
Canad. Math. Bull. Vol. 38 (2), 1995 pp. 129-140 

AN INVERSE PROBLEM 
IN THE CALCULUS OF VARIATIONS 

AND THE CHARACTERISTIC CURVES OF CONNECTIONS 
ON SO(3)-BUNDLES 

RICHARD ATKINS AND ZHONG GE 

ABSTRACT. This paper concerns an inverse problem in the calculus of variations, 
namely, when a two-dimensional symmetric connection is globally a Riemannian or 
pseudo-Riemannian connection. Two new local characterizations of such connections 
in terms of the Ricci tensor and the Riemann curvature tensor respectively are given, 
together with a solution to the global problem. As an application, the problem of 
whether the characteristic curves of a connection on an SO(3)-bundle on a surface are 
the geodesies of a Riemannian metric on the surface is studied. Some applications to 
non-holonomic dynamics are discussed. 

Introduction. In this paper we study an inverse problem in the calculus of variations, 
namely, for a pair of second order equations, when are they the geodesic equations of 
a (Riemannian or pseudo-Riemannian) metric? Or, more specifically, when is a two-
dimensional symmetric connection a metric connection? We provide two new local 
solutions, one involving the Ricci tensor and the other in terms of the curvature tensor, 
and we give a global solution to this problem. 

A local solution, known to some experts but unavailable in the literature, may be 
obtained as follows. If the connection D is the Levi-Civita connection of some (pseudo-
Riemannian) metric on the surface S, then there exists a parallel volume form S on S: 
DE = 0 (assuming X is orientable). It is easy to see that one may obtain a parallel volume 
form by scaling an arbitrary volume form by an appropriate factor. Thus we may assume 
that we have obtained such a volume form H. S will then be the volume form of a metric 
g. If D is the connection of a Riemannian metric then g is uniquely determined by S, 
but if D is defined by a pseudo-Riemannian metric then g is determined up to a negative 
sign. Choose a coframe UJ = (UJ^UJ2), such that H = UJX A J2. If g = gyuj1 ® J then 
I det(g//)| = 1. The relation between the Gaussian curvature K and the Ricci curvature 
S of the metric g on the surface is given by S = Kg. It follows that K = ± | det^)1/2. 
Thus if S is non-zero then g may be written g =fS, where/ = ± | det S\~]/2. Therefore to 
determine whether a connection D with non-zero, symmetric Ricci curvature S is locally 
a metric connection one need only check that D(fS) = 0. 
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The drawback of this approach is that it doesn't extend naturally to global results 
(for example, we have not been able to obtain a global characterization in the case of a 
pseudo-Riemannian metric using this approach), as it starts from a volume form. 

In this paper, we take a more direct approach, which naturally leads to global results. 
We show that a symmetric connection D with non-zero, symmetric Ricci curvature S is 
locally a metric connection if and only if S is recurrent: there exists a 1-form <f> such 
that DS = 5 (8) </> (Theorem 1). Moreover, such a (/>, if it exists, is unique and is a closed 
form (Lemma 5). The utility of using invariant formalism is now immediate: a non­
zero, recurrent, symmetric Ricci tensor defines a cohomology class on the surface. This 
will enable us to obtain a global solution to the problem of the existence of a metric 
(pseudo-Riemannian or Riemannian, Remark 2). 

The requirement that a symmetric Ricci curvature on a surface be recurrent is easily 
seen to amount to a system of six algebraic equations in two unknown variables. A 
slightly more satisfactory solution to our problem should provide a classification directly 
in terms of four independent conditions. As such, we give a second characterization 
of local metric connections on a surface in terms of covariant differentiation of the 
eigenspaces of the Riemann curvature tensor (Theorem 2). 

There are many other solutions to the inverse problem. For example, Schmidt [13] 
derived a necessary condition to this inverse problem in terms of the holonomy group, 
which, however, is not differential-geometric and not explicit. A slightly different prob­
lem, in which any form of Lagrangian is allowed, has been studied by Douglas, Anderson-
Duchamp, Morandi, and others (see [1] for a list of references). But it is not explicit in 
their work when the Lagrangian is actually a Riemannian metric. In the one-dimensional 
case, a complete solution can be found in [11]. 

As an application, we study the characteristic curves of a connection on an SO(3)-
bundle over a surface, which is the motivation for this work. 

Let 7r: F —-> Z be a principal SO(3)-fiber bundle over a surface Z, with a connection 

(1) TF=H®K, 

where K is the distribution tangent to the fibers. We assume that the holonomy algebra 
of the connection is so(3), i.e. the horizontal distribution H is of the type studied by 
E. Cartan [5]). A characteristic curve 7 on Z is the projection of an integral curve 
of the characteristics of the sub-bundle H1 C T*F (cf. [3]). The characteristic curves 
correspond to singularities in the space of horizontal curves on F with fixed end points 
(considered as a sub-space in the space of C1 curves with fixed end points with the induced 
topology), and play an important role in the study of exterior differential systems and 
control theory. Recently, Bryant-Hsu studied their local rigidity ([4]). 

The characteristic curves satisfy a system of second order differential equations on Z 
(see Section 3.1). A natural question to ask is whether these equations come from some 
Lagrangian variational principle, where the Lagrangian has the form of kinetical energy 
plus potential energy. More precisely, we shall study the following problem: For which 
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SO(3)-connection is there a Riemannian metric on I such that all the characteristic curves 
coincide with the geodesies of this metric? (We will call such a connection metrizable.) 

Applying the solution to the inverse problem, we obtain that if an SO(3)-connection 
satisfies a certain set of five equations, then it is metrizable. Moreover, this metric is 
unique up to a constant multiple. So all the metrizable connections form a 'subvariety' 
of codimension less than or equal to five in the space of all SO(3)-connections. 

1. The inverse problem. 

1.1. Statement of results. For the local problem we have the following two characteri­
zations of those connections which are metric connections. 

THEOREM 1. Let D be a connection on a surface £ with Ricci curvature S f 0 
everywhere. D is locally a metric connection if and only if 

(1) D and S are symmetric, 
(2) detS?0,and 
(3) S is recurrent. 

This (local) metric is defined up to multiplication by a constant. 

REMARK 1. Anderson and Thompson have shown {cf. [ 1 ] Proposition 7.5) that under 
the above conditions, the geodesic equations of the given connection is the Euler-
Lagrange equation for many independent Lagrangians. Here we have shown that one of 
those Lagrangians is in fact a (pseudo) Riemannian metric. 

REMARK 2. Theorem 1 is easy to generalize to the global setting. Recall that S is 
recurrent if there exists a unique 1-form <j> such that DS = S®(j>. Theorem 1 implies that 
</> is always closed and so defines a cohomology class [</>] G Hx (£). Then D is a global 
metric connection if and only if [(f)] = 0. 

A more intrinsic solution is the following: 

THEOREM 2. Let D be a connection on a surface £ with Ricci curvature S f 0. D is 
locally a metric connection if and only if 

(1) D and S are symmetric, 
(2) detS?0,and 

(3) covariant differentiation preserves the eigenspaces of the curvature. 

This (local) metric is defined up to multiplication by a constant. 

REMARK 3. The eigenspaces of the map R(x,y): TmT —> Tmll are independent of the 
choice of x,y G TmlL. The eigenspaces of the curvature are therefore well-defined. 

REMARK 4. If det*S > 0, then the metric is Riemannian, otherwise it is pseudo-
Riemannian. 
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1.2. Proofs of Theorems 1 and 2. Let D be a symmetric connection on I with Christoffel 
symbols Vjk with respect to a local coordinate system x = (x1, JC2) on U Ç I . £) is a metric 
connection on £/ if and only if there is a non-degenerate, symmetric solution g = gy(x) 
to the system of partial differential equations 

(2) Ighitfic = a*£(/ + djSki ~ digjk, 

where 1 < /,y, k,h < 2. 
Let e, := 5 /dx' for / G {1,2}. The Ricci curvature is given in these components by 

S-(~R\\2 R\n\ 
V~~ °212 R2\2J 

where R is the Riemann curvature tensor. 
If K denotes the Gaussian curvature of the metric g = gydx1 (g) dxJ then a necessary 

condition for D to be the connection associated with g is 

(3) S = Kg. 

This equation is equivalent to the existence of integral elements of the Pfaffian system 
representing (2). Under the assumption that S is non-zero, K is also non-zero and we 
observe that S must be symmetric and detS f 0. Moreover we may write 

g = hS 

and this value for g must satisfy (2). 
For notational convenience, we shall write a = Rx

xx2, b = —R\X2 and c = —RX
2X2,

 a n d 
we letf denote et(f) for a function/: U' —> R. 

Substituting hS for g into (2) we obtain the following necessary and sufficient con­
ditions for the existence of a local integral manifold of / with independence condition 
dx] A dx2 f 0: 

2(-bYx
xx + aT2

u) = -b\ - bhxh~x 

2(-bYx
X2 + aY2

X2) = -b2 - bh2h~x 

(3) (~br\2 + a(Tl
n + Y2

X2) + cY2
xx) = ax + ahxh'x 

(-bYl
22 + a(Yx

X2 + T2
22) + cY2

X2) =a2 + ah2h~l 

2(aYx
X2+cY2

n) = cx + chxh~x 

2(aYx
22 + cY2

22) = c2+ ch2h~x. 

These relations must be algebraically consistent for hx h~~x, and h2h~x whereby we obtain 

2(-bYx
xx + aY2

xx) = -bx - bhxh~x 

2(-bYx
X2 + aY2

X2) = -b2 - bh2h-{ 

abx -axb-abYx
n - b2Yx

X2 + (2a2 + bc)Y2
n +abY2

2=0 

ab2 - a2b - abYx
X2 - b2Yx

22 + (2a2 + bc)Y2
X2 + abY2

22 = 0 

ac\ — axc + acYx
xx — (2a2 + bc)Yx

X2 + c2r2j — acY2
X2 = 0 

ac2 - a2c + acY\2 - (2a2 + bc)Yl
22 + c2Y2

X2 - acY2
22 = 0. 
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The integrability condition for the first two of these six equations is 

(bxa - 6fli)r?2 + b(bdxr\2 - adxr
2
n) + (ba2 - b2a)Y2

n + b(ad2T
2

n - bd2T\l) = 0, 

which turns out to be an algebraic consequence of the remaining four equations. Thus 
we have shown 

LEMMA 3. (/, dxl A dx2) has the following integrability conditions: 

abx -a{b- abT\x - b2T\2 + (2a2 + bc)T2
n + abV2

n = 0 

ab2 - a2b - abT\2 - b2T\2 + (2a2 + bc)t\2 + abY2
22 = 0 

ac\ - axc + acY\x - (2a2 + bc)Y\2 + c2F2
n - acY2

X2 = 0 

ac2 - a2c + acT\2 - (2a2 + bc)Tx
22 + c2t\2 - acT2

22 = 0. 

Moreover, when these conditions are satisfied, the solutions g = g(xl, JC2) are determined 
up to an arbitrary non-zero constant multiple. 

The equation 

is equivalent to the six equations 

2(-bY\x+aT2
n) = -bx+b(j)X 

2(-bT\2+aY2
2) = -b2 + b<i)2 

{-bT\2 +a(T\x +T2
2) + cF2

n) =ax- a<j>x 

{-bY\2 + a(T\2 + T2
2) + cT2

u) =a2- a<j>2 

2(ar\2+cF2
l2) = ci -c<t>\ 

2(aT\2+cT2
22) = c2-c<j)2, 

where </> = <j)\dxl + <j)2dx2. Thus we see that if DS = «S ® <j> and 5" ^ 0 then </> is uniquely 
determined. Moreover the existence of such a </> is equivalent to the integrability equations 
for (2). This completes the proof of Theorem 1. 

To prove the statement in Remark 2 we need the following two lemmas. 

LEMMA 4. Let D be a connection on a surface Z with Ricci curvature S ^ 0 every­
where. D is a metric connection if and only if 

(1) D and S are symmetric, 
(2) dQtS?0,and 
(3) DS = S (8) dhfor some function h:M —> R. 

PROOF. Follows by taking the covariant differential of the equation (3). • 

LEMMA 5. If S is a non-zero, symmetric Ricci tensor andDS = S<S)(/> then </> is closed. 
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PROOF. This follows from Theorem 1, Lemma 4 and from the uniqueness of 0 in the 
equation DS = S (g) </>. • 

The statement in Remark 2 now follows. 
In the proof of Theorem 2, it remains to be shown that the integrability conditions 

for (2) are equivalent to the condition that the eigenspaces of Q are preserved by the 
connection. To this end, note that the eigenvalues of Q are ±i\ where 

\ = \a2+bc\{l\ 

The corresponding eigenspaces are 

£i = {{{a-X)ex + be2)l : / G R] = {(ce{ +(-a - X)e2)l : / G R) 

and 
£2 = {((a + X)e{ +be2)l: l G R} = {(cex + ( - a + A)<?2)/: / G # } . 

Let W\ and W2 denote the sections of £1 and £2 respectively. The following two lemmas 
describe when DWt G £, for i = 1,2. Let kt G ^ , for / = 1,2. That is, 

k\ = ((a — \)e\ + be^si and #2 = ((« + A)ei + be2)s2 

for some 5/: U —> R — {0}. 
We now need the following lemma, which is proved by a direct computation. 

LEMMA 6. The equations 

{-bdxx +(a- X)dx2)Deik] = 0 

(~bdx{ +(a- \)dx2)Deikx = 0 

{-bdxx + (a + X)dx2)De[k2 = 0 

( -Mx 1 + (a + X)dx2)De2k2 = 0 

are equivalent to the four equalities 

abx -axb-abY\x - b2T\2+(2a2+bc)T2
u + abr2

2 = 0 

ab2 - a2b - abT\2 - b2Y\2 + (2a2 + bc)Y2
X2 + abV\2 = 0 

A(6rj, - 2 a r ? ! - 6 r ? 2 ) + Ai*-A6i = 0 

A(6r!2 - 2aY2
n - M^2) + X2b - Xb2 = 0. 

We may also write 

k\ = Uce\ + (—a — X)e2\t\ and k2 = Uce\ + (—a + A)e2V2 

for some/,:£/ —>R- {0}. 
To complete the proof, we need the following result, 
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LEMMA 7. The equations 

((a + A)^1 + cdx2)Dexkx = 0 

((a + \)dxx + cdx2)Deikx = 0 

((a - X)dxx + cdx2)Deik2 = 0 

((a - X)dx{ + cdx2)De2k2 = 0 

are equivalent to the four equalities 

ac\ — a\c + acTx
xx — (2a2 + 6c)r|2 + c2T2

n — acT2
X2 = 0 

ac2 - a2<? + acF\2 - (2a2 + Z?c)r̂ 2 + c2Y2
n - acT2

22 = 0 

X(cTl
u - 2aT\2 - cY2

n) + \cx - X\c = 0 

A(crJ2 - 2ar^2 - cY2
22) + Ac2 - X2c = 0. 

It follows from these two lemmas that the condition that the connection preserves the 
eigenspaces of the curvature form is equivalent to the four equalities 

ab\ -axb- abTx
u - b2T\2 + (2a2 + bc)T2

n + abT2
2 = 0 

ab2 - a2b - abT\2 - b2Yx
22 + (2a2 + bc)T2

X2 + abT2
22 = 0 

acx - a\c + acT\x - (2a2 + bc)Tx
X2 + c2Y2

xx - acT2
X2 = 0 

ac2 - a2c + acr}2 - (2a2 + bc)Tx
22 + c2T2

X2 - acT2
22 = 0, 

which we recognize to be the integrability conditions for the system (2). This completes 
the proof of Theorem 2. 

It should be pointed out, however, that in general a connection which is everywhere 
locally a metric connection need not be determined by a global metric as the following 
example shows. 

EXAMPLE. Let g be a Riemannian metric 

a{(dx1)2 + a2(dx2)2 

where a\, a2\ R
2 —> R are positive functions satisfying 

at(x
x +l ,x 2 ) = 2a/(jc

1,jc2), a(xx,x2 + 1) = at(x
x,x2\ i= 1,2 

and Tl
jk the corresponding Christoffel symbols. It is easy to see that all Tl

jk are periodic 
in xx, x2, but the metric g is not itself. This means that Tl

jk projects to a connection on the 
torus T2, but the metric g does not project down. In other words, the connection Yl

jk on 
T2 is not a global metric connection. • 
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2. The characteristics of connections on SO(3) bundles. 

2.1. Characteristic curves. Let (xl ,x2) be a local coordinates on E, and 1̂4 = ^(rfx1), 
U5 = 7T*(t/x2). Take 1-forms UJ\ , cj2, ̂ 3 on F, such that / / is defined by ui = <x>2 = ^ 3 = 0 
and 

(du\\ _ ^11^4 +a21^5 *11^4+621^5 "\ ( ^ + ( ^3 ACJ5 "| + ^ . 

\̂  JcJ2 J V #21 ^4 + #22^5 ^21 ^4 + &22^5 J \^2 J \ —^3 A UJ4 J ' 

dojT, = CJ4 A LO5 ; 

where ̂ 41 = c i a; i A uoj + <?2 ̂  1 A UJ3 + C3 a;2 A U3 for some vector-valued functions c 1, C2, C3. 
Of course, these cj/'s are not uniquely defined, but are determined up to a linear transfor­
mation of the form 

/JAJ-{detA 0 0 \ r o \ \ 
(5) ^ * d*A O j , J=[__{ 0 ) 

where v4 is a 2 x 2 matrix. 
Let 7/1 C F*F be the sub-bundle spanned by 1^1,^2,^3, and i.H1 —> F F the 

inclusion. Recall that a characteristic X G F / / 1 is such that i*oj(X, •) = 0, where u is the 
symplectic two-form on T*F(cf. [3]). The projection of an integral curve of characteristic 
elements to I is to be called a characteristic curve. 

The following result is due to E. Cartan [5]. 

LEMMA 8. The characteristic curves are given by the 2-nd order differential equations 

d2xl : dxJ dx* „ , ^ 
(6) W + V^lf^ i=1 '2 ' 
vv/zere r}j = a\\, Tj2 = r^, = (a12 +a 2 i ) /2 , I^2 = a22, Tf, = en, rf2 = r ^ = 

"22 = ^22-(bn+b2X)l2,T2
12 = b2 

PROOF. By Pontryagin's maximal principle. Let A4, X5 be vector fields on Mspanning 
H and satisfying p*(XA) = d/dx\ p*(X5) = d/dx2, and X3 = [X4,X5]mod(//), Jf2 = 
-[X57X3]mod(X37A4,X5), ^1 = [X4,X3]mod(X?>,X4,X5y Now X i , . . . , * 5 is dual to 
o;i , . . . , LL>S. Introduce functions on F*F 

fi-.rF-*R, fi(x,p)=(Xi{x),p), / = 1 5. 

Then an abnormal extremal is the solution of the Hamiltonian system af + bf subject 
to the constraint f = fi = fi, = 0 for some functions a, b on F. An abnormal extremal 
projects to a characteristic on S. 

Now differentiating f along the abnormal extremal, one obtains 
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where { , } denotes the Poisson bracket on T*F. Using the fact that {/j ,f4 } =fi, {fi, J5} = 
—f\ along the abnormal extremal, one has af2 — bf\ = 0. So there is a function c such 
that a = cf\,b = cfi. Hence the Hamiltonian function can be written as c(f\f4 +^/s). 
Reparametrizing the time variable, we can take c = 1. Writing out the Hamiltonian 
system oîf\f4 +fzfs on r*F, and eliminating the variable /?, we obtain the second order 
equations (6). • 

2.2. The normalization. The group of linear transformations as in (5) is too large. For 
example, if we make a change of variables (je1,*2) —-» (x\x2), then the equation (6) 
changes from one into another under the transformation (x1, x2, /) —•> (x1, x2,1) where 

so the time-variable is also changed. We need to reduce the group of transformations as 
in (5) to a smaller group. To this end, we will explore the action of SO(3) on F. 

First note that on the distribution K there is a metric, induced from the Killing form 
on so(3), which is unique up to a multiplication by a constant. Fix such a metric. Then 
the 1 — D sub-distribution H\ = Kf][H,H] inherits a metric g. Suppose that there is a 
global section e of H\, i.e., the Euler characteristic class of H\ is zero. Normalize e so 
that it has norm 1 in g, i.e. g(e1 e) = 1. Since e is dual to 6J3, we can normalize uo^ by 

(7) <«*,*)= 1. 

Henceforth we will always assume that UJ^ is normalized, i.e. fixed. 
Now the transformations on o;/'s preserving the relations (5), (7) are of the form 

/JAJ-{ 0 0 \ 
q=\ 0 1 0 , 

\ C DA) 

where A is a 2 x 2 matrix of determinant 1. Let G be the group of all such linear 
transformations. This means that a G-structure is defined on the cotangent bundle T*M. 
In particular, it induces an SL(2)-structure on r*I . Here by a G-structure on a vector 
bundle we mean a reduction of the structure group of the bundle to G. 

Note that if det(4) = 1, then the TL transform like the Christoffel symbols of a 
connection under a change of local coordinates. More precisely, if one has a change of 
coordinates (x1, x2) to (x1, x2), and det d (x1, x2)/d (x1, x2) = 1, then the Tl-k changes under 
the law 

r* = v r — — — + v - ^ - — 
01 ijjcjkà& dV dxl ^ dxPdtf dxl ' 

This suggests that Yl-k defines a connection on some SL(2)-bundle over Z, which will be 
made explicit below. 

Let a;/, i = 1 , . . . , 5 be as in (5), with LUI, normalized. Take 

f Pudxl + F2
ndx2 T\2dxl + T\2dx2 \ 

V Y2\dxX + r 2 1 ^ r 2 2 ^ ! + r 2 2 ^ 2 J 
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Let Y be the principal SL(2)-bundle over S associated with the SL(2) structure on r*£. 
SL(2) acts on the fiber of Y by conjugation. Define a gl(2)-valued one-form on Y by 

(8) 0 = dAA~{ + ATA~l. 

It is easy to see that this defines a GL(2)-connection on Y, as under the change of a frame 
of Y by the conjugation of an element^ G SL(2), 9 changes under the law 

0*=AOA-{. 

As usual, we define the curvature of the connection to be 

Q = </0-[0,0]. 

In a local coordinates (x1, x2), the above can be written as 

Q = dr + r A r. 

Now applying Theorem 1, we see that if the curvature form Q is traceless, i.e. tr Q = 0, 
and the eigenspaces of Q are preserved by the connection, then the equations (6) for 
the characteristic curves are the geodesic equation for some (Riemannian or pseudo-
Riemannian) metric. 

2.3. Examples. In this section we will show that our results apply to the rolling ball 
problem on a surface in R3. Throughout this section we fix an orthonormal frame ë\,ë2,ê3 
for/?3. 

Let E be a surface in R3. Let e\,e2 be a local frame of orthonormal vector fields 
tangent to Z, and e^ = e\ x e2 the normal tangent vector to S. Denote el, e2, e3 the dual 
frame of e\, ^2, ̂ 3 with the structure equation 

(9) de3 = uj\ex + uj\e2, uo\ = ae[ + be2, LO\ = be1 + ce2. 

Consider a ball rolling without slipping on E. To describe the motion of the ball, we 
need to introduce an orthonormal frame f\(t\f2{t),fs(t) fixed with the rolling ball. We 
assume that at / = 0,/i ,̂ 2,̂ /3 agree with e\, £2, ^3,^(0) = ëh i= 1,2,3. Now let 

if\{t)Mt)Mtj) = ̂ (0(/i(0),/2(0),/3(0)) 

where #(Y) is the rotation matrix. So R(i) defines a curve in the orthogonal group SO(3). 
As usual, we identify R3 with the Lie algebra so(3), so if v is a vector in R3, we denote v 
the corresponding element in so(3). 

The motion of the rolling ball can be described as follows. 

LEMMA 9. Let c(i) be the center of the ball, then 

dc{t) 
—— = v\e\ +v2e2 dt 

(10) ^-=R(t)(v2êl-v{ê2) 
dt 

where v\1v2 are the components of the velocity of the center. 
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Note that (10) defines a connection on the fiber bundle I x SO(3) whose parallel 
transport is described by (10). 

Take the vector fields X\ = (e\,—Rê2),X2 = (e2,Rè\\X-$ =X\ XX2. Then we compute 
X3 = (0, Rêi) mod(Jfi, X2). In particular, with respect to the Killing form on so(3) X3 has 
norm 1. This justifies the renormalization procedure in Section 3. 

Next, using (9), we have 

[XUX3] = (o,R(-êl-{bêl+cê2)))1 [X2,X3] = (0,R(-ê2Haêy+bê2)))mod(XuX2) 

So we see that the connection is Cartan type if and only if 

that is, the Gaussian curvature of S is not — 1. Moreover, it is easy to see that the 
characteristics project down to the geodesies on X (see [10] for the case where £ is a 
plane in R3). 

Before concluding, we shall mention that our result has an interesting application in 
control theory. Note that (1) defines a control system in the following way. Suppose H 
is spanned by X\,X2, then the control system is y{i) = u\X\ + U2X2, wherey{t) is a path 
in F, and u\1 U2 the controls. Then the characteristic curves correspond to the abnormal 
extremals of the control system {cf. [7], [8] for a discussion of abnormal extremals). A 
part of the optimal control problem is to choose a cost-functional of the form 

J aij(y)uiUjdt, 

which we want to minimize over the space of curves subject to the control law y{t) = 
u\X\ +U2X2. For a metrizable connection, our result provides a canonical way of selecting 
a cost-functional such that all the abnormal extremals are the extremals of the cost-
functional. 
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