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QUASIGRAPHS
NORMAN D. LANE, PETER SCHERK AND JEAN M. TURGEON

1. Introduction. In the study of direct differential geometry, families of
oriented arcs and curves have been employed extensively to define the dif-
ferentiability of an arc at a point in various kinds of planes; cf. [2]. In [6],
P. Scherk used lines in the projective plane; in [3] and [4], N. D. Lane and
P. Scherk used circles in the conformal plane; conic-sections in the projective
plane were employed in [5] and [7] by N. D. Lane and K. D. Singh; in [1],
M. Gupta and N. D. Lane used the graphs of polynomials of degree at most
in the affine plane. For non-linear differentiability, the families of curves which
were employed sometimes contained degenerate curves such as isolated points,
pairs of lines, rays and even lines and rays counted with a multiplicity greater
than one. These different investigations on direct differentiability, order and
characteristic followed surprisingly similar patterns and led naturally to a
search for a general theory of differentiability which would include, as partic-
ular cases, the linear, circular, conic-sectional and polynomial theories. In the
present paper, the authors introduce structures called quasigraphs which
appear to form a suitable basis for such a general theory.

A gquasigraph in the unit disk G consists, roughly speaking, of a finite graph
[K] in G, together with a decomposition of G\[K] into two distinct open sets
K'and K—1. By means of an isotopy of G, we then obtain a family U of quasi-
graphs. If Q € [K,] N [K,] for two distinct quasigraphs K; and K, in U, we
require Q € [K] for all K in A. If Q € [Ki] N [Ks], then K; and K, can
intersect at Q, or support at Q, or do neither, depending on the number 4, 3,
or =2 of non-void sets K;*! M K,*' M N, where N is a small neighbourhood
of Q.

Our first theorem asserts that if there are two distinct quasigraphs in 9
which support (intersect) at Q, then any two quasigraphs in U will support
(intersect) at Q. This property of the families % will be needed for the definition
of differentiability and the introduction of the characteristic of a point of

an arc.
Suppose any two quasigraphs of U support (intersect) at Q. Let N be a small
neighbourhood of Q. Consider % distinct quasigraphs Kj, . .., K;in %. Then

exactly & + 1 (exactly 2k) of the 2% sets K;#'M\ ... MN K, M\ N are non-
void; £ = 2 (Theorem 2 (Theorem 3)).

Our final Theorem 4 asserts that our construction of quasigraphs is equiva-
lent to their definition by means of certain equivalence classes of sets of oriented
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Jordan curves and arcs. It is these classes of sets which constitute the imme-
diate generalization of the examples mentioned at the beginning of this
introduction.

We wish to thank Dr. Ralph Park for many valuable suggestions.

2. Basic definitions.

2.1. Our domain is the closed unit disk G in the Euclidean plane. A Jordan arc
(curve) is the homeomorphic image in G of a closed interval (of the circle).

2.1.1. We consider a finite set of points called vertices and of ‘‘edges’” in G.
An edge is either a Jordan curve, possibly with one point removed, or the rela-
tive interior of a Jordan arc. Any two edges shall be disjoint and no edge shall
meet bdG or contain a vertex. Every endpoint of an edge shall be a vertex.

A loop is an edge whose closure contains at most one vertex. No vertex in
int G shall be the endpoint of precisely two edges (loops counted twice). One
or both of the sets of vertices and edges may be void.

2.1.2. Given any such set of vertices and edges in G, we shall denote by [K]
the set of all those points that either are vertices or lie on edges.

Let K! and K-! be any open sets which partition G\[K]. Thus every con-
nected component of G\[K] lies entirely in K* or K—1. Then we call the ordered
triple (K], K', K~1!) a quasigraph and denote it by K. In particular, we call

0,G,0) and (0,0,G)

the void quasigraphs.
We have

2.11) G =[K]UK!'U K-

and
[K] = ¥K'N\ CK.

We say K decomposes G if both K' and K—! are non-void. It decomposes G at
a point Q if

KINN#@ and K-'NN#P

for every neighbourhood N of Q.

If K = ([K], K, K1) is a quasigraph, so is L = ([K], K~!, K'). We call K
and L opposite quasigraphs.

Obviously if K decomposes G at one point of an edge E, then it will do so at
every point of E. We then call E odd. Any non-odd edge is called even. Then K
decomposes G at a vertex P if and only if P is the endpoint of at least one odd
edge. A vertex is the endpoint of an even number of odd edges, counting odd
loops twice.
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2.2. The open sets K and K~! being disjoint, we have
(22.1) KeNK—==§
and
(22.2) K*NintK==0; a= *1.

By (2.2.1) and (2.1.1),

K« C K=\U [K].
Finally, since [K] C K'\U IF, (2.1.1) implies
G =K'UK,
i.e. ___
K C K.
Hence . _ L
% K* = int € K* C int K,
i.e. -
G=KUint K=, a= =xl1.
2.3. Define
(2.3.1) [K]=K'NKT=hbdK'NbdK!
and

(2.3.2) Re=intKe; a = =+1.

Then [K] is the union of the closures of the odd edges of K. In particular,
[K] C [K]. Also we have

(2.3.3) K« C K= C (K= [K]).

2.4. By (2.3.1) and (2.3.2), [K] is closed while K* and K—! are open. Since
every point of G belongs to one and only one of the three sets [K], K!, K-,
the triple K = ([K], K!, K1) is a quasigraph and our notation is justified.
We shall K the reduced quasigraph of K.

K decomposes G at Q if and only if K does.

Let K and L be reduced quasigraphs, [K] = [L]. Then K and L are equal
or opposite.

2.5. Every edge of K is odd and is the union of vertices and odd edges of K.
Conversely, every odd edge of K is contained in some edge of K.

The set of vertices of K is a (possibly improper) subset of the set of vertices
of K. More precisely, a vertex of K in int G is a vertex of K if and only if it is
an endpoint of an even number greater than two of odd edges, odd loops being
counted twice. _ ~

Starting with K instead of K, we can construct K. Obviously, K = K.

2.6. K1 = €K or, equivalently, K' = €K' = [K] U K.
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Proof. By (2.2.2), K' "\ K-! = @. Hence K—' C (gE
Conversely, by (2.3.1) and (2.3.2), [K]\U K' C K'. Taking the comple-
ments, we obtain ¥K* C KL

2.7. Let K be any quasigraph and S be any open set in G. If [K] N S 5~ 0, then
SNKe# 0,0 = +1.

Proof. Let P € [K] N S. Let E denote an odd edge of K through P or with
the endpoint P. Since S is open, E M S contains an interior point Q of E. Thus
QeESNECSN[K].

Choose any small neighbourhood N C S of Q. Since E is odd, N M K* # @
for & = 1. This proves our assertion.

2.8. Let K and L be reduced quasigraphs such that [K] and [L] are homeomor-
phic and [K] C [L]. Then [K] = [L].

Proof. Every vertex of K is one of L. Since K and L have the same finite
number of vertices, every vertex of L is also one of K. Let Qy, . . ., Q, denote
these vertices. Let f;,[g;;] be the number of edges of K[of L] connecting O,
and Q;, 7,7 =1,2,...,n Every edge of K connecting Q; and Q; is one of L.
Hence f;; £ g;;for all 7, j. Since K and L are homeomorphic, Z; ;fi; = Z; 845
Hence f;; = g4; for all 4, j. Thus every edge of L connecting Q; and Q; is also
an edge of K. A similar argument shows that K and L have the same loops
without vertices. Thus [K] = [L].

Since K and L are reduced, they can have only the same or opposite orienta-
tions. Thus K and L are either identical or opposite quasigraphs.

3. The metric space of the quasigraphs.

3.1. Let K be a quasigraph. Then [K], ¥K! and ¥ K~! are compact sets.
We provide the collection of all the non-void compact subsets of G with its
Hausdorff metric é and define the distance d between two non-void quasi-
graphs K and K’ by

d(K,K') = §(¥K!, €K' + (¥ K-, FK').

Thus d(K, K’) = 0 if and only if K = K’. This defines a metric in the space
of the non-void quasigraphs.

We complete this metric by postulating that each of the two void quasi-
graphs has the distance 4 from every other quasigraph.

3.2. If K and K' are two non-void quasigraphs, then
8([K], [K']) = d(K, K').

Proof. Let p denote the ordinary Euclidean distance between two points of
G. If P is any point of G and A4 is any non-empty compact subset of G, we write

o(P, 4) = min p(P, Q).
Q€A
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Let P’ € [K']. If P’ € [K], then
o(P,[K]) =0 2d(K,K').
Let P’ € K= Since [K] C € K=, we readily verify
o(P, [K]) = o(P', €K*).
The right hand term is not greater than
(¥ K>, K*) < d(K, K').

Thus
a(P',[K]) £ d(K,K') forall '€ [K'].

Symmetrically, ¢(P, [K']) £ d(K, K’), for all P € [K]. Hence
8([K], [K']) = d(K, K').
3.3. We study a family of quasigraphs
{Kis € I=(0,1)}

where K depends continuously on s. Note that % K & must then also be con-
tinuous in the sense of the §-metric; @ = £1. By 3.2, so is [K|].

The continuity of our family implies that either no K is void or every K,
is void.

34.If P € K&, then P € K/~ for all t near s.

Proof. Let P ¢ K. Since P ¢ €K, the distance ¢(P, ¥ K) from P to
the compact set % K  is positive. By 3.3, ¢ (P, € K /) varies continuously with

¢t and this distance remains positive for every ¢ close to s. Hence P € K for
all such ¢.

3.5. Let J be an open subsegment of I = (0, 1). If P ¢ U, K], then there
is an o = =1 such that P € K2 for all s € J.

Proof. Let J, = {s € J|P € K#}; o = &1. Then Jy and J_; are disjoint,
J = Ji\J J_and, by 3.4, J; aud J_; are open. Since J is connected, one of J;
and J_; is void.

3.5.1. COROLLARY. Let s; < s9. Then
(3.51) (K, NK,HU K, TUK,)C U [K]
s1<s<s2

Proof. Let P € KM K, Suppose P € U, <s<s[Ks]. Then, by 3.5,
PcKeC FKy= for all s € (s, 52). Hence P € €K, = K,,»\U [K,,],
a contradiction.

3.5.2. Obviously, (3.5.1) can be improved to
ESNE, NV ETNE)C U KN N K]

51<s<s2 ser1

cf. 4.4.
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4, Certain families of quasigraphs.

4.1. Let I = (0, 1). In the following, we study families % = {K|s € I} of
quasigraphs with the following property: there exists a quasigraph K and a
continuous map F: G X I — G such that, for each s, Flox, is a homeo-
morphism satisfying F([K] X s) = [K,] and F(K!' X s) = K,' (hence
F(K* X s) = K71, and ¥ is generated by an isotopy). Thus F is an open
mapping.

If J = [s, t] is a closed subinterval of I, and R is an interior point of G, then
[Flexs7Y(R) is readily seen to be a Jordan arc whcse endpoints lie in int
(G X {s}) and int (G X {t}) and which does not meet the boundary of G X J
elsewhere (cf. 4.7 {f).

More conditions on ¥ will be added in 4.4 and 6.3.

4.1.1. Flgxs maps each edge of K onto an edge of K, and each vertex of K
onto one of K. Loops are mapped onto loops. The parity of an edge is pre-
served (cf. 2.1).

4.1.2. If Eisan edge of K and Q € G, put E, = F(E, s), Qs = F(Q, s), etc.

4.2. With U, the reduced family

A= {Ks eI K,
satisfies 4.1.

Proof. Let K be the reduced quasigraph of K. Since [I|gx; is a homeomor-

phism, the definitions of 2.3 — 2.6 yield
[Ks] = k?m IF

F(K* X s) N\ F(K7! X s)

F(K' X s) N F(K' X s)

FI(ETN K X 5)

= F([K] X s)

Il

Il

and

K& = int I—(—S;
int F(K* X s)
int F(K* X s)
F(int K* X s)
= F(K= X s).

4.3. K is continuous in the topology of the metric 3.1.

Il

Il

Proof. Let s € I. Choose a closed subinterval J of I which contains s. In the
compact set ¥ K= X J, F is uniformly continuous; @ = 1. Let ¢ > 0. Then
there exists an n > 0 such that, in particular,

(4.3.1)  p(F(x, s1), F(x, 52)) < ¢/2
for all (x, s1), (x, 52) in ¥ K= X J such that |s; — so| < 7.
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Let |s; — so] <7 and y; € €K~ Thus y; = F(x, s;) for some x € € K.
Put y, = F(x, s2). Thus y, € ¥K,,* and, by (4.3.1), p(y1, y2) < €¢/2. Thus y;
lies in the ¢/2-neighbourhood of € K ,*. As this applies to any y; € % K2, we
obtain that ¥ K, lies in the e/2-neighbourhood of %K. Symmetrically,
% K ,,* lies in the ¢/2-neighbourhood of % K ,*. Hence

6(%K31av (ngza) < €/2v a = il
Therefore d(K,,, K;,) < e. In particular, d(K;, K,) < € for all ¢ close to s.
4.3.1. By 4.2, K is also continuous in the topology of 3.1.

4.3.2. Let E be an edge of K and let E, denote the corresponding edge of K,.
Then, Flzx; being continuous, our argument shows that the closure E; of E;
depends continuously on s.

4.4. Let M = Nye;[KJand M = N [K,]. We assume:
4.4.1. If s £ ¢, then K; # K, and
(KN [K,] = M.
Thus A is a simple arc in the space of the quasigraphs.
4.4.2. Either [K,] = M forall s € Ior,if s # ¢, then K, # K, and
(KJN[K] = M.
The following example shows that 4.4.1 does not imply 4.4.2. Let
Ei={(x0)]—1<=x<0},E = {(x,0)]0 <x <1},
E; = {(0,9)]0 <y < 1}; V = (0,0). K shall have the edges E,, E,, E; and
vertices V, (—1, 0), (0, 1) and (1, 0). K' = {(x,y) € G|Jx < 0 or y < 0};
K1 = {(x,y) € G|]x > 0, y > 0}. Define K, by sliding V on the x-axis from

—%,0) to (3,0), moving Ej;  parallel to itself, expanding E; ; and shrinking
E, ..

4.4.3. By 2.8, either [K,] = M forall s € T or [K,] # M forall s € I.

4.5. Suppose a vertex of K, lies in int G and is the endpoint of three edges or
more. Then it lies in M. In particular, every vertex of K, in int G belongs to M.
Every vertex of K, on bd G which is the endpoint of two edges or more is fixed.
(In these statements, loops are counted twice.)

Proof. Let Q be a vertex of K which is in int G and the endpoint of at least
three edges of K. Suppose Q, ¢ M. Choose a neighbourhood N of Q; so small
that (i) its closure does not meet M or any edge of K, which has not Q; as an
endpoint, (ii) this closure does not contain any other vertex of K, and (iii)
% N meets every loop of K, with the vertex Q..

Let t > s. Thus Q, # Q,. Choose ¢ so close to s that Q, € N for all # with
s < u=t. Let ty denote the smallest parameter value >s for which Q,, lies on
the circle C, about Q; through Q,.
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For each edge of K with the endpoint Q,, we consider the first point in which
this edge meets C,, (in the case of a loop, we consider the two points with this
property closest to Q,). These points divide C, into a finite number of open
arcs. As Q,, ¢ M, one of them, say the arc 4,, contains Q,,. Let P** and P?*'!
denote the endpoints of 4, and let E '** and E 2! be the edges (or the loop) of
K, through P! and P?'%, respectively. Since there are only finitely many
edges ending in Q;, we may choose ¢ such that

Eg% = EMt = E} and Ej2% = E2t = B2

for infinitely many # > s and converging to s.

If E = E?, then this edge is a loop.

The arc 4, and the subarcs of E,! and E,* with the endpoints Q; and P!
and P?*! respectively, constitute the boundary of a region R C N. The arc
{Quls < u <t} lies in C, and connects Q, with Q;, € bd R without meeting
E or E?; hence it lies in R.

Choose an edge E® with the endpoint Q, and distinct from E! and E%.
Choose P, € E? close to Q,. If u > s is sufficiently close to s, E,* will be close
to E38. The point P, € E,* will be close to P, and hence outside R, while
Qu € R. Hence the subarc of E,? with the endpoints P, and Q, must meet bd R.
As A, has a positive distance from E?, we have E2 M A, = @. Hence E;}
would have to meet either E,! or E?; a contradiction.

The proof of the last assertion follows similar lines.

4.6. Let E; be an edge of K, and Q, € EN\M. Then there exists a neighbourhood
N’ of Qs and an interval [s1, S2] containing s in its interior such that

N'C U E.

t€ls1,52]

Proof. Since M is compact, there is a neighbourhood N; of Q, such that
N; M\ M = @. Thus each point Q" of N; lies on not more than one [K,]. In
particular, every / € N lies on not more than one E,.

Since F is continuous, N = F~1(N) is open in G X I. Let E, = F(E,s).
Let Q; = F(Q, s). Thus (Q,s) € N = F~1(N,).

Let 4 be a closed subarc of E with the endpoints Py and P, containing Q in
its relative interior such that 4 X s C N. Hence there are s;, s» such that
s1<s <syand S = A4 X [s1,52] C N. Thus F(S) C N, and

A, = F4 Xt) CE,NN; fors; £t = s,

As S is compact and F is a continuous bijection of S onto F(S), F|s : S — F(S)
is a homeomorphism. In particular F( int S) is a non-void open set containing
Q. Every point of this set lies on some E,; s; =t £ s.. Thus any neighbour-
hood N’ C F(int S) will satisfy our theorem.

4.7. Let E be an edge of K. The preceding remarks enable us to study the
restriction of F to E X I. We first collect some preliminary observations.
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471. If R € E, for all t € I, then (Flgxs)~'(R) is a Jordan arc in E X J
for every closed subinterval J of I (cf. 4.1).

4.7.2. Let B be a connected component of M which contains a vertex V, of
K. Thus V is a vertex of K and every V,is a vertex of K,. As V, € M for all
¢, V, moves continuously in B. In particular, V, € B for all ¢t € I.

(If ViebdG, then V,€ BNbdG C MNbdG and since each com-
ponent of M M bd G is a point, we obtain V, = V forallt € I.)

4.7.3. Suppose the connected component B of M contains no vertex of K,.
By 4.7.2, B contains no vertex of K, for any . Hence B will lie on some edge
D(t) of K,. For every edge E of K, the set of parameter values ¢ such that
D(t) = E,is open. Hence there is an edge E such that D(t) = E,for all¢ € I;
thus B C E,forallt € I.

4.7.4. From 4.7.2 and 4.7.3, we obtain the following result. Let B be any con-
nected component of M; BN\ E; # @. Then BN\ E, # @ for all t € I.

4.8. Let E again denote an edge of K. Suppose E is defined by the homeo-
morphism T': I — E. Then
€1

is given by the continuous function
fN) = F(T(),8); Neltel

Each restriction f|7x, is a homeomorphism of I onto E,.

Let s € I; E\M 5 9. Being open in E,, the set E\M is the union of at
most countably many disjoint open subarcs. Let A (s) be one of them. Thus
A (s) has a parametric representation

(4.8.1)  A(s) = {f(\, 9)]e(s) <N < p'(9)},
where 0 = p(s) < p'(s) = 1. The arc A (s) has the end points
R(s) = f(p(s),s) and R'(s) = f(p'(s), 5)-

They are either end points of E;; i.e. vertices, or interior points of E, belonging
to M (cf. 4.5).

If R(s) ¢ M,itisavertex of K,on bd G;if R(s) = R, = F(R, s), then put
R(t) = R, for all ¢t € I. Thus R(¢) depends continuously on t. In this case,
define p(¢) = O for all ¢&. Then R(¢) = f(p(¢),¢t) for all ¢t € I.

Let R(s) and R’(s) be in M. Let B and B’ denote the connected components
of M containing R(s) and R’(s) respectively.

Let

V() = f0,t) and V() = f(1,¢)

be the end points of E,.
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Suppose B # B’. By 4.7.4,

BNE, #0=«B NE, forallte I
Define
p(t) = max {\ € I|f(\,£) € BN E},
(4.8.2) {p'(t) =min {X € I|f(\,t) € BN E},
R(@#) =f@®),t), R¢) =fl'®),?).

We wish to show that R(¢) depends continuously on ¢. Let ¢, € I.

(1) Let R(to) # V(t9). Let Ry = f(\g, to) be an accumulation point of R(¢)
as ¢ tends to f,. As Ry € B, we have 0 £ Ny = p(fy). We may assume that
B N E,, contains more than one point. Let Q be any interior point of this arc.
As E, depends continuously on ¢, we have Q € E, for all ¢ sufficiently close to
to. Hence Ry lies in the closed subarc of E,, bounded by Q and R(ty). As this
holds true for every choice of Q, we have Ry = R(f).

(ii) Let R(ty) = V(t). Define R, as before. As

Ro 6 Bf\ Eto = {V(to)},

we obtain again Ry = R ().
Now let

A@) = {f\D]p@) <N <)}

denote the open subarc of E, bounded by R(¢) and R’ (¢). If A(u) were to con-
tain a point R’ of M for some u, then R’ would lie on E, between R(u) and
R’ (u). Thus R”” would belong to a component B’ of M distinct from B and B’.
By 4.7.4, B" N\ E, # @ for all t € I. By the continuity of E,, the order in
which E, meets B, B”, B’ remains fixed as ¢ ranges through 7. Choosing t = s
yields a contradiction. Thus 4 (t) N M = @ for all t. As the end points of A(2)
lie in M, A(t) is a connected component of E\M. With E,, R(t), R'(t), A(t)
depends continuously on ¢.

These results remain valid if B = B’. In this case, E; and thus all E, meet
only the one component B of M.

The case that R(s) € M but R(s") ¢ M is similarly dealt with.

4.9. Let P, € E\M. Then there exists a continuous function N\ : I — I such
that
P(t) =f(\®), 1) € EAM

forallt € I and P(s) = P,

Proof. Let A(s), defined by (4.8.1), be the connected component of E\M
which contains P,. Then

Pt = f()‘Oy S)
for some Ny € (p(s), p’(s)). Let £ be defined by
Mo = (1 — £)p(s) + £ (s).
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Then 0 < ¢ < 1 and
AE) = 1 —8)plt) +8/(¢), 0<t<I,
has the required properties.

4.9.1. The set
U A )

u€er

contains no point of M. By 4.6, it is open. Each point of this set lies on exactly
one of the arcs

Ce = {P@t) = fON®), INE) = (1 — £)p(t) + &' (D)},
0 < ¢ < 1. Thus this set is homeomorphic to I X I.
4.9.2. Let 0 < s <t < 1. Then the set

U Aw)

s<u<t
is again homeomorphic to I X I.
4.10. (i) Lets < t. Let p(u) > O for s = u < t. Then
(4.10.1) R(u) = R(s) fors Su <t
(ii) Let s < t. Assume (4.10.1). Let N be a neighbourhood of R(s) in G. Then
(4.102) NNAw) #0 fors<u=t
Proof. (i) Suppose the set
{uls < u < t; R(u) £ R(s)}
is not void. Let vy denote its infimum. As R(u) is continuous, we have
R(v) = R(s) and s <9y < &
There are parameter values v; arbitrarily close to v, such that
(4.10.3) R(1) # R(vy).

Let B denote the connected component of M which contains R(s). Since
p(#) > 0fors < u £t 4.7.4 and (4.8.2) imply that
R(u) € EENB fors 2u £t
Choose a closed neighbourhood N of R(s) such that N N [K,,] C E,,. If uis
close enough to vg, no edge # E, of K, can meet N. Thus R (v,) € E,. Choose
v according to (4.10.3) and sufficiently close to v,. Then for v, £ # < 9;, both
R(vy) and R(v;) lie on E,. For every such u, if v increases from v, to v;, R(v)

moves continuously from R(vy) on E, to R(v:). So the functions g¢(#) and
o1(u) are well defined by

R(v) = floo(u),u) and R(vy) = f(o1(u),u) forvy =< u = ;.
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By (4.8.2) and (4.10.3), we have
a1(ve) < p(ve) = ao(vo) and oo(v1) < p(v1) = 01(v1).

Since ¢¢ and o, are continuous and oo(%) # o;(x) for all u, this yields a con-
tradiction.

(ii) Let D; denote the following subarc of C;:
(4.104) Dy = {f(Nu), w)ls S u = t;Nu) = (1 — £)p(u) + &' (W)};

(cf. 4.9.1). It suffices to show that D¢ C N if ¢ is sufficiently small.

Suppose this assertion is false. Then there exists a sequence of positive
numbers ¢ converging to zero and for each § a parameter #, s £ u =< ¢, such
that

P@) = f(A — &)p(u) + &' (), u) ¢ N.

Let u, be an accumulation point of the #’s. Since p(v) and p’(v) are con-
tinuous, the parameter values (1 — £)p(#) + £o’(#) have the accumulation
point p(u). Since f is continuous, the points P (x) converge to

f(p(uo), uo) = R(uo) € N,

a contradiction.

5. Global decompositions.
5.1. Let P, € E\M. Construct the arc
(.1.1) (P € 1)

with P(s) = P, and P(u) € E\M for all u, according to 4.9. Let s < s,
P(s') € K&. Then

(5.1.2) P(u) € K& forallu > s,
(5.1.3) P(u) € K= forallu < s.

Proof. The arc {P(t)|t > s} does not meet [K,]. Hence it lies entirely in K &.
Let A (s) denote the connected component of E\M containing P(s). By
4.9.1, the set
(5.14) U A@®)

ter

is homeomorphic to I X I, the homemorphism being given by the parameters ¢
and ¢ of 4.9. In particular, A (s) C E; decomposes (5.1.4) into two subsets,
one in K&, the other in K, (cf. 2.7).

5.2. Let P, € E\M. Construct the arc (5.1.1). Let t %= s. Then P, =
P(s) € Ko if and only if P(t) € K.

Proof. Suppose s <t and P(s) € K2~ Choose u <s. Then by 3.5,
P(u) € K&, and, by 5.1, P(t) € K.
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5.3. If t and u lie on the same side of s in I = (0, 1), then
5.31) [KJNKg=[K])JNKp2, o= =l
In particular,
[RINKe=[RKINEKpe, a==x1 (cf 4.2).

Proof. We may assume that 0 < ¢t < < s <1 and [K,] N\ K& # @. Let
Pec[KJNKpg Then P ¢ [K,] and hence P ¢ M and P ¢ [K,], for all
u # s (cf. 4.4.1). We can now apply 3.5 with J = (0, s) and conclude that
P € Kgif and only if P € K,2. Since P was chosen arbitrarily in [K] N K #,
this proves (5.3.1).

5.4. We note:
5.4.1. [KIJNKg=[KJN[K]JNKg
= [Ks] N [Ks] N Ky
= [Ks] N K,z
15 independent of t;t € (0,s) ort € (s, 1).
5.4.2. [KIN[K] = [KEJN [K]N[K]
= [Ks] NM
15 independent of t; t # s (cf. 4.4.1).
5.4.3. By 5.4.2 and 4.4.2,

(KINKD\EK] = (KN [KD\[K]IN K]

= [K s]f\M\M

Il

1s independent of t;t # s.
55. Let 0 < u <s <v < 1. Then by (5.3.1)

(5.5.1)  [KJ] = (KJN KNV (KJN K (K] N [K])
= ([KJNKMNKENH VY (KJNKTNKE ) UM
CEINKHUY (KN K YU M.

More generally, if 0 < tp < t; < ... <ty <1, then
KWl CEIIN..NKHY Ky, 'N ..M K, H)U M.
In particular,
(5.52) [K,WCE*N..NE,H)U (K,'N...NK,/)U M.
56. Let 0 <u <s <v <1 Then
(5.6.1) [KJC KNE"NY K STNKN U M.

Proof. Let P, € [K,\M. Assume at first that P, € int G. Construct the arc
(5.1.1). Suppose P(s) € Ko Applying consecutively 5.1, 5.2 and again 5.1,
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we obtain P(v) € K2, P(u) € K, P(s) € K,~. This yields (5.6.1) if
P, € intG.
If P/ € bdGN [KJ\M, choose P, € int G N [KJ\M close to P. Thus
P,e KN Ke.
As this applies to every such P, we obtain
P/ € R Re N RN
C RN KeaN [KN\M
= (K, U [K]) N (Be Y [R]) N [KN\M
CEK~NEKea.
5.6.1. From (5.6.1) and (3.5.1), we obtain
U Kl=&K'NEHY KRTNRNHU M, foru <.
u<s<p

5.7. From (5.5.2) and (5.6.1), we obtain the following results.

571 If0 <ty < ... <ty <1, then
. i—1 _ h - i—1 - h _ _
(6.7.1) K, C ( NK,' N N Kf‘) U ( NEK, "N N K,J-‘)UM;
j=1 j=i+1 j=1 j=1+1

i1 =2,...,h — 1. Inthecases? = 1 and 7 = k, we interpret (5.7.1) by means
of (6.5.2). Thus (5.7.1) remains valid for ¢ = 1 and 7 = & if we define

0 h
,QK”'a = N K, =G

j=h+1

5.7.2. CorOLLARY. If Ky, K1, . .., K, are distinct quasigraphs of U, then there
exista, = *+1;1=1,...,h such that
h h
(56.7.2) [Ko C ( mlk,‘”) U ( mIK;“") U M.
i= 1=
5.7.3. If Ko, K1, . . ., K, are distinct quasigraphs of U and
(K NEKer N o N Kyer # 0,
then (5.7.2) holds.

Proof. By 5.7.2, there exist 81, ..., 8 such that
h h
gac(n&e)u(Ar)u
=1 i=1
Thus any point P € [K¢\M lies either in N1 K £ or in N}, K, Let
P ¢ [Ro) N Ni-1K #i. Suppose, for instance, that P € Ni_,K #. Then

A
P c ('\I(K,"‘HK,‘).
1=
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In particular, KNV KpFi#0;1=1,...,h Hencea; =B;;1=1,...,h.
5.74. Let
h
Kol N inai #= .
1=
Applying 2.7 to S = N}_1K #i, we obtain
h
NKIFNEKS #0, a= =1
i=1
58. If0 <s=t<u=sv<1,then
KeNK~CKeNKy™e a= +1.
Proof. If w lies between « and 1, then by (5.5.1)

[Kp] CEKINKNU (KT KSTY) U M.

Hence [K,,] has no point in K~ M K, ™.
Let P € KM K, Thus P ¢ [K,). Since P € K, ™, 3.5 yields P € K, ™
for all w with « < w < 1. Hence P € K2 M K,~=. Thus we obtain

KeNKCKeN Ky
A similar argument yields
KeNK~CEKeNKye
and hence
KeNK~CKaN K™
5.8.1. Let s < u < t. Then
KN K CRA
Proof. By 5.6, no point of [K,]is in K,! M K,! and thus
(5.81) KiNKr= K NEKNEKHYU KINKN K.
But, by 5.8, LN K, C KN K, so that
ENEKETNKACRNETNEKL=9.
Hence (5.8.1) becomes
KNKr=EKNEKNKA
This proves our assertion.

59. Let0 < t; < ... <t < 1. Then at most 2k of the sets

h
(.91) NEK,™ ay...,¢n=1,—1
1

are non-void.
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We may assume that [K,] # M for one and therefore for every t. We wish
to show that only the 27 sets

1 h
(G92) NESNNE,™ i=01,...,h a=1,-1
1 i+1

can be non-void (cf. 5.7.1).
The cases & < 3 are trivial. Let £ = 3. We have to show that

(5-9-3) K“a m K~l2_a m Kma = ﬂ fOI‘ o = :l:l.
Replacing in 5.8 s and ¢ by ¢, # by ¢, and v by £;, we obtain
KyeNEKy,=CRy=N K™
This implies (5.9.3).
Suppose & > 3. Let T be one of the sets (5.9.1) which does not belong to the
sets (5.9.2). Then there are three indices \;, Ag, A3 such that 1 < A} < Ay <
As < hand ay, = —ay, = ay,. But then

TCKA?W\K%ﬂ“ﬂKAfR

By our discussion of the case # = 3, T must be void. Hence only the 2h sets
(5.9.2) may be non-void.

6. Local decompositions.

6.1. Two quasigraphs K, and K, support [intersect] each other at Q if exactly
one [none] of the four open sets

KFNKF NN

is void for every sufficiently small neighbourhood N of Q. Thus Q ¢ [K;] N
[K,] in either case and [K,] N\ N # [K;] N N for every small neighbourhood
N of Q.

Note that

(6.1.1) KM"NEKMNN#P & KETNEKTNN#G.
More generally,
h h
6.1.2) NEKSNN#0=NK " NN#Q, h=2;
1 1
cf. (2.3.3).

6.2. Suppose Q € [Ki] N [Kq] and K, and K, neither support nor intersect
each other at Q. Then either

(6.21) KfNN=0, ie NCEK=
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for some i € {1,2},a € {1, —1}, or
(6.22) [KiNN-=[K]NN
for every small netghbourhood N of Q.

In the first case, at least one of the quasigraphs does not decompose G at Q.
In the second, K; and K, may both decompose G at Q, but they do so in the
same way or in opposite ways.

Proof. By our assumption, at least two of the four open sets
K *N KN\ N
are void. Suppose
KSPN KL NN =6,
KN Ky *N\N = g.
Then only two cases are essentially different: either
(6.2.3) 1 =8 and v, = —B

or

(624) Y1 = '—ﬁl and Y2 = —'62.
If (6.2.3) holds, we may assume that
Kim'MEK!NN=¢ and K 'NK;,'NN=0.
Then
Ki'M N Cint ((K;J N\ N) =0
and thus

K 'MN=9 and K'NN=90
or _
N C %Kl_l = Kll.
This yields (6.2.1); cf. 2.6.
From now on we may assume that both K, and K, decompose G at Q. Then
(6.2.4) holds and we may assume that, for some « € {1, —1},

(6.2.5) KerNKJ)!]UN=¢g

and
(6.26) K"K, NN = 0.
By (6.2.5),

KeNKINN=¢ and KeNKJSN\N=6
and thus, by 2.6,
Kl"‘f\NCKg“lf\N and KglﬂNCKl“"‘ﬂN.
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Taking the relative closure on each side, we obtain
627) KeNNCEKNN
and
6.28) KINNCE—=NN.
Similarly, from (6.2.6),
6.29) K—=NNCERKINN
and
(6.2.10) KN\ N C KN N.
Hence, by (6.2.7) and (6.2.9),
[RJ NN = (KN N) N (KN N)
C RANN N EENN)
and similarly, by (6.2.8) and (6.2.10),
[R] NN C [R] N N.
This yields (6.2.2).

6.3. The theorems which will be proved in this section are not valid without
an additional restriction. We consider the following example.
After a homeomorphism, G may be assumed to be the square

IPP={xnN0=x=1,0=y =1}

Il

(K] NN

Let
M ={@»0=x=1},D= {900 <y <1}
K, =M\VUD,U/{(s,0), (s, )},
K ={(x,y) € x> s,y> Lorx <s,y <1},

Rit={(y) € Ile > s,y < forx <s,y> .

Put K = Ki,. Then A = {K|s € I} satisfies the requirements of § 4. Note:
(i) The vertex Q, = (s, %) of K, is not fixed.
(ii) The quasigraphs K;,s and K5 [K;,4 and Kj3;s] decompose I? at (%, %)
in the same way [in opposite ways].
(iii) K12 and K, intersect each other at (3, 3).
6.3.1. For the rest of Section 6 we make the following
Assumption. If Q, € M, then Q, is a vertex either of every or of no K,.
6.3.2. Let R(s) € M. Then R(u) = R(s) for all u € I (cf. 4.8).
Proof. (i) If p(u) > 0 for all u € I, this assertion follows from 4.10 (i).
(ii) Suppose p(s) > 0, p(t) = 0 and e.g. s < ¢. Put

to = inf {u|s < u =< ¢t; p(u) = 0}.
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Since p is continuous, we have
(6.3.1) p(to) = 0; thuss < ¢ = &

We have p(v) > 0 for s < v < t,. Hence by 4.10(i), R(») = R(s). As R(v)
depends continuously on v, this yields R(t)) = R(s) € M.

By (6.3.1), R(t) is a vertex of K. Thus by 6.3.1, R(¢t,) = R(s) would also
be a vertex of K. This contradicts our assumption that p(s) > 0. Hence this
case can not occur.

(iii) If p(s) = 0 and p(¢) > 0, then R(t) € M and we come back to the
second case.

(iv) Finally let p(u) = 0 for all w € I. Thus R(u) is a vertex of K, for all u.
On the other hand, our assumption R(s) € M implies, on account of 6.3.1,
that R(s) also is a vertex of K,, i.e. an endpoint of E, for every u. Since E,
and R(u) depend continuously on #, this yields once more our assertion.

6.3.3. Let s < t, R(s) € M. Let N be a neighbourhood of R(s) in G. Then
NN Aw) # @ fors =u =t

This remark follows at once from 6.3.2 and 4.10 (ii).

The proof of 4.10 (ii) shows that the arc (4.10.4) lies in N if £ > 0 is small.

6.3.4. By the proof of 6.3.2, p(s) is either always positive or always zero.
Thus R(s) is either always or never a vertex; 0 < s < 1.

6.4. Let 0 < s <t <1;Q,€ M;a € {1, —1}. Suppose
EsNEK~=NN#P
Jor every neighbourhgod N ~of Q.. Then there exists an edge E of K such that
Qs € Eyand E,N KN KM N # @ for all u € (s,t).
Proof. By 3.5.1, there isa v = vy € (s,t) such that
[KJNEKeNK~NN # 0.
Thus there is an edge E = E(N) of K such that
(641) E,NEKeNK~NN # 0.

This holds true for every choice of N. As K has only a finite number of edges,
there is an edge E of K such that (6.4.1) applies to all neighbourhoods N and a
suitable v = 9y € (5, t). Let 94 be an accumulation point of vy as the radius of
N tends to zero. Then Q, € E,,. If Q, is not a vertex, assumption 6.3.1 implies
that Q; € E, for all w € I. If Q, = F(Q, s) is a vertex and Q is an end point
of E, then Q, = Q, is an end point of E, for all # € I. Thus Q, € E, for all
u € I
Using the notation of 4.8, let

Qs zf(g(u),u), u € I.
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By 4.7.1, ¢ : I — I is continuous. Suppose Q, is not a vertex. Since o () #
0, 1, there is an ¢ > 0 such that

e <o) <1—¢e forallu € [s,1¢].
Making e smaller if necessary, we may assume that
(6.4.2) B(u) =f((c(u) — ¢ a(u) + €),u) CN forall u € [s,¢].
The closed subset

ENB(u) = f([0,0(u) — €, u) \J f([o(u) + ¢ 1], u)

has a positive distance from Q; for every u € [s, t]. Hence there is a neighbour-
hood N" C N of Q, such that

N NENBw) =0 forallu € [s,¢].
Applying (6.4.1) with N’ instead of N, we obtain
B@)NKsN KN N 0.
By (6.4.2), there is therefore a point
P, e Bo)NKasNK~=NN.

Let 4 (v) denote the connected component of E,\M containing P,. One of the
end points of 4 (v), say the point R(v) either lies on E, between P, and Q, or
is equal to Q,. At any rate, R(v) € M N\ B@) C M N N (cf. (6.4.2)).

As N is a neighbourhood of R(v), we obtain, from 6.3.3 that

NMNA@w) #0

both for s < # < vand forv < u < ¢
The case that Q; is a vertex is even simpler.

6.5. Suppose K ; and K , support each other at Q. Then there exists a neighbour-
hood N of Qs and an o € {1, —1} such that

KeNK~NN=@g.

Proof. Let s < t. Since K, and K, support each other at Q;, every neighbour-
hood N of Q, contains points P, € [K,\M. Construct the arc {P(u)|lu € I}
according to 4.9. By the proof of 4.10 (ii), P can be chosen in such a way that
the subarc {P(u)|s — e < u < ¢ + €; ¢ > 0} lies entirely in N.

Suppose P(s) € K2 Then, by 5.2, P(t) € K, As [K,] N\ K2~MN N is not
void, 2.7 implies

KA NEKesNN # 0.
Similarly,
[E]JN KN N 5 @ implies

E~NEKAANN =0

https://doi.org/10.4153/CJM-1977-001-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-001-4

QUASIGRAPHS 21

This yields
KSENKFNN#P forB = +1.

6.6. Let 0 <s <v<1,0<t<u<1 Let Q€ M;a € {1, —1}. Let N
be a small neighbourhood of Q,. Then

KeNK;NN#=0 & KeNK NN =0
Proof. Obviously, our assertion can be reduced to the special case
0<s=t<u<v <l

By (6.1.1), it suffices to consider the quasigraphs of the reduced family 9.
Suppose K& N K, N N = @. Thus, by 5.8,

RKeNK~NNCERKsNEK~NN = 0.

Conversely, suppose KN K, N # 0. Choose w € (¢, u) C (s, v).
Then, by 6.4, there is a point P, € [K,] such that P, € KeN K, N N.
Since P, ¢ M, we have P, ¢ [K,] for r € [s,£]\U [u,v] C (0, w) U (w, 1),
and thus, by 3.5,

P,e KeN K, NN # 9.
6.7. We first prove a lemma.

6.7.1. If K, and K, neither intersect nor support each other at Q, ¢ M, then
both decompose G in the same way at Q.

Proof. Let N denote a small neighbourhood of Q,. Obviously, N C K, = is
impossible. On account of 6.2, we may therefore assume

[EJNN=[K]JNN.
Thus either

EXNN=K!NN and KE,'N\NN=K/'NN
or

6.71) KNN=K/'NN and K,'N\N=K!NN.

In the first case, K, and K, decompose G in the same way at Q,. We have to
show that (6.7.1) cannot occur.

Leta € {1, —1}. By (6.7.1), we have K& N K=/ N # §. Hence by 6.4,
there is an edge E of K such that

(6.7.2) Q€ E, and E,NK2NEK~NN # 0

for all # with s < u < t. Choose u fixed.
The point set

(6.7.3) [KJNN=MNN
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consists of the intersection of N with one or several edges E,’ of K, such that
Q. € E/. To each of them corresponds an edge E,/ of K, such that E/ N\ N C
E/ N N (cf. (6.7.3)). Making N smaller, we may assume

E/NN=E/NNCM.

By (6.7.2), E,\ N ¢ M. Thus the edge E, is distinct from the edges E,’.
As Q, € E,, Q, must be a vertex of K,. Hence Q, also is a vertex of K, (cf.
6.3.1). But this vertex would be the end point of more edges of K, than of K,
which is impossible.

6.7.2. We note the following corollary of 6.5 and 6.7.1:
Let Q, € M. Let N be a neighbourhood of Q, in G. Then

RKENKENN#P forB= =1
6.7.3. From 6.6 and 6.7.2 we finally obtain

THEOREM 1. If fwo given quasigraphs of an U-family intersect each other
[support each other; both decompose G in the same way) at Q€ M, then so do any
two quasigraphs of that family.

6.8. Lets # t;s,t € Tand Q, € M. Then K, and K, intersect each other at Q
if and only if

(6.8.1) [KJNEKeNN#Q, o= =1,
for every neighbourhood N of Q.

Proof. By 2.7, the condition (6.8.1) is sufficient. Conversely, suppose K, and
K, intersect at Q,. We may assume s < t. Let # < s. Then, by 6.7, K, and K,
intersect at Q, and, by 6.4, there is, for each a € {1, —1} and edge E; of K,
such that

ENKeNK~NN#*0
and Q, € E,. This implies (6.8.1).

6.9. Let s # t; Qy € M. Then K, and K, support each other at Q, if and only if
the following conditions are satisfied:

6.9.1) [KJNN=[R]NN,

6.9.2) [KJNNCEKscIM and [K)JNNCKUM
for some a € {1, —1}.

Proof. (i) Suppose K, and K, support at Q. Then (6.9.1) follows from our
definitions. Also, from 6.8, there are «, 8 € {1, —1} such that

[KJNNCEKsJIM and [K]JNNCKF\J M.
Hence, by 2.7,
REANKsNN#P and KA NKENN # 0.
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By 6.5, one of the two sets KN K, N N and K,' N\ K,! N\ N must be
void. Hence 8 = —a.

(ii) Conversely, assume (6.9.1) and (6.9.2). Then 6.7.1, 6.2 and (6.9.1)
imply that K, and K, either support or intersect at Q,. Since (6.9.2) excludes
(6.8.1), they cannot intersect.

6.10. THEOREM 2. Suppose any two quasigraphs of N support each other at Q.
Let 0 <ty <ty < -++ <ty < 1. Then for every small neighbourhood N of Qj,
exactly b + 1 of the 2" open sets

(6.10.1) K, ®#MN-- - NK, NN
are non-void; h = 2.

Proof. By (6.1.2), we may replace % by 9. The case & = 2 is the definition
of support for a pair of quasigraphs.

Suppose that 2 > 2 and our statement has been proved up to & — 1. Then
exactly & of the 2"~! open sets

K*2*N...NK,_ NN
are non-void. Let P € [K,] N\ N\M. Then P ¢ (K,] for r € [t t,—] so that,
by 8.5, there is an @ € {1, —1} for which

PcKyenN..NKy,y NN.
Thus, by 6.9,

(K] "NN\MCEKieN...NK,_"

By 2.7, K, divides K, ... N K,,_,*MN N into two non-void open sets, so
that at least & + 1 of the sets (6.10.1) are non-void. Now suppose K, also
divides

KANK,LN...NEK, 1NN
into two parts. Then

p#=KAN ... NEK, P "NEK,F*N\NCEK,PNK,** N N.
However, K, N K,*' M N # @. Hence 8; = a, since K,, and K, support
each other at Q,. Similarly, 8; = «, 2 =1,2,...,h — 1. Thus K, divides

exactly one of the & non-void sets determined by K,,, . .., K,,_,. This leads to
exactly £ 4+ 1 non-void sets.

6.10.1. Suppose K, M KN N =0for0 <s <t <landa€ {1, —1}.
Then the 2 + 1 non-void sets obtained in 6.10 are

1 h
NK,S N N K, NN, i=0,1,...,kh
j=1

J=1+1
Here,
0 h
(6.102) NK, = N K, =g,
Jj=1 j=h+1
cf. 5.7.1.
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6.11. THEOREM 3. Suppose any two quasigraphs of A intersect each other at Q.
Let 0 <ty <ty < ...<t, <1;h = 2. Then exactly 2h of the 2" open sets
h

nKtiaiv oy = :}:1
1

are non-void, and every neighbourhood of Qs contains points of each of these
2h sets.

Proof. By 5.9, it suffices to show that at least 2k of the open sets
h ~ .
mKtialmNy Q= :tlv
1

are non-void.
The case b = 2 is the definition of intersection for a pair of quasigraphs.
Suppose B > 2 and let N be a neighbourhood of Q;. Suppose our statement
has been proved up to £ — 1. Then exactly 2(k — 1) of the 2"~! open sets

K**N..NK, NN
are non-void. By 6.8, there are points

PrecE,NK, NN and P1'¢[K,JNK, ,"*"NN.
Then P!, P~1 ¢ M and P, P~ ¢ [K,] for 7 € [k, th—i]. Hence P! € K, and
P ¢ K, 'forall r € [{, {,—1] and thus the two sets

KeoenN..NK, NN, a==+1,

are non-void; by 2.7, both are divided into two parts by K,,. This proves our
theorem.

6.11.1. The 2/ non-void sets obtained in 6.11 are the sets
i h
NK,S N N K,;™% 1=0,1,...,h—1, a= +£1;
j=1

j=1+1

cf. (6.10.2).

7. Quasicurves.

7.1. An alternative way of introducing quasigraphs begins with quasicurves.
A quasicurve H in G is a finite collection of Jordan arcs which meet the frontier
of G at most at their endpoints, of Jordan curves which meet this frontier in at
most one point, and of single points. Two or more of these components of H
may be identical. A component A has component multiplicity m = m(H, A) if
H has m components identical with 4. Thus

(71.1) H= Y m(H A)A

is a finite, possiBly void, formal sum of components. This definition will be
refined later.
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As before [H] will denote the set of all the points incident with at least one
component of H, and [A4] the set of points of the component 4.

If u components of H pass through a point P, then we count P with the
point multiplicity w in H. More precisely, if H is given by (7.1.1), P has the
point multiplicity

w(H,P) = 3 m(H,A).
Pe[A]
A€EH
7.2. If the component A of H decomposes G into two distinct regions, we call
A a decomposing component and denote the regions by A! and 4~ If 4 is
non-decomposing, we define either

A'=G\4, A-1=29
or
Al =0, 41 = G\A.

The ordered pair of the open sets (4!, A~!) is an orientation of 4. From now
on, a component is always oriented.

Two components A and B are equal [opposite] if [4] = [B] and
Ae = B4 = ], a = £]1.

Condition 7.2.1. Two distinct decomposing components of H shall have only
a finite number of points in common.

By this condition, no two opposite decomposing components can occur in a

given quasicurve.

Condition 7.2.2. The intersection of any two components of H shall be the
union of a finite number of points and arcs.

7.3. Assume that H has the components 4, ..., 4,, each 4, written as
often as its multiplicity in (7.1.1) indicates. Thus, forz = 1, ..., n, each point
of int G\H lies in exactly one of the sets 4 £
We then define

and

Thus the point sets [H], H!, H~! are mutually disjoint,

G=[H]UH'U H!
and

(H] = € (H') N € (H).

The ordered pair (H!, H™1) is an orientation of H. If the orientations of the
A s are arbitrarily chosen, H is capable of exactly two orientations.
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If H is void, we can introduce two orientations of H, namely either H! = G
and H ' = for H! = G and H' = 0.

The “global” decomposition of G by H and the decomposition of G by H at a
point Q are defined as in 2.1.2. G is decomposed by H at Q if and only if Q lies
on at least one decomposing component of odd multiplicity of H.

The results of Section 2.2 also apply to quasicurves.

7.4. Two distinct quasicurves H and H’ can yield the same decomposition
of G. We call H and H' equivalent and write H = H' if

H'=H'' and H™'= H'.

If two quasicurves are equivalent, they are incident with the same point set.
However, they may consists of different sets of components and their points
may have different multiplicities.

Let H = {H'|H' = H} denote the set of all the quasicurves which are
equivalent to H. Thus

H=H <H=H.

Since H = H' if and only if [H] = [H'] and H* = H®, a = %1, we may
identify A with the ordered triplet

H = ((H], H, H).

If H is the void quasicurve and H-! = §[H! = @], then H contains no
quasicurve except H itself and we have

H= (0G0 [H=(900)
If H decomposes G at Q and H' = H, then H' also decomposes G at Q. We
then define A to decompose G at Q.

7.5. We call a point P € int G a vertex of H if, for every H ¢ H, P is the
end point of a component of H, or P is the intersection of two or more distinct
components of H, or P is an isolated point of H.

Every point of [H] M bd G is also called a vertex of H.

7.6. The number of vertices of H is finite.

Proof. Let H € H. Since H has only a finite number of components, only
finitely many vertices are not intersections of components.

Let A and A’ be any two components of H. By 7.2.2, [4] M [A4’] consists
of a finite number of points and arcs. If such arcs exist, 7.2.1 implies that at
least one of the two components 4 and 4’, say 4, is non-decomposing. Deleting
the relative interior of these arcs from 4, we replace A by a finite set of com-
ponents, each of which has only a finite number of points in common with 4’.
This yields a new quasicurve of H. Iterating this process, we arrive at a quasi-
curve of H such that the number of the intersections of its components is finite.

The proof of 7.6 yields the following corollary.
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7.6.1. H contains a quasicurve in which any two components have only a finite
number of points in common.

7.7. Let V denote the set of vertices of H. Then [H]\V is the union of a finite
number of connected sets, the edges of H. Thus the edges and vertices of H are
independent of the choice of H in H and every point of [H] which is not a
vertex lies on exactly one edge. Each edge has zero or one or two vertices as
end points. Being a connected subset of a Jordan arc or curve, an edge also is
a Jordan arc or curve.

By 7.5, no vertex of A is the common endpoint of exactly two edges.

Let H be a quasicurve in A and E an edge of H. We call E odd if it is part of
a decomposing component of odd multiplicity of H. Otherwise, E is even.

7.8. THEOREM 4. H is a quasigraph. Conversely, every quasigraph can be ob-
tained as an equivalence class of quasicurves.

Proof. By 7.3, H' and H—! constitute a partition of G\[H] such that every
connected component of G\[H] lies entirely in H! or entirely in H~'. As noted
in 7.7, an edge of H satisfies the definition of an edge of a quasigraph. By 7.6
and 7.7, the number of vertices and edges is finite. Hence all the requirements
of 2.1 are satisfied.

Conversely, let K = ([K], K!, K~1) be any quasigraph. We wish to con-
construct a quasicurve H such that K = H, ie. [K] = [H], K'= H!
and K—! = H~L.

The non-decomposing components of H shall consist of the isolated vertices
of K and of those edges of K which are not adjacent to both K! and K—'. Each
such vertex or edge is contained in the closure of K= for exactly one
a € {1, —1}. Removing it from K and transferring its points to K¢, we obtain
a new quasigraph. In a finite number of steps we obtain a quasigraph
L = ([L], LY, L7') such that every point of [L] is adjacent to both L' and L~1.

To construct the decomposing components of H, we first note that both L!
and L~! have a finite number of connected components. Let C be one of them,
say C C L~ We count the connected components of the boundary of C as
decomposing components of H. Each of these components consists of a finite
number of vertices and edges. Transferring the points of C and of the edges
of its boundary to L—=, we obtain a new quasigraph L’ such that G\[L’] has
fewer connected components. After a finite number of such steps, all the de-
composing components of H have been constructed.
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