. (6)

Note that

Q0,k,t = pv + (1− pv − pve − pe)+ pveE

[(
1− k+ γ

Wt−1

)m(Yt−1)
|Ft−1

]

+ p(1)e E

⎡
⎣(

1− k+ γ

Wt−1

)mX(1)
t

|Ft−1

⎤
⎦ + . . . + p(r)e E

⎡
⎣(

1− k+ γ

Wt−1

)mX(r)
t

|Ft−1

⎤
⎦

while for i ∈ {1, 2, . . . , k}

Qi,k−i,t = pveE

[(
m(Yt − 1)

i

)(
k− i+ γ

Wt−1

)i (
1− k− i+ γ

Wt−1

)m(Yt−1)−i
|Ft−1

]

+ p(1)e E

⎡
⎣(

mX(1)
t
i

)(
k− i+ γ

Wt−1

)i (
1− k− i+ γ

Wt−1

)mX(1)
t −i

|Ft−1

⎤
⎦ + . . .

+ p(r)e E

⎡
⎣(

mX(r)
t
i

)(
k− i+ γ

Wt−1

)i (
1− k− i+ γ

Wt−1

)mX(r)
t −i

|Ft−1

⎤
⎦ .

Now, for any random variable Zt with constant expectation μ, independent of the σ -algebra
Ft−1, and such that 1≤ Zt < t1/4, by Bernoulli’s inequality we have

E

[(
1− k+ γ

Wt−1

)mZt
|Ft−1

]
�E

[(
1− mZt(k+ γ )

Wt−1

)
|Ft−1

]
= 1− mμ(k+ γ )

Wt−1
. (7)
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On the other hand (using the fact that for x ∈ [0, 1] and n ∈N we have (1− x)n ≤ 1
1+nx ),

E

[(
1− k+ γ

Wt−1

)mZt
|Ft−1

]
�E

⎡
⎣ 1
1+ mZt(k+γ )

Wt−1

|Ft−1

⎤
⎦

=E

[
1− mZt(k+ γ )

Wt−1 +mZ(k+ γ )
|Ft−1

]

�E

[
1− mZt(k+ γ )

Wt−1
+ (mZt(k+ γ ))2

W2
t−1

|Ft−1

]

� 1− mμ(k+ γ )
Wt−1

+ t1/2(m(k+ γ ))2

W2
t−1

, (8)

where the last inequality follows from the assumption Zt < t1/4. Now, let us consider the master
equation (6) for E[Nk,t] term by term. We start with the expected number of vertices that had
degree k at time t − 1 and are still of degree k at time t. By (7), Lemma 7 and the fact that
Nk,t−1 ≤ t we get

E[Nk,t−1Q0,k,t]�E

[
Nk,t−1

(
1− (k+ γ )m(pve(μ0 − 1)+ p(1)e μ1 + . . . + p(r)e μr)

Wt−1

)]

=E

[
Nk,t−1

(
1− (k+ γ )(D̄−mpve)

Wt−1

)]

�E[Nk,t−1]
(
1− (k+ γ )(D̄−mpve)

E[Wt−1]−mt3/4
√
2 ln t

)
− t · 1

t4
.

To get the last inequality, one needs to conduct calculations analogous to those from the proof of
Lemma 1. By 8 and additionally using the fact thatWt−1 ≥ 1

E[Nk,t−1Q0,k,t]�E

[
Nk,t−1

(
1− (k+ γ )(D̄−mpve)

Wt−1
+ t1/2(pve + pe)(m(k+ γ ))2

W2
t−1

)]

�E[Nk,t−1]
(
1− (k+ γ )(D̄−mpve)

E[Wt−1]+mt3/4
√
2 ln t

+ t1/2(pve + pe)(m(k+ γ ))2

(E[Wt−1]−mt3/4
√
2 ln t)2

)

+ (
t + t3/2(pve + pe)(m(k+ γ ))2

) · 1
t4
.

Again, for the last inequality, proceed as in the proof of Lemma 1. Since E[Wt−1]=
D̄(t − 1)+ γ V̄(t − 1) and E[Nk,t−1]� t, we obtain for fixed k

E[Nk,t−1Q0,k,t]=E[Nk,t−1]
(
1− (k+ γ )(D̄−mpve)

t(D̄+ γ V̄)+O(t3/4
√
ln t)

)
+O

(
1√
t

)
. (9)
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We treat E[Nk−1,t−1Q1,k−1,t] similarly. On one hand we have

Q1,k−1,t � pveE
[
m(Yt − 1)

k− 1+ γ

Wt−1

(
1− mYt(k− 1+ γ )

Wt−1

)
|Ft−1

]

+ p(1)e E

[
mX(1)

t
k− 1+ γ

Wt−1

(
1− mX(1)

t (k− 1+ γ )
Wt−1

)
|Ft−1

]
+ . . .

+ p(r)e E

[
mX(r)

t
k− 1+ γ

Wt−1

(
1− mX(r)

t (k− 1+ γ )
Wt−1

)
|Ft−1

]

� pveE
[
m(Yt − 1)

k− 1+ γ

Wt−1
|Ft−1

]
− pveE

[
Y2
t (m(k− 1+ γ ))2

W2
t−1

|Ft−1

]
+ . . .

+ p(r)e E

[
m(X(r)

t )
k− 1+ γ

Wt−1
|Ft−1

]
− p(r)e E

[
(X(r)

t )2(m(k− 1+ γ ))2

W2
t−1

|Ft−1

]

� pvem(μ0 − 1)(k− 1+ γ )
Wt−1

− t1/2pve(m(k− 1+ γ ))2

W2
t−1

+ . . .

+ p(r)e mμr(k− 1+ γ )
Wt−1

− t1/2p(r)e (m(k− 1+ γ ))2

W2
t−1

= (k− 1+ γ )(D̄−mpve)
Wt−1

− t1/2(pve + pe)(m(k− 1+ γ ))2

W2
t−1

(the last inequality follows from assumptions Yt < t1/4 and X(i)
t < t1/4), while on the other

Q1,k−1,t � pveE
[
m(Yt − 1)

k− 1+ γ

Wt−1
|Ft−1

]
+ . . . + p(r)e E

[
mX(r)

t
k− 1+ γ

Wt−1
|Ft−1

]

� (k− 1+ γ )(D̄−mpve)
Wt−1

.

Again, by Lemma 7, the fact that Nk−1,t−1 � t and Nk−1,t−1/Wt−1 � 1 for fixed k we get

E[Nk−1,t−1Q1,k−1,t]=E[Nk−1,t−1]
(

(k− 1+ γ )(D̄−mpve)
t(D̄+ γ V̄)+O(t3/4

√
ln t)

)
+O

(
1√
t

)
. (10)

The terms from equations (9) and (10) are those dominating in master equation (6). For the
sum of other terms, we have the following upper bound when k is fixed (the fourth inequality
follows from upper bounding the sums by infinite geometric series and the asymptotics in the last
line follows from Lemma 7)
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min{k,mZt}∑
i=2

E[Nk−i,t−1Qi,k−i,t]� t ·
k∑

i=2
E[Qi,k−i,t]

� t ·E
⎡
⎣ k∑

i=2

(
pveE

[(
m(Yt − 1)

i

)(
k− i+ γ

Wt−1

)i
|Ft−1

]

+ p(1)e E

[(
mX(1)

t
i

)(
k− i+ γ

Wt−1

)i
|Ft−1

]
+ . . .

+p(r)e E

[(
mX(r)

t
i

)(
k− i+ γ

Wt−1

)i
|Ft−1

])]

� t ·E
⎡
⎣E

⎡
⎣ k∑

i=2

(
pve(mYt)i

(
k+ γ

Wt−1

)i
+ . . .

+p(r)e (mX(r)
t )i

(
k+ γ

Wt−1

)i
)

|Ft−1

]]

� t ·E
⎡
⎣E

⎡
⎣pve

(m(k+ γ )Yt)2

W2
t−1

1
1− m(k+γ )Yt

Wt−1

+ . . .

+p(r)e
(m(k+ γ )X(r)

t )2

W2
t−1

1

1− m(k+γ )X(r)
t

Wt−1

|Ft−1

⎤
⎥⎦
⎤
⎥⎦ (11)

� t ·E
⎡
⎣pve

(m(k+ γ )t1/4)2

W2
t−1

1

1− m(k+γ )t1/4
Wt−1

+ . . .

+p(r)e
(m(k+ γ )t1/4)2

W2
t−1

1

1− m(k+γ )t1/4
Wt−1

⎤
⎦

= t ·E
[
(pve + pe)(m(k+ γ ))2t1/2

W2
t−1

Wt−1
Wt−1 −m(k+ γ )t1/4

]

= (pve + pe)(m(k+ γ ))2t3/2 ·E
[

1
Wt−1(Wt−1 −m(k+ γ )t1/4)

]

∼ (pve + pe)(m(k+ γ ))2t3/2 · 1
t2

=O
(

1√
t

)
.

Plugging 9, 10 and 11 into master equation (5) and (6), we obtain

E[N0,t]=E[N0,t−1]
(
1− γ (D̄−mpve)

t(D̄+ γ V̄)+O(t3/4
√
ln t)

)
+ pv +O

(
1√
t

)
(12)
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and

E[Nk,t]=E[Nk,t−1]
(
1− (k+ γ )(D̄−mpve)

t(D̄+ γ V̄)+O(t3/4
√
ln t)

)

+E[Nk−1,t−1]
(

(k− 1+ γ )(D̄−mpve)
t(D̄+ γ V̄)+O(t3/4

√
ln t)

)
+ δk,mpve +O

(
1√
t

)
. (13)

For k≥ 0 by Lk denote the limit

Lk = lim
t→∞

E[Nk,t]
t

.

First we prove that the limit L0 exists. We apply Lemma 8 to equation (12) by setting

bt = γ (D̄−mpve)
D̄+ γ V̄ +O(t3/4

√
ln t/t)

and ct = pv +O
(

1√
t

)
.

We get

lim
t→∞ bt = γ (D̄−mpve)

D̄+ γ V̄
and lim

t→∞ ct = pv,

therefore

L0 = pv
1+ γ (D̄−mpve)

D̄+γ V̄

=
pv D̄+γ V̄

D̄−mpve
D̄+γ V̄
D̄−mpve

+ γ
.

Now, we assume that the limit Lk−1 exists, and we will show by induction on k that Lk exists.
Again, applying Lemma 8 to equation (13) with

bt = (k+ γ )(D̄−mpve)
D̄+ γ V̄ +O(t3/4

√
ln t/t)

and

ct = E[Nk−1,t−1]
t

(
(k− 1+ γ )(D̄−mpve)

D̄+ γ V̄ +O(t3/4
√
ln t/t)

)
+ δk,mpve +O

(
1√
t

)
we get

lim
t→∞ bt = (k+ γ )(D̄−mpve)

D̄+ γ V̄
and

lim
t→∞ ct = Lk−1

(k− 1+ γ )(D̄−mpve)
D̄+ γ V̄

+ δk,mpve,

therefore

Lk =
Lk−1

(k−1+γ )(D̄−mpve)
D̄+γ V̄ + δk,mpve

1+ (k+γ )(D̄−mpve)
D̄+γ V̄

=
Lk−1(k− 1+ γ )+ δk,mpve D̄+γ V̄

D̄−mpve

k+ γ + D̄+γ V̄
D̄−mpve

. (14)

From now on, for simplicity of notation, we put D= D̄+γ V̄
D̄−mpve

; thus, we have

L0 = pvD
γ +D

and Lk = Lk−1(k− 1+ γ )+ δk,mpveD
k+ γ +D

.
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When k ∈ {1, 2, . . . ,m− 1}, iterating over k gives

Lk = L0 ·
k∏

�=1

� − 1+ γ

� + γ +D
= pvD

γ +D

k∏
�=1

� − 1+ γ

� + γ +D

and when k�m

Lk = pvD
γ +D

⎛
⎝ k∏

�=1

� − 1+ γ

� + γ +D

⎞
⎠ + pveD

m+ γ +D

⎛
⎝ k∏

�=m+1

� − 1+ γ

� + γ +D

⎞
⎠

=
(

pvD
γ +D

( m∏
�=1

� − 1+ γ

� + γ +D

)
+ pveD

m+ γ +D

)⎛
⎝ k∏

�=m+1

� − 1+ γ

� + γ +D

⎞
⎠

=
(

pvD
γ +D

�(m+ γ )
�(γ )

�(γ +D+ 1)
�(m+ γ +D+ 1)

+ pveD
m+ γ +D

)

· �(m+ γ +D+ 1)
�(m+ γ )

�(k+ γ )
�(k+ γ +D+ 1)

,

where �(x) is the gamma function. Since limk→∞ �(k)kα

�(k+α) = 1 for constant α ∈R, we get

lim
t→∞

E[Nk,t]
t

= Lk ∼ c · k−(1+D)

(“∼” refers to the limit by k→ ∞) for

c= pvD · �(γ +D)
�(γ )

+ pveD · �(m+ γ +D)
�(m+ γ )

.

Hence, by Lemma 1, we obtain

lim
t→∞ E

[
Nk,t
|Vt|

]
∼ c

pv + pve
k−(1+D).

We infer that the degree distribution of our hypergraph follows a power-law with

β = 1+D= 1+ D̄+ γ V̄
D̄−mpve

= 2+ γ V̄ +mpve
D̄−mpve

.

�

B. Modularity of G(G0, p,M, X, P, γ )

Proof of Lemma 4. Let C = {C(1), C(2), . . . , C(r)} and for i ∈ {1, 2, . . . , r} let s̃i be the probability
that a randomly chosen hyperedge joins at least two communities and C(i) is one of them. Note
that for si defined as in Lemma 3 (that is, the probability that a randomly chosen hyperedge has at
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least one vertex in C(i)) we get si = s̃i + pi. By Lemma 3, we get that with high probability

lim
t→∞ q∗(G)� (1+ o(1))

⎛
⎝ r∑

i=1
pi −

r∑
i=1

∑
��1

a�

(
(z − 1)s̃i + zpi

δ

)�
⎞
⎠

= (1+ o(1))

⎛
⎝(1− α)−

∑
��1

a�

δ�

r∑
i=1

((z − 1)s̃i + zpi)�
⎞
⎠

= (1+ o(1))·

·
⎛
⎝(1− α)− a1

δ

(
(z − 1)

r∑
i=1

s̃i + z
r∑

i=1
pi

)
−

∑
��2

a�

δ�

r∑
i=1

((z − 1)s̃i + zpi)�
⎞
⎠ . (15)

Now, by rk denote the probability that a randomly chosen hyperedge joins exactly k communities.
Note that

r∑
i=1

s̃i = 2r2 + 3r3 + . . . + zrz � z(1−
r∑

i=1
pi)= zα. (16)

Thus,

a1
δ

(
(z − 1)

r∑
i=1

s̃i + z
r∑

i=1
pi

)
� a1

δ
((z − 1)zα + z(1− α)) = a1

( z
δ

)
((z − 2)α + 1). (17)

Moreover,

∑
��2

a�

δ�

r∑
i=1

((z − 1)s̃i + zpi)� =
∑
��2

a�

δ�

r∑
i=1

�∑
k=0

(
�

k

)
((z − 1)s̃i)k(zpi)l−k

=
∑
��2

a�

δ�

�∑
k=0

(
�

k

)
(z − 1)kzl−k

r∑
i=1

s̃ki p
l−k
i

�
∑
��2

a�

δ�

�∑
k=0

(
�

k

)
(z − 1)k(zβ)l−k

r∑
i=1

s̃ki

=
∑
��2

a�

δ�

(
r(zβ)� +

�∑
k=1

(
�

k

)
(z − 1)k(zβ)l−k

r∑
i=1

s̃ki

)

�
∑
��2

a�

δ�

⎛
⎝r(zβ)� +

�∑
k=1

(
�

k

)
(z − 1)k(zβ)l−k

( r∑
i=1

s̃i

)k
⎞
⎠ .
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Next, by (16) we get

∑
��2

a�

δ�

r∑
i=1

((z − 1)s̃i + zpi)� �
∑
��2

a�

δ�

(
r(zβ)� +

�∑
k=1

(
�

k

)
(z − 1)k(zβ)l−k(zα)k

)

=
∑
��2

a�

δ�

(
(r − 1)(zβ)� +

�∑
k=0

(
�

k

)
((z − 1)zα)k(zβ)l−k

)

=
∑
��2

a�

δ�

(
(r − 1)(zβ)� + ((z − 1)zα + zβ)�

)

=
∑
��2

a�

( z
δ

)� (
(r − 1)β� + ((z − 1)α + β)�

)
. (18)

Finally, plugging (17) and (18) into (15) we get that with high probability
lim
t→∞q∗(G)� (1+ o(1))·

·
⎛
⎝1− α − a1

( z
δ

)
((z − 2)α + 1)−

∑
��2

a�

( z
δ

)� (
(r − 1)β� + ((z − 1)α + β)�

)⎞⎠ .

�
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