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DEGREE OF APPROXIMATION OF A FUNCTION
BY NORLUND MEANS OF ITS FOURIER SERIES

R.B. SAXENA
Communicated by K.C. Shrivastava

Two theorems of T.M. Fle+t [Quart. J. Math. Oxford Ser. (2) 7

(1956), 81-95] on the degree of approximation to a function by

the Cesaro means of its Fourier series are extended to Norlund

means. Their conjugate analogues are also proved.

1.

Let fix) be Lebesgue integrable and periodic with period 2ir , and

let

(1.1) /(*) ~ %a + £ (a. • cos kx + b. • sin kx) = £ A Ax)
0 k=l * k=0 K

be its Fourier series.

The conjugate Fourier series of (l.l) is

(1.2) Y. {bv ' cos kx - a, ' sin fcc) = I K^ •
k=l k=l K

The Norlund mean of an infinite series Y, ^ > with the sequence of
k=l "

partial sums {s } , is defined (Norlund [4], Woronoi [5]) by the sequence-
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to-sequence transformation

t1'3* *ntn) = T I'Jn-k ' Sk

where {p } is a sequence of non-negative strictly monotonic decreasing

constants, and

n

nn fe=O k ~1 " 1

We use the following notation:

*<*> =

• (*> =

_
Nn n> t

•o ( t ) =

v*} =

•x( t )

•x(*>

2TTP ,

1
2 i r P n I

•'o

x

r(7T.

•<*)

T(r) ,

n

So
n
I i

c=0

*(*

f t

'o

• $:

f*
'o

(x+t) + f{x-t)

(x+t) - f(x-t)

3in(/c+%)t
sinfc/2

cos(fe+%)t
'n-fe sint/2

) cot t/2 dt ,

r - l

r - l
t-M) 1(/(U) M

- 2/(x)

J

( - 1 < 0) ,

, ¥ (t) = 1" (t) (-1 < r < 0) .

[x] denotes the largest integer less than or equal to x .

2.

Flett [2] has proved the following theorems for the degree of

approximation to a function by Cesaro means of its Fourier series.
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Approx imat ion by Nor lund means 397

THEOREM A. Suppose that f is integvable in (-TT, TT) and of class

Lip a in the closed interval (a, b) where 0 < a < 1 and that

a , b = o[n~^) . If 0 £ 0 < a and k > a-3 , thenn n K '

<£(*) - /(*) = 0{n~a) ,

a (x) being the (C, k) mean of series ( l . l ) .

THEOREM B. Let 0 < a < 1 , 0 5 0 < 1 , - 1 < r < 0 , 0 < 6 < i r J

k 2 a - $ j ?c > a + r j a n d l e t x be a point such that

(i) An{x) = 0[n~B) ,

(ii) *1+r(+0) = 0 , and \ w" r |$ 1 + r (u) | < At1+a (0 < t < 6) ,

and

tt
(Hi) <t>{u)du = 0[t~1+a) ;

J0

then

<£(*) - f(x) = 0{n~a) .

In the present paper we generalise the above theorems for Norlund

means and also prove their conjugate analogues. Precisely we prove the

following theorems.

THEOREM 1. Suppose that f is integrable in (-n, TT) and of class

Lip a in the closed interval {a, b) where 0 < a < 1 , and that

(2.D V bn =

If 0 < 0 < a and {p \, {q } and {r } be monotonic decreasing

sequences of non-negative constants such that

r /R , 2 p /P - q IQ = P IP n - Q IQ ,
n M-l *n n-1 Hn n-1 n n-1 n n-1 '

Q and R being defined similarly to P , then
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\{rn) - fix) = O

where t (r ) i s the Norlund mean (1.3) of series ( l . l ) generated by the

sequence {r } .

THEOREM 2. Suppose that f is integrable in C-TT, TI) and of class

Lip a in the closed interval [a, b) , 0 < a < l and that

(2.D an,bn-o{{qnlQ/}.

If 0 < 6 < a and {p } , {<?} and {r } are sequences as defined in

Theorem 1, then

*„(*„) -fix) = o{{Rr

provided that the conjugate function exists, i [r ) being the Norlund

mean (1.3) of series (1.2) generated by sequence {r } .

T H E O R E M 3 . L e t 0 < a < l J 0 5 8 < l , - l < r < 0 3 0 < 6 < T T

and let x be a point such that

(2.2) Anix) =

(2.3) * 1 + r (
+ ° ) = 0 and I u~V|i*1+r(") I £ At1+a (0 S t S 6) ,

(2.1*) f Hu)du = 0(t1+0t) ;
J0

/„ \ln
n> \Pn'

c
n)

' n yrr

where {p } , {q } and {r } are sequences as defined in Theorem 1.

T H E O R E M 4 . L e t 0 < a < l J 0 5 3 < l J - 1 < r < 0 , 0 < 6 < T T

and let x be a point such that
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Approximation by Norlund means 399

(2.6) *1+r,(
+°) = 0 and \ u~r\dH1+r(u) | £ Atl+a (0 £ t < 6) ,

(2.7) [ Hu)du = 0[t1+a) ,
Jo

then

provided that the conjugate function exists, {p }» {<? } and {r } being

sequences as defined in Theorem 1.

3.

We shall need the following lemmas in the proof of our theorems.

LEMMA 3.1. For 0 < t £ p IP ,

Proof.

£•- pn-k Bint/2
Yt K.~\J

^ Pn k{2k+1)

k=0 n K

= O(«) .

LEMMA 3.2 [3], J / t?ie se^wence {p } is non-negative and non-

i n c r e a s i n g t h e n f o r O S a £ Z > £ ° ° , O £ t £ i r a n d a n y n , we h a v e

b
< P

k=a -

for any a , where T = \t ] .

LEMMA 3.3 . For 0 < p./P £ t £ 6 < -n ,
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\Nn(pn; t]\ = 0{Px/tPn} .

Proof. (i)

sin(n-?c+4r)t
n >k=0

n

n k=0
sin(n-k)t cot t/2 I w

£ p, cos(n-k)t
ik=0

= 0{(PT cot t/2)/Pn} + 0{PT/PW} using Lemma 3.2

(HI The estimate for W (p ; t) can be proved similarly.

LEMMA 3.4. For 0 5 u « p /P .

n

(ii)

p / p

Proof. riJ

,6
(t-u)~r~ 0{R^/tR }dt using Lemma 3.3 (i)

}P IP
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Approximation by Norlund means 401

{t-uV
-r

(ii) The estimate for j(p ; u) can be proved similarly.

LEMMA 3.5. (i)

(6 r R i

K{u) = (t-w)~r'~1tf [r ; t) = olu'1'1" ty \ .
n

(ii)

Proof, (i)

t-u)-\(rn, t) = ofu-1"' ̂ 1 } .

b-u)~ N [r ; t)dt

{t-u)~r 0{Rr JtR }dt using Lemma 3.3

Mff

(6-u) -ri
(-1 < r < 0)

ii^ The estimate for K(u) can be obtained in a similar manner.

4.

Proof of Theorem 1. Let us write (Zygmund [6])
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then we have

8n[x) = HaQ + £ Ajx) ,

) - f{x) - ^ \\{t) dt ,

using (1.3) for £ A^x) , we have

Now

sin(fc+£)t

(f'v -r (V

say.

n' n
(•+•2) U 1 I S 0(n) J |<C(t)|dt using Lemma 3.1

S Pn

Further

\N (r • t)\dtN (r

(•6 R

0{ta) • 0 —- dt using Lemma 3.3 (i)
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A p p r o x i m a t i o n by N o r l u n d means 403

Now we have

*x(t) ~AQ + 2 c o s k t

where AQ = aQ ~ 2fix) . Hence we have

(U.lt) | J 3 | < | \AQSn{rni t]\dt + 2 J
o o

cos fct \Nn[*ni t)\dt

S \A N [r ; t) \dt + 2 V a, cos kx cos Act
J6 ° n n '6 k=l k

' \NJrn; *)ld* + 2 J s i n fea; c o s k t

= J3.1 + J3.2 + J3.3 '

How

(it.5) 0 tBnBn
dt by using Lemna 3.3 d)

= 0(1/Rn)

, as n -*•<»

Further

cos kx cos kt = £
k=l

(cos + cos

using (2.1)

k=l

= 0(1) .

0(1) • {cos k(x+t) + cos fc(x-t)}

Thus
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( U . 6 ) 0(1) • J" \Nn[rn, t)\dt

fir
\RJtR \dt by Lemma 3.3 (i)= 0(1)

= o(l) , as n -*• °° .

Similarly,

*.7)

I n view of (U.k), (h.5), C*.6) and ( U . 7 ) ,

( i* .8) | l 3 f = 0 ( 1 ) .

F i n a l l y c o n s i d e r i n g ( l * . l ) , C t . 2 ) , (1+.3) and ( U . 8 ) , t h e p r o o f o f t h e

t h e o r e m i s c o m p l e t e .

5.

Proof of Theorem 2. We have'

Using (1.3) for Y. B
n(

x) .

W^ ~ h f C O t

1 f"
- j= <K*) cot t/2 dt

'0

; t)dt
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f»/p* f6 f l
+ k(t)N (r ;

Jo Jp /P J6 " n
n

= ^ + i 2 + i 3 , say.

Since the conjugate function exists, we have

cot fc/2 dt = o(l) .

Hence

p IP
±. r n
211 Jo

Thus

(5 .2)

x r n

cot t/2 dt +

' n

n [n-k
2 s i ni

v=0

\\\ = °{b>n/Pn)a} * 0(1) .

Further

405
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(5.3) \I2 = J
f6

n

• \Nn(rn, t)\dt

• 0{R ItR )dt using Lemma 3.3

= 0{l/Rn) f Olt*-1) • 0{Rjdt
P-n n

Finally, since

we have

(5.1*)

*(*) ~ 2 Y, si.(x) s i" fe* >

B, (x) sin kt
J6 k=l

< 2 V b, cos kx sin kt\ \N (r ; t) \dt
h k=l k- \ n n

C
+ 2

J<<;
sin fex sin kt

n v n

= X3.1 + J3.2 '

Now

2 X b. cos fcc sin fct = Y o
k=i k k=i

' {sin Hx+t) - sin

< T 0(l){sin k(x+t) - sin k(x-t)}
fe=l

= 0(1) •

Therefore, we have
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(5.5) J3 > 1 = 0(1) \Nn(rn, t)\dt
' 6

= 0(1) J11 0{RT/tEn}d;'t by using Lemma 3.3 (H)

, as n

Similarly

(5.6) J3.2

Considering (5-h), (5.5) and (5-6), we get

(5.7) |T3I

Consequently in view of (5.1), (5.2), (5-3) and (5-7) the proof of

Theorem 2 is complete.

6.

Proof of Theorem 3. We have, as in Theorem 1,

(6.1) t (r ) - f{x) =

P /P x

in in IP If.
N (r • t]dt

= Jl + J2 say"

By using Lemma 3.1, we get

p /P

(6.2) J, < <\>(t) • 0(n)dt

Further, since

= 0(n) ' o { ( p M / P n ) 1 + C X } b y u s i n g ( 2 . U )

k t

where A = a - 2f(x) , we have
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(6.3) |J3I S J \A0»n{rn; t)\dt + 2 J I cos

Now

(6.I
3 .1

as in Theorem 1. Further

00

£ /lj,(x) • cos kt • N (r ; t) = N
k=l n n n

- t) ' cos kt

using (2.2)

kt}X
(r • t)\ .

Thus

(6 .5)
'3.2

0{RJtR)dt by using Lemma 3.3 C"^
J6

= o(l) , as n -*•«>.

Considering (6.3), (6.U) and (6.5), we have

(6.6) \J3\ = o(l) .

Finally, following Bosanquet [J], we get

1 !^ f* r-i

r> /P " "' Jn

1

r(-r)

/p
n n d$r+lv

IVn n

di (w) (t-u) XN
}

• t)dt\
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Approximation by Norlund means 409

r(-r) in'Pn

by changing the order of integration

(u) • J
P /p

Using Lemma 3.1* d) , we get

- j "

by partial integration and using (2.3)

Similarly,, using Lemma 3.5 d) we get

(6.9)

' n

/P
n

using

From (6.7), (6.8) and (6.9), we get
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(6.10) J2-

By virtue of (6.1), (6.2), (6.6) and (6.10), the proof of Theorem 3 is

complete.

7.

Proof of Theorem 4. We have, as in Theorem 2,

JK
(7.1)

r^n n rS fir
+ +

J 0 >P /P J<5
r n

say.

Proceeding as in Theorem 2, we get

(7.2)

Further, we write as in Theorem 2,

2 I B. (x) sin kt
*=1

whence we have

s 2, B (a) sin fct
k

, ( ' :*)\dt .

Now

BAx) sin kt = £ 0{q /Q.) sin fcfc ty using (2.5)
^ k l "

= 0(1) £ sin kt
k=l

= 0(1) •

Thus
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Approximation by Norlund means 41 I

(7.3) < 0(1) f |ff (r j t)\dt

= 0[l/R ) by using Lemma 3.3 (ii)

= oil) , as n -»• °° .

Now, using the fractional integration for i|>(£) , we get

) J ~ -±- f6 H [r t) f* (t u ) - 1 " - 1 ^ (u)
2 r("r^ Jp /p M "' Jo r+1

1
r(-r)

n/Pn

[6 df (u) f (t u)"^1?
J rt /P J u

by changing the order of integration

T(-r)
p IP

= J 2.X

Using Lemma 3.̂ * Cii^ and 3.5 ("iî  and (2.6) and proceeding similarly

as in Theorem 3, we get

(7.5) '2.i-°\y\p,P-\'v-K
/pr)

and

(7.6) 122 =

From (T.h), (7-5) and (7.6) we get

Consequently, in view of (7-1), (7.2), (7-3) and (7.7), the proof of

Theorem h is complete.
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