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Characterizations of Real Hypersurfaces in
a Complex Space Form

In-Bae Kim, Ki Hyun Kim and Woon Ha Sohn

Abstract. We study a real hypersurface M in a complex space form Mn(c), c 6= 0, whose shape operator

and structure tensor commute each other on the holomorphic distribution of M.

1 Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic sectional cur-

vature c is called a complex space form and is denoted by Mn(c). A complete and

simply connected complex space form consists of a complex projective space Pn(C),

a complex Euclidean space C
n or a complex hyperbolic space Hn(C), according to

c > 0, c = 0 or c < 0. The shape operator or second fundamental tensor of a real

hypersurface in Mn(c) will be denoted by A, and the induced almost contact metric

structure of the real hypersurface by (φ, 〈· , ·〉, ξ, η).

R. Takagi [9] classified all homogeneous real hypersurfaces in Pn(C) into six model

spaces A1, A2, B, C , D and E (see also [10]). J. Berndt [3] has completed the classifi-

cation of homogeneous real hypersurfaces with principal structure vector fields ξ in

Hn(C), which are divided into the model spaces A0, A1, A2 and B. A real hypersurface

of type A1 or A2 in Pn(C) or that of A0, A1 or A2 in Hn(C) is said to be of type A for

simplicity.

A typical characterization for a real hypersurface M of type A in a complex space

form Mn(c) was given under the condition

(1.1) 〈(Aφ − φA)X,Y 〉 = 0 for any tangent vector fields X and Y on M

by M. Okumura [8] for c > 0 and S. Montiel and A. Romero [6] for c < 0. Namely,

Theorem A Let M be a real hypersurface in a complex space form Mn(c), c 6= 0, n ≥ 3.

If it satisfies (1.1), then M is locally congruent to a real hypersurface of type A.

The holomorphic distribution T0 of a real hypersurface M in Mn(c) is defined by

T0(p) = {X ∈ Tp(M) | 〈X, ξ〉p = 0},

where Tp(M) is the tangent space of M at p. A (1,1) type tensor field T of M is said

to be η-parallel if 〈(∇XT)Y, Z〉 = 0, and cyclic η-parallel if

S〈(∇XT)Y, Z〉 = 〈(∇XT)Y, Z〉 + 〈(∇Y T)Z, X〉 + 〈(∇ZT)X,Y 〉 = 0
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for any X, Y and Z in the holomorphic distribution T0. Real hypersurfaces with

η-parallel or cyclic η-parallel shape operator or Ricci operator have been studied by

many authors (see [7]). Of course, the condition

(1.2) 〈(Aφ − φA)X,Y 〉 = 0

for any X and Y in T0 is weaker than (1.1). It is known that a ruled real hypersur-

face in Mn(c) satisfies (1.2) and has the η-parallel shape operator [1, 5, 7]. Recently,

C. Baikoussis [2] studied real hypersurfaces in Mn(c) with certain conditions related

to the Ricci operator and the structure tensor φ. U-H. Ki and Y.-J. Suh [4] investigated

a real hypersurface satisfying (1.2) and having a special η-parallel shape operator.

The purpose of this paper is to give some characterizations of a real hypersurface

satisfying (1.2) and having the cyclic η-parallel shape operator or Ricci operator. We

shall prove the following.

Theorem 1.1 Let M be a real hypersurface in a complex space form Mn(c), c 6= 0,

n ≥ 3. If M has the cyclic η-parallel shape operator and satifies (1.2), then M is locally

congruent to either a real hypersurface of type A or a ruled real hypersurface.

Theorem 1.2 Let M be a real hypersurface in a complex space form Mn(c), c 6= 0,

n ≥ 3. Assume that M satisfies (1.2). Then M is locally congruent to a ruled real

hypersurface if and only if it satisfies one of the following:

(1.3) 〈AX,Y 〉φU + 〈Y, φU 〉AX + 〈X, φU 〉AY =

β{〈X,U 〉〈Y, φU 〉 + 〈Y,U 〉〈X, φU 〉}ξ,

(1.4) (∇XA)Y = {β2(〈X,U 〉〈Y, φU 〉 + 〈Y,U 〉〈X, φU 〉) −
c

4
〈φX,Y 〉}ξ

for any X, Y in the holomorphic distribution T0, where β(6= 0) is the length of φ∇ξξ

and U = − 1

β
φ∇ξξ, ∇ being the Riemannian connection of M.

Theorem 1.3 Let M be a real hypersurface in a complex space form Mn(c), c 6= 0,

n ≥ 3. If M has the cyclic η-parallel Ricci operator and satifies (1.2), then M is locally

congruent to a real hypersurface of type A.

2 Preliminaries

Let M be a real hypersurface immersed in a complex space form (Mn(c), 〈· , ·〉, J) of

constant holomorphic sectional curvature c, and let N be a unit normal vector field

on an open neighborhood in M. For a local tangent vector field X on the neighbor-

hood, the images of X and N under the almost complex structure J of Mn(c) can be

expressed by

JX = φX + η(X)N, JN = ξ,
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where φ defines a linear transformation on the tangent space Tp(M) of M at any

point p ∈ M, and η and ξ denote a 1-form and a unit tangent vector field on the

neighborhood, respectively. Denoting the Riemannian metric on M induced from

the metric on Mn(c) by the same symbol 〈· , ·〉, it is then easy to see that

〈φX,Y 〉 + 〈φY, X〉 = 0, 〈ξ, X〉 = η(X)

for any tangent vector field X and Y on M. The collection (φ, 〈· , ·〉, ξ, η) is called an

almost contact metric structure on M, and satisfies

(2.1)
φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0,

η(ξ) = 1, 〈φX, φY 〉 = 〈X,Y 〉 − η(X)η(Y ).

Let ∇ be the Riemannian connection with respect to the metric 〈· , ·〉 on M, and

A be the shape operator in the direction of N on M. Then we have

(2.2) ∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − 〈AX,Y 〉ξ.

Since the ambient space is of constant holomorphic sectional curvature c, the equa-

tions of Gauss and Codazzi are given by

(2.3) R(X,Y )Z =

c

4

{

〈Y, Z〉X − 〈X, Z〉Y + 〈φY, Z〉φX − 〈φX, Z〉φY

− 2〈φX,Y 〉φZ
}

+ 〈AY, Z〉AX − 〈AX, Z〉AY,

(2.4) (∇XA)Y − (∇Y A)X =

c

4
{η(X)φY − η(Y )φX − 2〈φX,Y 〉ξ}

for any tangent vector fields X, Y and Z on M, where R is the Riemannian curvature

tensor of M. We shall denote the Ricci operator of M by S. Then it follows from (2.3)

that SX =
c
4
{(2n + 1)X − 3η(X)ξ} + mAX − A2X, where m = trace A is the mean

curvature of M. The covariant derivative of S is given by

(2.5) (∇XS)Y = −
3c

4
{〈φAX,Y 〉ξ + η(Y )φAX} + (Xm)AY

+ m(∇XA)Y − (∇XA)AY − A(∇XA)Y.

If the vector field φ∇ξξ does not vanish, that is, the length β of φ∇ξξ is not equal

to zero, then it is easily seen from (2.1) and (2.2) that

(2.6) Aξ = αξ + βU ,

where α = 〈Aξ, ξ〉 and U = − 1

β
φ∇ξξ. Therefore, U is a unit tangent vector field on

M and U ∈ T0. If the vector field U cannot be defined, then we may consider β = 0

identically. Therefore Aξ is always given in (2.6)
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From now on, we assume that the condition (1.2) holds on M, that is,

〈(Aφ − φA)Y, Z〉 = 0

for any Y and Z ∈ T0. With respect to any tangent vector field X on M, if we dif-

ferentiate this relation covariantly in the direction of X and make use of (1.2), (2.1),

(2.2) and (2.6), we obtain

(2.7)
〈(∇XA)Y, φZ〉 + 〈(∇XA)Z, φY 〉 = β

{

〈Y,U 〉〈AX, Z〉 + 〈Z,U 〉〈AX,Y 〉

− 〈Y, φU 〉〈φAX, Z〉 − 〈Z, φU 〉〈φAX,Y 〉
}

,

where we have used the equation

∇XY = 〈∇XY, ξ〉ξ + (∇XY )0 = −〈φAX,Y 〉ξ + (∇XY )0, (∇XY )0 ∈ T0.

Putting Y = Z into (2.7) and using the Codazzi equation (2.4), we have

〈(∇Y A)φY, X〉 = 〈β{〈Y,U 〉AY + 〈Y, φU 〉AφY} −
c

4
〈Y,Y 〉ξ, X〉

for any tangent vector field X on M and Y ∈ T0, which implies

(∇XA)φX = β{〈X,U 〉AX + 〈X, φU 〉AφX} −
c

4
〈X, X〉ξ,(2.8)

(∇φXA)X = β{〈X,U 〉AX + 〈X, φU 〉AφX} +
c

4
〈X, X〉ξ(2.9)

for any X ∈ T0.

Next we consider that the vector fields X, Y and Z in (2.7) belong to the holomor-

phic distribution T0. In the equation (2.7), we shall replace X, Y and Z cyclically and

then add the equation to (2.7), from which we subtract the third one. By use of the

Codazzi equation and the relation (1.2), we have (see also [4])

〈(∇XA)Y, φZ〉 = β{〈AX,Y 〉〈Z,U 〉 − 〈AφX, Z〉〈Y, φU 〉 − 〈AφY, Z〉〈X, φU 〉}.

Putting Z = φZ into the above equation and using (1.2), we obtain

(2.10) 〈(∇XA)Y, Z〉 = βS〈AX,Y 〉〈Z, φU 〉

for any X, Y and Z in T0, or equivalently

(2.11) (∇XA)Y = β{〈AX,Y 〉φU + 〈Y, φU 〉AX + 〈X, φU 〉AY}

+ {〈(∇XA)Y, ξ〉 − β2(〈X,U 〉〈Y, φU 〉 + 〈X, φU 〉〈Y,U 〉)}ξ.
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3 Proofs of Theorems

In this section, we shall prove Theorems 1.1, 1.2 and 1.3. Let M be a real hypersurface

in a complex space form Mn(c), c 6= 0, n ≥ 3. We first prove some lemmas.

Lemma 3.1 Assume that M has the cyclic η-parallel shape operator and satisfies (1.2).

If (1.3) does not hold, then ξ is principal, that is Aξ = αξ.

Proof Assume that there is a point p of M such that the scalar field β given in (2.6)

is not equal to zero at p. Then there exists an open neighborhood U of p such that

β 6= 0 on U, that is, ξ is not principal on U. Since we have 〈AU , φU 〉 = 0 and

AφU = φAU from (1.2) and n ≥ 3, we see from (2.6) that there are scalar fields γ

and δ on U and a unit tangent vector field V orthogonal to ξ, U and φU such that

(3.1) AU = βξ + γU + δV, AφU = γφU + δφV.

Under the assumption (1.2), it is easy to see from (2.10) that the shape operator A

is cyclic η-parallel if and only if A is η-parallel. Multiplying (2.11) by φU and using

(3.1) and the η-parallel shape operator, we have

(3.2) 〈AX,Y 〉 + 2γ〈X, φU 〉〈Y, φU 〉 + δ{〈X, φU 〉〈Y, φV 〉 + 〈X, φV 〉〈Y, φU 〉} = 0.

If we put X = Y = U , or X = U and Y = V into (3.2) and make use of (3.1), then

we see that

(3.3) γ = δ = 0

on U, and hence (3.2) is reduced to

(3.4) 〈AX,Y 〉 = 0.

It follows from (2.6), (3.1), (3.3) and (3.4) that

(3.5) Aξ = αξ + βU , AX = β〈X,U 〉ξ

for any X ∈ T0, which shows that M is locally congruent to a ruled real hypersurface

(see [1, 5]).

Since M does not satisfy (1.3), there are some vector fields X and Y in T0 such that

(3.6) 〈AX,Y 〉φU + 〈Y, φU 〉AX + 〈X, φU 〉AY

6= β{〈X,U 〉〈Y, φU 〉 + 〈Y,U 〉〈X, φU 〉}ξ.

It is easily seen from (3.5) that (3.6) gives a contradiction. Therefore ξ must be prin-

cipal.

Lemma 3.2 M is locally congruent to a ruled real hypersurface if and only if it satis-

fies (1.3).
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Proof If M is locally congruent to a ruled real hypersurface, then the scalar field β

does not vanish and M satisfies (3.5). It is clear that (1.3) is given by (3.5).

Conversely, we assume that (1.3) holds on M. Putting Y = φU into (1.3), we have

(3.7) 〈AφU , X〉φU + AX + 〈X, φU 〉AφU = β〈X,U 〉ξ

for any X ∈ T0. If we put X = φU into (3.7) and multiply it by φU , then we see

that AφU = 0. Therefore (3.7) is reduced to AX = β〈X,U 〉ξ for any X ∈ T0, which

together with (2.6) means that M is locally congruent to a ruled real hypersurface.

Lemma 3.3 Assume that M satisfies (1.2). Then the equations (1.3) and (1.4) are

equivalent.

Proof If (1.3) is given on M, then we see from Lemma 3.2 that (3.5) holds on M.

Differentiating the first equation of (3.5) covariantly along X(∈ T0) and using (2.2)

and (3.5), we have

(3.8) (∇XA)ξ = (Xα)ξ + (Xβ)U + β∇XU ,

and, from the second of (3.5), we get

(∇ξA)X = −A∇ξX + β2〈X,U 〉φU + ξ(β〈X,U 〉)ξ.

From the above two equations and the Codazzi equation (2.4), we obtain

(3.9) (Xβ)U + β∇XU = {ξ(β〈X,U 〉) − Xα}ξ + β2〈X,U 〉φU −
c

4
φX − A∇ξX.

Since we have 〈(∇XA)Y, ξ〉 = 〈(Xβ)U + β∇XU ,Y 〉 from (3.8), it is easily seen from

(2.1), (2.2), (3.5) and (3.9) that

(3.10) 〈(∇XA)Y, ξ〉 = β2(〈X,U 〉〈Y, φU 〉 + 〈X, φU 〉〈Y,U 〉) −
c

4
〈φX,Y 〉

for any X and Y in T0. Substituting (3.5) and (3.10) into (2.11), we then have (1.4).

Conversely, we assume that (1.4) is given on M. Then it follows from (1.4) and

(2.11) that

β{〈AX,Y 〉φU + 〈Y, φU 〉AX + 〈X, φU 〉AY}

= {2β2(〈X,U 〉〈Y, φU 〉 + 〈X, φU 〉〈Y,U 〉) −
c

4
〈φX,Y 〉 − 〈(∇XA)Y, ξ〉}ξ,

which implies

(3.11) 〈AX,Y 〉〈Z, φU 〉 + 〈Y, φU 〉〈AX, Z〉 + 〈X, φU 〉〈AY, Z〉 = 0
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for any X, Y and Z in T0. If we put Y = Z = φU into (3.11), then we see that

2〈AX, φU 〉 + 〈X, φU 〉〈AφU , φU 〉 = 0.

Putting X = φU into the above, we get 〈AφU , φU 〉 = 0 and hence the above is given

by

(3.12) 〈AX, φU 〉 = 0 for any X ∈ T0.

By putting Z = φU into (3.11) and using (3.12), we obtain 〈AX,Y 〉 = 0, which im-

plies that (3.5) holds on M. The equation (1.3) is induced from (3.5) by Lemma 3.2.

Proof of Theorem 1.1 If M satisfies (1.3), then M is locally congruent to a ruled real

hypersurface by Lemma 3.2.

If (1.3) does not hold on M, then the scalar field β vanishes identically on M, that

is, ξ is principal by Lemma 3.1. We see from (2.1) and (2.6) that (Aφ − φA)ξ = 0,

which together with our assumption (1.2) implies (1.1), that is, Aφ = φA on M.

Thus, Theorem A shows that M is locally congruent to a real hypersurface of type A.

Proof of Theorem 1.2 If M is a ruled real hypersurface, then we have (1.3) by

Lemma 3.2. Under the assumption (1.2), we also have (1.4) by Lemma 3.3.

If M satisfies (1.3) or (1.4), then we have AX = β〈X,U 〉ξ for any X in T0 as seen

in the proof of Lemmas 3.2 and 3.3, which means that M is locally congruent to a

ruled real hypersurface.

The following is due to Ki and Suh [4] and immediate from Theorems 1.1 and 1.2.

Corollary 3.4 ([4]) If a real hypersurface M in a complex space form Mn(c), c 6= 0,

n ≥ 3 satisfies (1.2) and (∇XA)Y = − c
4
〈φX,Y 〉ξ for X,Y ∈ T0, then M is locally

congruent to a real hypersurface of type A.

Proof of Theorem 1.3 We assume that there is a point p of M such that β(p) 6= 0.

Then there exists an open neighborhood U of p such that β 6= 0 on U. We see from

(1.2) and (2.6) that there are scalar fields γ and δ on U and a unit tangent vector field

V orthogonal to ξ, U and φU satisfying (3.1).

Putting X = Y = U , Z = φU and X = Y = U , Z = φV into (2.10) and taking

account of (3.1), we have

(3.13) 〈(∇U A)U , φU 〉 = βγ, 〈(∇U A)U , φV 〉 = 0

on U, respectively. As a similar argument as the above, by putting X = Y = φU ,

Z = φU or Z = φV into (2.10), we also obtain

(3.14) 〈(∇φU A)φU , φU 〉 = 3βγ, 〈(∇φU A)φU , φV 〉 = 2βδ.
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If we substitute X = U into (2.8) and (2.9) and make use of (3.1), we get

(3.15) (∇U A)φU = (β2−
c

4
)ξ+βγU +βδV, (∇φU A)U = (β2+

c

4
)ξ+βγU +βδV,

respectively.

Since the Ricci operator S is cyclic η-parallel, it follows from (2.5) and (2.10) that

(3.16) S{(Xm)〈AY, Z〉 + 3mβ〈AX,Y 〉〈Z, φU 〉 − 〈(∇XA)Z + (∇ZA)X, AY 〉} = 0

for any vector fields X, Y and Z in T0. Putting X = Y = U and Z = φU into (3.16)

and taking account of (3.1), (3.13) and (3.15), we get

(3.17) γ((φU )m) + 3mβγ − 4β3 − 6βγ2 − 4βδ2
= 0.

Moreover, if we put X = Y = Z = φU into (3.16) and make use of (3.1) and (3.14),

we have γ((φU )m) + 3mβγ − 6βγ2 − 4βδ2
= 0, which together with (3.17) gives a

contradiction.

Therefore ξ must be principal and our conclusion follows from Theorem A.
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