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A CLASS OF FINITE COMMUTATIVE RINGS
CONSTRUCTED FROM WITT RINGS

THOMAS CRAVEN AND MONIKA V O

Motivated by constructions of Witt rings in the algebraic theory of quadratic forms,
the authors construct new classes of finite commutative rings and explore some of their
properties. These rings are constructed as quotient rings of a special class of integral
group rings for which the group is an elementary 2-group. The new constructions are
compared to other rings in the literature.

1. INTRODUCTION

Finitely generated reduced Witt rings of a formally real field are quite well under-
stood. It was proved in [3, Theorem 2.1] that they can all be constructed by a very
concrete recursive process. This has the advantage that theorems about them can be
proved by induction via that recursion. These rings, as well as more general Witt rings of
equivalence classes of quadratic forms, are prominent in the algebraic theory of quadratic
forms (see for example [10, 11, 13]). By beginning with finitely generated reduced Witt
rings (and generalisations thereof from [8]), and considering a type of finite quotient ring
(which does not arise naturally in quadratic form theory), we are led to a large class of
previously undescribed finite commutative rings.

We begin with the general ring theoretic setting of [8, 9] and specialise in the final
section to rings which occur in quadratic form theory. In [8], Knebusch, Rosenberg and
Ware define a class of commutative rings which are certain quotients of integral group
rings. The aim of that paper was to provide a ring-theoretic approach to the study of Witt
rings of equivalence classes of anisotropic quadratic forms over a field of characteristic not
2. The purpose of this paper is to develop a special class of finite rings within the general
context of [8] which do not naturally occur in quadratic form theory. These will be called
QWitt rings. A special subclass of these, called SQWitt rings, will be those which occur
as quotients of Witt rings of fields. In spite of this, the majority of this paper is self-
contained and requires no knowledge of the theory of quadratic forms. There are other
quotient constructions in the literature for somewhat different classes of rings. We shall
see in Section 4 how the quotient construction by Marshall in [13] fits with ours. It is not
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48 T. Craven and M. Vo [2]

clear how the quotient construction of [6] fits with ours. The class of rings they begin
with intersects ours in essentially the finitely generated Witt rings of formally real fields.
It would be interesting to see what rings are generated by their quotient construction in
the cases in which it fails to give back a ring in the class they begin with; however the
abstract axiomatic form they use is so different as to make the comparison to ours quite
nontrivial.

DEFINITION 1.1: ([8, Definition 3.12], [9, Section 3], [7, Section 1].) Let G be a
group of exponent 2. A Witt ring for G is a quotient ring R = Z[G]/K such that R has
only 2-torsion.

Several equivalent conditions are given in [8, Theorem 3.9]. The Witt ring of a field
F is a ring of equivalence classes of nondegenerate quadratic forms where the group G
can be taken to be the square factor group F/F2. In general, these rings naturally break
into two disjoint cases [8, Propositions 3.15, 3.16]: Either the ring R is torsion or the
torsion subgroup equals the nilradical Nil R. We work only with the latter class of rings
here, as in [9]. All Witt rings of formally real fields are in this class. We shall factor
out the torsion and assume that our rings are all torsion free and have nilradical equal
to zero (that is, the ring is reduced). We shall later restrict to finite groups G in order to
construct finite rings, but for now we work in greater generality. These rings have a very
concrete description.

For any Witt ring R = Z[G]/K, let XR denote the set of ring homomorphisms from
R to Z. These are in bijective correspondence with the set of minimal, nonmaximal prime
ideals of R [9, Lemma 3.3]. We shall follow the terminology coming from quadratic form
theory and refer to XR as the set of signatures of R. (When the Witt ring comes from
a formally real field, it can also be viewed as the set of orderings of the field.) Giving
XR the induced Zariski topology makes it into a Boolean topological space (compact,
Hausdorff and totally disconnected). In particular, it will be discrete when it is finite, so
topology will play a minimal role in our considerations. When R is torsion free, it can be
viewed as a subring of G(XR, Z), the ring of continuous functions from XR to Z, where
Z is endowed with the discrete topology; indeed, the element r 6 R induces the function
F: XR -> Z via F(z) = x(r). As a subring of G(XR, Z), the ring R is generated by 1 and
all elements of the form 2xv > where xv

 IS ^e characteristic function of the set U, and U
ranges over the subsets of XR of the form

H(a) = { x G XR I x(a) = l} (a € G)

and their complements H{—a). Furthermore, the sets U above form a subbasis for the
topology of XR, usually referred to as the Harrison subbasis [9, Section 3]. For a given
ring R, we shall denote the collection of sets of the Harrison subbasis by "KR. Notice
that the set "KR is closed under symmetric difference of sets: H(—a) + H(—b) = H(—ab).
Conversely, given any subbasis of clopen (both closed and open) sets "K for a Boolean
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space X, which is closed under symmetric difference and complementation, one obtains a
Witt ring in this way, where the group G is given by { 1 - 2\H \ H e "K } [9, Proposition
3.8]. Since "KR is a group of exponent 2, we shall often think of it as a vector space over
the two element field F2.

This gives us two rather different, but equivalent, ways of viewing these rings as
the following proposition shows. It will be important to us to have both ways available
in this paper. We include a proof because this does not seem to have ever been made
explicit in the literature.

PROPOSITI ON 1 . 2 . LetR = Z[G]/K be a reduced Witt ring and let XG be the
space of signatures of Z[G]. The canonical surjection <p: Z[G] —>• R induces an injection
ip: XR —¥ XQ- Considering R and Z[G] as rings of continuous functions, the mapping ip
is the restriction of functions from XQ to XR.

P R O O F : If we view the spaces as sets of prime ideals, the mapping (p is denned in
the usual way, namely by <p(P) = ip~l{P). Since ip is surjective, this mapping is injective:
The final claim comes from the fact that the following diagram commutes

Z[G] —*-• R

I
e(xR,z)

where the vertical maps are the injections defined above and the bottom mapping is
restriction of functions. D

It should probably be emphasised here that, even though we begin with a well-studied
class of rings, the quotients we work with, as in both Proposition 1.2 and what follows,
are very different than the quotients studied previously (see, for example, [7, Proposition
1.8], [9, Lemma 4.15]). The results cited come from naturally occurring homomorphisms
induced by field (or ring) extensions. Only very complicated field extensions would induce
a homomorphism such as that in Proposition 1.2, and in most cases such an extension
would not even be possible. This is because it is difficult to eliminate a subset of orderings
which does not comprise a Harrison subbasic set. This issue is addressed explicitly for
rational function fields in [4, Section 5]. Our interest for this paper is in the quotient
rings fl = C[XR, \J Z/{nx)), where / 6 ~R means J(x) € Z/(nx) for each x € X. As

defined in [9], we say a subring of G(X,Z) satisfying Definition 1.1 is a Witt subring of

DEFINITION 1.3: A QWitt ring is a ring R formed by taking the quotient ring
of a Witt subring R of G{X,Z) with \X\ < oo, defined by taking the function f £ R

to a function / : X -> UZ/(nx) such that J{x) € Z/(nx) for each x 6 X. That is,
the restriction mapping to each point x G X is composed with the quotient mapping
Z -> Z/(nz) . We shall refer to the set of numbers {nx} as the data associated with R.
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The rings defined by Knebusch, Rosenberg and Ware axe somewhat more general
than Witt rings of fields. The ones which do come from fields give us a more special class
of rings. The following special subclass of QWitt rings, more closely associated with
quadratic form theory, will be considered in Section 5.

DEFINITION 1.4: An SQWitt ring is a ring R formed by taking the quotient ring
of a torsion free Witt ring W(F) (for some formally real field F), viewed as a subring
of e(XF,Z) with \XF\ < oo, defined by taking the function / € W(F) to a function
/ : Xp —¥ UZ/(nx) such that f(x) 6 Z/(nx) for each x e XF. That is, the restriction
mapping to a point x G Xp becomes the signature at the ordering associated with x
composed with the quotient mapping Z -> Z/(nx).

Studying quotient rings of the sort mentioned here gives yet another way in which
a Witt ring R can be obtained from the group ring as shown below. The observation is
interesting, but its proof is immediate from our definitions. We shall improve this result
in Section 4.

PROPOSITION 1 . 5 . Let Z[G] be a group ring with space of signatures XQ, and
let S denote the image of its injection into e(XG,Z). Let Y be any closed subspace of
XQ- The ring R obtained by restricting functions in S to the subspace Y is isomorphic to
the quotient of S obtained by replacing any function f: XQ -> Z with a function which
agrees with f(x) ifxeY and is zero otherwise. In terms of Definition 1.3, this means

jo, ifxeY
taking <

jo, ifx
nx = <

\l,ifx
EXAMPLE 1.6. We consider the quotient of Z[Z2], where \X\ = \{x,y}\ = 2 and we
take nx = 4, nv = 8. Then we view R as a subring of Z/(4) x Z/(8). If we write
the group Z2 = {e, 5}, then the homomorphism to Q(X, Z) is Z[Z2] A R defined by
r • e + s • g >->• ([r + s]4, [r — s]8). This makes (p(gj = (1,7) and

(1.1) R = { (0,0), (1,1), (2, 2), (3,3), (0,4), (1,5), (2,6), (3,7) } (the image of Z)

U {(l,7),(2,0)I(3,l),(0,2),(l13),(2,4),(3,5),(0,6)},

where 2ip(g) = (2,6) = (-2, —2) is back in the image of Z inside Z/(4) x Z/(8). The first
set in (1.1) is isomorphic to Z/(8) and the second set is obtained by adding cp(g) to each
element of the first set. Thus, since R must be a quotient of Z/(8) [{e, g}] and it has
16 elements, it must be isomorphic to Z/(8)[{e,^}]/(2 + 2g). This ring has 16 elements
since the ideal (2 + 2g) = {0,2 + 2g,4 +4g,6 + 6g} has four elements.

This example shows that we are getting rings beyond the scope of [13], in which
an attempt is made to capture Witt rings of fields in an axiomatic way. Indeed, the
small Witt rings are all known [13, Section 5.5]; for characteristic 8, these rings must
have order an odd power of 2. Thus the example above is among the most general rings
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considered in [8]. In particular, it is a Witt ring for G = Z2, it has a unique maximal
ideal and it has no other prime ideals [8, Proposition 3.16]. By [8, Lemma 3.21], the
units have 2-power order. These are precisely the elements outside the maximal ideal

m = {(0,0), (2,2), (0,4), (2,6), (2,0), (0,2), (2,4), (0,6)} = ((2,0), (0,2)).

Replacing g by x, we can view this ring as a quotient of a polynomial ring, namely
Z8[x]/(x2 — 1,2 + 2x), in which the maximal ideal is generated by {2,3; — 1}, where x
denotes the image of x in R.

E X A M P L E 1.7. More generally, we consider the quotient of Z[Z2], where
\X\ = | { x , t / } | = 2 and we take nx = 2m, ny = 2n with m < n. Now we view R
as a subring of Z/(2 m ) x Z/(2"). If we write the group Z2 = {e,g} as above, then the
homomorphism ZfZa] A R is denned by r • e + s • g 1-+ ([r + s]2m, [r - s]2»). This makes

R S Z/(2n) U (Z/(2n) + <p(g)) U • • • U (Z/(2») + 2m-2<p(g)),

where
= (2 m - \ -2"- 1 ) = (-2m-\ -2m-x) = -2m-1( l , 1)

is back in the image of Z. Thus, since R must be a quotient of Z/(2n) and it has 2m+n"1

elements, it must be isomorphic to Z/(2n)[{e,5}]/(2m~1(l+5)). The ideal (2m"1(l+ff))
has 2"-m+1 elements.

The previous two examples are sufficiently simple that they are included in the
generalisations found in both sections 3 and 4.

We conclude this section with the following generalisation of [2, Lemma 3.7]. It
is a combinatorial result which will be needed at various times in the sequel to obtain
independence and counting results.

PROPOSITION 1 .8 . Let Ji be a subbasis ofclopen subsets of a Boolean space
X which is closed under symmetric difference and complement.

(1) Assume that the collection 7 = {Hi,..., Hr} of sets in "K has the property
that for any T C 7, there is a point x in every set in T and in none of the
sets in the complement Tc. Then the collection of all intersections of sets
in 7,

Hik I s = 0 , . . . , r >,S = i p | Hik I s = 0, . . . , r >, {Hit distinct sets in 7)

is linearly independent in the F2-vector space "K. (Following the usual

convention, an empty intersection is the space X.)

(2) If Hi,..., HT, X are F2-iineariy independent and come from a group ring

Z[G], with \G\ = 2" = \X\, then
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PROOF: If r = 0 or r = 1, then S = {X} or S = {Hi,X} and we clearly have

linear independence. Now assume that r > 1 and assume there is a dependence relation;
m p

write it in the form f] Htk = ^2 ^«i where the left hand side is chosen so that m is the
maximal number of sets in any intersection in the relation and each Ait i = 1, . . . ,p, is
some intersection of (at most m) sets from 7. Intersect this equation with the intersection
of all other sets Hi not among the Hik (if any), obtaining

(1.2) A:=
t=i t=i

where all intersections on the right hand side (denoted Bj) are now less than r-fold, since
if the original Ai was an m-fold intersection, then some member of T is duplicated in the
intersection. We shall show the impossibility of equation (1.2), eliminating one A; at a
time, where the intersections are ft-fold in the right hand sum.

We first note that X does not occur in the sum, for by hypothesis (with T = 0),
there exists an element x € X not in any Ht, which would then lie in the right hand side
of equation (1.2) but not the left. This is the k = 0 case. Next we claim that the sum of
all 1-fold intersections must be empty. Otherwise, assume Hi, say, actually occurs in the
sum. Choose an element x € Hi such that x $ Hi, i > 1. Then x lies in the right hand
side since it is found in precisely one term of the sum, but not the left. This argument
continues. Having eliminated intersections of k - 1 subsets of T, the sum of the fc-fold

k

intersections must be empty since if f)Hi, say, actually occurs on the right, we know
* t = l r

there exists an element x G C\ Hi, but not in \J Hi. Then x will lie in the right hand
t=i «=*+i

side but not in the left. This reduces the equation (1.2) to A = 0, contradicting the

hypothesis that A is nonempty.

The second claim is just [2, Lemma 3.7(b)]. D

2. T H E DATA FOR Q W I T T RINGS

We show in this section that the only case in which interesting new rings occur is

when the data are all powers of 2. It is well known that every finite commutative ring is

a product of local rings [12]. Consequently, we are really interested only in the connected

QWitt rings. Throughout this section R will denote a QWitt ring and X will be written

ioi XR.

THEOREM 2 . 1 . Let R be a QWitt ring with data nx, x € X. The ring R is local

if and only if either every nx is a power of 2 or \X\ = 1 and nx is a power of a prime.

The only part that is clear, o priori, is that if \X\ = 1 and nx = pn for some prime

p, then R is the local ring Z/(pn). The remainder of the cases will be handled in a series

of lemmas.
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LEMMA 2 . 2 . If some nx is divisible by distinct primes p ^ q, then R is not local*

P R O O F : Viewing i l as a subring of G[X, \J Z ^ ), we construct the homomorphism
v xex >

<p: R -> Zp as the composition R - ^ Znt —> Zp where the first homomorphism is
restriction of functions to the point x and the second is the canonical surjection. Similarly,
we have a surjective homomorphism ip: R —> Zq. Since kenp and kerV* are distinct
maximal ideals of R, the ring cannot be local. D

LEMMA 2 . 3 . If there exist x, y € X such that nx = pT and ny — q' for primes
p^q and integers r, s ^ 1, then R is not local.

PROOF: The proof is similar to the previous lemma. We consider the homomor-
phisms ip: R - ^ Znx —>• Zp and ip: R - ^ Z,,,, -4 Zg. Since keiip and ker^ are distinct
maximal ideals of R, the ring cannot be local. D

LEMMA 2 . 4 . If \X\ ^ 2 and each nx is a nonzero power of an odd prime p, then
R is not local.

PROOF: In this case, we shall construct a nontrivial idempotent in R, showing that
R is not connected and hence not local. By Definitions 1.1 and 1.3, there is a group G
of exponent 2 such that R is a quotient of a Witt ring 5 for G. That is, we have vertical
surjections and horizontal injections in the commutative diagram

Z[G]

I
(2.1) S

R

Furthermore, we may assume that no element of G maps to a constant function ±1 in
C(X, Z), as we could then obtain 5 as a Witt ring for a quotient group of G. Since
\X\ ^ 2, the group G is nontrivial, so let g € G, g ^ e; our assumption on G implies that
H(g) 7̂  0, X. Let r be the maximum exponent of p for x € H(g) and consider the image
/ € R of the group ring element (pr + l)/2e + (pr + I)f2g. We obtain f(x) = pr + 1 = 1
(mod nx) for all x G H(g) and f(x) — 0 for all x £ H(g). Therefore / is a nontrivial
idempotent element of R. 0

LEMMA 2 . 5 . If each nx is a power of 2, then R is a local ring. If we write
nz = 2"*1, tie maxima] ideal of R is contained in

(2.2) {/: X^> (JZ2-», | / ( x ) = 0 (mod 2) forallx€x\.
x
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The units of R are contained in

(2.3) | / : X -* ( J Zj-x f{x) = 1 (mod 2) for all x € X } .
ex

PROOF: We again assume the situation of the commutative diagram (2.1). Since
the elements of G have order at most 2, each g e G can take on only the values ±1 at
any point x e X. Therefore any element of the group ring Ylnt9i maps to an element
53 ft«5i of G(X, Z) with a parity condition:

ni§i(x) = ^2 rugiiy) = ^ n* (mod 2) for any x, y € X.

This parity carries over to elements of R as well since all nx are powers of 2. From this it
is clear that any element of R induces a function in one of the sets in (2.2) or (2.3). If an
element of R induces a function / in the set in (2.3), then it is a unit in each ^m, and
so some power of / is 1, making it a unit in R. On the other hand, the set of elements
of R which map into the set in (2.2) is clearly an ideal, and hence must be the unique
maximal ideal. D

3. FINITE QUOTIENTS OF SAP W I T T RINGS

The purpose of this section is to look at one of the two extreme cases of the definition;
that where 5 = Z + Q(X, 2Z), which is a Witt ring of maximal size for the set X. These
rings can be characterised in many ways, not the least of which is the strong approximation
property (see [9, Theorem 3.20], [7, Proposition 1.23]), so we shall call them SAP rings.
The importance of this case stems from the fact that every finitely generated Witt ring
is a subring of one of these rings.

THEOREM 3 . 1 . Let X be a finite Boolean space and let R be a finite quotient
of the associated SAP Witt ring with data 2mx>lforxeX. Then

1. R consists of all functions f on X with the parity condition f(x) = f(y)
(mod 2) forallx,yeX.

2. The function f is a unit in R if and only if its values are congruent to 1

modulo 2, and f is in the unique maximal ideal otherwise.

3. Tie cardinality of R is given by

(3-1)

PROOF: Statements (1) and (2) follow from Lemma 2.5 and the fact that R is a

QWitt quotient of Z + C{X, 2Z). For statement (3), we use that fact that each quotient

ring Z/(2m) has 2m~l units and 2m~1 nonunits. Thus the group of units, which is the
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product of the units in each ring Z/(2m*), has Y\ 2m*~1 elements and the maximal ideal,

which is the product of the maximal ideals; has the same number. Together, these give

\R\ = 2 II 2m*"1. •
Since every QWitt ring is a subring of a ring described in the previous theorem by

Lemma 2.5, we obtain a general description of the units and maximal ideal of a QWitt
ring.

COROLLARY 3 . 2 . Let R be a QWitt ring with associated set X and data 2mi

> 1 for x G X. Let m = maxl6x mx. Then

1. char/? = 2m.

2. There is a one-to-one correspondence between units of R and elements of
the unique maximal ideal M given by m <-» 1 + m for any m G M.

3. \M\ = \R\/2.

PROOF: The value of char R is clear. The rest follows from the fact that R/M is

isomorphic to Z/2Z. D

PRODUCTS OF Q W I T T RINGS. We can define products in the category of QWitt rings
as follows: Give two QWitt rings, Ri and R2, let the maximal ideals be M\, M2 and the
groups of units be U\, U2, respectively. (We know [/< = 1 + Mj by the previous corollary.)
Form the new ring R = Mi x iWj Uf/i x t/2. The set XR is then just the disjoint union of
XR1 and XR2. It is well known that the (finitely generated) SAP Witt rings are products
of copies of Z in the category of reduced Witt rings [3]; therefore the quotients of SAP
Witt rings are products of the rings Z/(2m*) as defined in this section. We return to
products in Section 5.

4. FINITE QUOTIENTS OF INTEGRAL GROUP RINGS

The purpose of this section is to look at the other of the extreme cases of the
definition; that where Z[G] is an integral group ring over a finite group G of exponent 2.
This is the case where the size of the Harrison subbasis is as small as possible for a given
cardinality of X. The importance of this case stems from the fact that every finitely
generated Witt ring is a quotient ring of one of these rings. We begin by improving
Proposition 1.5, seeing in the process that integral group rings are, in fact, the general
case as well as one extreme.

THEOREM 4 . 1 . Let S be a Witt ring lor a group G, with corresponding spaces of

signatures Xs C XQ- Let R be a QWitt quotient ofS. Then R is canonically isomorphic

to a QWitt quotient RQ ofZ[G] for which Xf^ = XG-

PROOF: With R, we have the data nx for x e Xs. For x G XG \ Xs, set nx = 2 .
The ring RQ is defined by extending the functions in R to all of XG as follows: Given
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/ G R, let a = 53 ng9 D e a preimage of / in Z[G]. Since each g must map to ±1 in
geG

Z, we have a parity condition: a ( i ) = a(y) (mod 2) for all x, y G Xa, and these values
are clearly independent of how we lift / . Thus we can extend / to x G XQ \ Xs in only
one reasonable way, defining f(x) to be 0 or 1 according to the value of a(x) modulo 2.
Therefore we obtain a QWitt quotient RQ of Z[G], which is isomorphic to R since the
extension of each function was uniquely determined. D

We now consider an integral group ring Z[G], where |G| = 2". Viewing the group G
as a F2-vector space, it has a basis gi,...,gn- We wish to explicitly compute the QWitt
quotient ring R by determining the kernel of the homomorphism Z[G] -> R. The ultimate
goal is to compute the cardinality of R in terms of the data nx which determine it. This
seems to be very difficult in general. Until now, we have been able to ignore a potential
ambiguity. In a general Witt ring for a group G of the form R = Z[G]/K, the element
—1 may or may not be identified with an element of the group G. This is not an issue
for the integral group ring, but will be for counting elements in finite quotient rings. We
now explicitly assume for the remainder of this paper that G is always the minimal choice
for a group for a Witt ring R; in particular, —1 is not an element of G, so the elements
of order 2 in R have the form ±g for g G G. Note that for Z[G], if \G\ = 2", then also
\XQ\ — 2n and each Harrison subbasic set H other than 0 and XQ has cardinality 2""1

[2, Theorem 3.8].

We shall need the concept of a fan from the quadratic form theory of formally real
fields. For group rings, this has a particularly simple form. From [14], particularly
Corollary 4.4(i), and [2, Section 3], one sees that the fans for XQ are precisely the
nonempty intersections of sets in "K = { H(±g) \ g 6 G}. We shall need the following
special case of a very general theorem. For completeness, we include a proof here.

PROPOSITION 4 . 2 . ([14, Theorem 5.5]) A runction / 6 G(XG,Z) is in the

image of Z[G] if and only if

(4.1) ^ / ( y ) = 0 (mod \Y\) for all fans YCX with \Y\^A.

PROOF: For any g G G, we see from Proposition 1.8 that, as a function on any

fan Y, either g is constantly 1, constantly —1 or \H(g) fl F | = |y | /2 , so that g is 1 on

exactly half of the elements. In any case, J2 9(v) = 0 (m°d I^D- It follows that any

f = Yl ngg G Z[G] satisfies this congruence as well.
g€G

Conversely, let / G G(X, Z). We write xx for the characteristic function of the point
{i}. An element g G G, viewed as a function X -> Z, is 1 — 2X,,,.,,,, so the element
e + x(<7,)<7, •-»• 1 + x(gi)(l — 2xlH_g)) which is equal to 2 on the set H(x(gi)gi) and 0 on
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n
its complement. Therefore, the function induced by f l (e + I(s»)ff») *s <2nXI- We compute

x€X

sc{i,2

=? E (i»*(n*))(n*)
SC{1,2 n} \c6X X tgS ' ' X\ZS '

We see from this that if J2 fix) x(9) is divisible by 2" for every </ € G, then / is in
xex

the image of Z[G]. This is true by hypothesis if g = e. Otherwise, i?(ff) is a fan with
= 2""1, so we can write

= 2 J2 / (* ) -£ / (*) SO (mod 2")

by hypothesis. D
m

LEMMA 4 . 3 . For any fan Y = f) H^idi), a{ 6 G, d £ {±1}, t ie function

2mxY can be written as a Z-Jinear combination of functions of the form 2mxz, where
r

Z = Pi H(gik), r < m, and where the git are among the basis elements for G.
/t=i

P R O O F : Each a; can be written as a product of basis elements for G. The ele-
ments of "K can be expanded with the formula H(—gig2) = H(gi) + H(32)- Minus signs
can be eliminated with H(—g) = H(g) + X. The characteristic function for a symmet-
ric difference satisfies xA+B — XA + XB ~ ^XAXB- I* follows that we can write 2mxY

= n^Xff(,.«.) ^ a n "i-fold product of sums (with coefficients being positive or negative
powers of 2), which can then be expanded into a sum of m-fold products of the specified
form, using Xx = l- ^

DEFINITION 4.4: In the context of quadratic form theory, the functions 2mxY of
the previous lemma are derived from Pfister forms. For this reason, we shall refer to
them as Pfister functions. An ideal is called a Pfister ideal if it is generated by the Pfister
functions contained in it. For any ideal / of Z[G], we shall refer to the ideal generated
by the Pfister functions contained in / as the Pfister subideal of I.
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When the quotient data nx is sufficiently large, the kernel of Z[G] —• R is always a
Pfister ideal, but this is not true in general. The next example and theorem show the
current state of our knowledge.

EXAMPLE 4.5. (This example is an easy modification of an example of Elman, Lam

and Wadsworth in [5].) Let R be the image of Z[G] in e(x, \J Z ^ ) where
v xex '

\G\ = \X\ = 16. To be explicit, let G have a basis pi , . . . ,94 as a F2-vector space.
Think of X as the dual space G*, with dual basis xi,...,x\\ that is, signs are cho-
sen so that Xi(gi) = + 1 and Xi(gj) = —1 if j / i. This makes, for example,
H(gi) = {0, xi,x2x3,a:2X4,X3X4,XiX2X3,xia;2X4,x1X3X4}. Now define the data to be

2, if X 6 {XiX2,X3X4,XiX2X3,XiX3X4, XiX2X4,X2X3X4}

', i f l 6 {0,Xi,X2,X3,X4,XiX3,XiX4,X2X3,X2X4,XiX2X3X4}

The effect of this, by Theorem 4.1, is basically to restrict attention to the set Y of the
10 points for which nx = 16. Let p be the kernel of Z[G] —• R. One can check that
/ = (e + <7i)(e + (fa) - (e + </3)(e + gt) lies in p. It is basically shown in [5, Proposition
6.8] that / is not in the ideal generated by the Pfister functions in p. The difference is
that we also have in our ideal the 4-fold products associated with each of the 10 elements
of Y, but the essence of the proof in [5] is that the ideal p contains no 1-fold or 2-fold
Pfister functions. The higher degree functions have no effect.

Next we look at the condition that the data be large enough to guarantee a Pfister
ideal. In this case we obtain rings which Marshall refers to as Pfister quotients of Z[G]
[13, Section 4.7]. Indeed, it is easy to see that any finite Pfister quotient of a reduced Witt
ring can be obtained via our construction. These rings have particularly nice properties
as they are all SQWitt rings [13, Proposition 4.24].

THEOREM 4 . 6 . Wifci t ie notation above, let R be the image of Z[G] in

e(x, (J ZnA where nx = 2m* > 1 for eaci x € X = XG. If each mx ^ n = log2 |G|,

tien t ie kernel of Z[G] —t R is generated by N = max nx and the PGster functions

(4.3) 2m'-nY[(e + x(gi)gi) (x<=X).
t=i

Therefore, in this case the kernel is a PGster ideal and we can write the quotient ring as

R S ZN[G}/(r^-n f[{e + x(gi)9i),xe

If the mx > 0 are not otherwise restricted, then the PGster subideal of the kernel is

generated by the 3" elements of the form

(4.4) 2 ' I J ( e + £,<?,.),
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where 0 ^ r ^ n , E, € { ± 1 } J the subscripts ij are distinct integers in l , . . . , n , and
T

s = (maxiey mx) - r, where Y = f) / / ( e^ ) .
t=i

n
P R O O F : AS in the proof of Proposition 4.2, the function obtained from f ] (e+z(<7i)<7.)

is just 2"xI. It follows that the elements of (4.3) all lie in the kernel. The fact that
they generate the kernel is also clear as any element in the kernel must be an integral
combination of these functions in order to be zero at each point of X.

For unrestricted mx, we need more generators. A similar argument shows that all
elements of (4.4) are also in the kernel as the value at each x is at least 2m*. Furthermore,
the condition on the exponent s clearly gives the minimum value so that each of the Pnster
functions is congruent to zero at all the points where it is not actually equal to zero. D

For purposes of counting the elements of the quotient ring R, we shall use a different
way of expressing the kernel. We shall deal only with the constant nx case. The following
corollary does this for us.

COROLLARY 4 . 7 . Let R be as above and assume that each nx = 2m for all
x € X with m ^ n. Then the kernel of Z[G] —• R is generated by the elements

(4.5) 2"-r ft (e - </), ( o < r ^ n ; 1 O < (") )

where GTk ranges over the r-subsets of { g\, 32, • • •. ffn } as A; = 1 , . . . , ("). In this case,
we have

(4.6) \R\ =

PROOF: By Theorem 4.6, we have

We need to show that the ideal

is the same as the ideal

/ = (2m-T H (e - g); 0 ̂  r ^ n, 1 ^ k

It is clear that the generators of / take values in 2mZ, hence are contained in J. Therefore
it will suffice to show that each of the generators of J lies in / .
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n

So consider the element /x = 2m"n J](e 4- etgi). We prove this lies in / with an

induction on n. If n = 1, we have 2m~1(e-g) € / and 2m~1(e + g) = -2m~1(e-g) + 2me
€ / . If all £* = — 1, then fj, is among the generators for /. Otherwise, we may assume
that ei = 1. Then

n n . n

2m-n(e + gx) Y[{e + ei9i) = -2m~n(e - 9l) Y[(e + ei9i) + 2m~n+l JJ(e + ei9i),
t=2 i=2 . i=2

in which the last two terms are in / by the induction hypothesis since they involve a
smaller group generated by g2, • •• ,gn-

In order to count the number of elements in R we shall first show that the generators
in (4.5) are linearly independent over Z. Assume there is a dependence relation

-Uje-g)]=0.

Without loss of generality, we may assume that the integers ar* have no common
prime factor. Now view this equation as a functional equation on X, replacing each

2m-r Y\ {e-g)by2m fl XH(_S)- Divide by 2m and we obtain £ a r J t fl X«<_9) = 0.

Modulo 2, this gives a relation on the subbasic sets of the form ^ a^ Yl H(~9)i where

â fe G {0,1} and sum and product are interpreted as symmetric difference and inter-
section, respectively. Applying Proposition 1.8, with T = {H(-gi),... ,H(-gn)}, we
conclude that all ar* must be even, a contradiction. Removing 2m from the generating
set gives us a set of generators for /, the image of / in Z2m[G], and these generators are
linearly independent over Zj™. We have |Z2m[G]

a sum of terms of the form ark\2
m~T ]J (e - g)

1 g£GTk

= 2m2"; an arbitrary element of / is

where the coefficient a,.* can take on

any one of 2r values in Z2".. There are (") such terms, and r runs from 1 through n, so

we have |7| = I](2r)(") = 2 s " r(") = 2"2""1. Putting this together with the value for

|Z2n,[G]| gives \R\ - 2(2m-")2""' as desired. D

5. S Q W I T T RINGS

This section is devoted to elucidating some of the ways in which SQWitt rings differ
from QWitt rings. For one thing, one might expect some sort of recursion can be used
in their construction as in the case of finitely generated reduced Witt rings (see [13, 3]).
It is not quite so nice because of the problem of computing the quotients, but there is a
result of this sort. We conclude with a theorem and example showing how the powers of
the maximal ideal behave much more nicely for SQWitt rings.
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Let R be an SQWitt ring; that is, the quotient of a torsion free Witt ring 5 = W{F),

for some pythagorean field F with space of orderings X. By [3], the ring 5 can be.
constructed recursively from the ring of integers Z using two operations:

1. Group extension: given a ring RQ, form the group ring i?o[Z2].

2. Direct product (in the category of torsion free Witt rings): given two rings
in the category Ri = Z + Mi, i = 1,2, the product is Z + Mi x M2. Here
Mi denotes the unique maximal ideal of .Ri and is viewed as a subset of the
functions C(.Yj,2Z). The space X for the product is the disjoint union of
X\ and X%.

Thus any such ring is a subring of the largest possible allowed collection of functions,
that of a SAP Witt ring defined in Section 3. We refer the reader to [1] for a much more
general discussion of the torsion free rings and generalisations. Most expositions of [3,
Theorem 2.1], such as that in [1], emphasise the effect on the sets of minimal prime ideals.
For group extension, the space X is duplicated, with the nontrivial group element being
+1 on one copy and —1 on the other. For the product, one obtains the disjoint union of
Xx and X2.

This recursive construction is almost unique. The only non-uniqueness arises in
forming the group ring Z[Z2], which also occurs as the product of Z with itself in this
category. That is, there are two ways to form the ring with \X\ = 2, whose quotients
were carefully analysed in Example 1.7.

It is now somewhat clear that a recursive construction can be used to create any
SQWitt ring, but there are complications. For example, we can take h = maxl 6^nj,
begin with Zn in place of Z and use the constructions above. Then at the end, factor
out the additional amount needed at each point x € X. We cannot, however, build the
SQWitt ring R with all factorisations in place as we go. This is not a problem for products,
as the product construction commutes with our sort of quotient ring construction. But
the group ring construction does not. For example, if we work with S — Z\Li x Z2],
the set X has four elements. Forming R from a quotient of Z, then forming a group
ring will make all values nx the same, and forming it from a quotient of Z[Z2] will make
them equal in pairs. We can only obtain the full generality we want by making an
additional quotient construction at the end. While this largely loses any uniqueness for
our constructions, it does still allow most of the power of the recursive construction for
proofs and for computations. There is one further complication as is evident in the special
case of Example 1.7; group ring constructions do not inject into the ring of functions,
but rather have elements such as chari?/2(e -I- g) inducing the zero function. This is a
fundamental fact of our situation since we cannot distinguish the group elements modulo
2, as they are functions taking values ±1. More generally, one can check that the kernel
consists precisely of the elements {o G R | 2a = 0}. This discussion, together with the
exposition of products in Section 3, now gives us the following theorem.
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THEOREM 5 . 1 . T ie collection of all SQWitt rings with only 2-torsion is precisely

the set M of rings constructed as follows:

1. The rings Z/2"Z G M for each n = 1 ,2 , . . . .

2. Given any fl 6 M, t ie quotient of the group ring R[{e,g}]/{a e R \

2o = 0} € M:

3. Given Ri = Zni + Mi£M, the product, Z ^ n , , ^ ) + Mt x M2 € M.

4. Given R e M, any further quotient as in Definitions 1.3 and 1.4 is in M.

The restriction to having only 2-torsion is a technicality which was mentioned in
Section 2. Any SQWitt ring is a ring-theoretic product of a finite set of rings in M and
a finite set of rings Zn, n odd, where either of the sets may be empty.

In order to illustrate the special nature of SQWitt rings, we end this section with a
result for these rings which does not hold in general for QWitt rings. Let 5 be a Witt
ring for a group G of exponent 2. The kernel of the augmentation mapping Z[G] -* Z
followed by reduction modulo 2 contains the kernel of Z[G] -»• 5 by [8, Theorem 3.9].
Thus we obtain an induced homomorphism 5 -»• Z/2Z, the kernel of which will be called
the augmentation ideal of 5 and denoted by 75. If 5 can be realised as the Witt ring of
a field, then the n-th power of this ideal, viewed as functions on X$, consists precisely
of the elements of 5 n e(Xs,2

nZ) [3, Theorem 4.1]. Therefore we have the following
proposition for SQWitt rings.

PROPOSITION 5 . 2 . Let S be a finitely generated torsion free Witt ring of a

field with SQWitt quotient R. Then the maximal ideal IR of R satisfies

Fhrtiermore, if we have all nx = 2m for some m > 0, tien tie kernel of the surjection

S -»• Ris If.

In general, this result fails for QWitt rings, though the construction of examples is
somewhat complicated. We shall see that it holds for QWitt rings for n = 1,2, but fails
for n = 3.

PROPOSITION 5 . 3 . Let S be a Witt ring for a group G of exponent 2. Then

(5.1) Sne(Xs,2Z) = Is and

(5.2) J

PROOF: We know that C(Xs, 2Z) is the unique maximal ideal in G{Xs, Z) containing

2. Since the maximal ideal Is is contained in the proper ideal 5 D G(XS, 2Z), we have

equality (5.1).

We clearly have / | C 5 ("I G(XS, 4Z). On the other hand, / £ S fl e(Xs, 4Z) implies

that / 6 Is, so we can write f = YlnA %XA> where nA e Z and A G 5€s. Since
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5

4x* = 2 • 2XA € / | , we obtain / = £,2xA. (mod / | ) . Furthermore, xA + XB = XA+B
i=\

+ 2XAXB implies that 2X,, + 2Xfl = 2XA+B (mod Ps). Therefore / = 2XzA. (mod / | ) .
But f(x) = 0 (mod 4) for all x € Xs, so we must have xE A. = 0, and thus / € Is. 0

We now turn to a specific example which shows that it is not always true that

EXAMPLE 5.4. Let Y = {0,1}6 and for i = 1, . . . , 6 , set M{ = { y e Y \ y(i)
= 0}. Let Z = Mi D M2 + M3 n M4 + M5 n M6 C V, where as usual, sum denotes
symmetric difference, and set X = Y \ Z. Let Hi = X n M* for i = 1 , . . . , 6. One can
check that the subbasis % generated by these sets under complement and symmetric
difference consists of all subsets of X with 0, 16, 20 or 36 elements. Let 5 be the subring
of e(X, Z) generated by Z and the functions 2xH for H e ,W. Then S is a Witt ring for
the group of exponent 2 with 64 elements. We claim that 1% C S D G(X, 8Z).

4
Indeed, note that f\ H{ = {(0,0,0,0,1,0), (0,0,0,0,0,1), (0,0,0,0,1,1)} and con-

sider the element

= 4xH lxH 2 + 4x«3x«4 - 4xW5xH6 e s n e (x ,8z)
Suppose that / e / | . Then / can be written in the form

(5.4) / = £ 8njX/,nXxj2X^3 (Ay € K, m € Z) .

We set the equations (5.3) and (5.4) equal and divide by 8. Now each Ay can be written
as a sum of the generating sets Hi and possibly X. Using the formula XA+B

 = XA + XB

- 2x^X8' w e expand the right hand side to obtain an equation of the form

3 2

xHlxH2xH3xHi=E n * » . „ + £ n x*,n+E^+s+2T-
n=l n=l

where 6 is zero or one depending on whether x x
 e n ds up in the sum and 7 is a sum of

products of characteristic functions arising from using the formula to break up charac-
teristic functions of symmetric differences. Modulo 2, this gives us an equation in the
F2-vector space "K

3 2

Hx n H2 n H3 n HA = ]T f | Hin + £ f | Hjn + £ tf* + <5X .
n=l n=l

This equation contradicts Proposition 1.8, proving our claim.
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