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Let R be a hyperbolic Riemann surface and W an open subset of R with dW
piecewise analytic. Denote by M(R) the space of Dirichlet finite Tonelli functions on R
and by IT the harmonic projection of M(R). Consider the relative HD-class on
W, HD(W;dW) = {ueM(R)\ u | W<=HD(W) and u | R \ W = 0}. The extremization op-
eration fi.S' is the linear mapping of HD(W;dW) into HD(R) defined by fio =

•n I HD{W; dW). Since TT preserves values of functions at the Royden harmonic boundary,
the maximum principle implies that /x)̂  is an order preserving injection and that
M<BD= fJ-D I HBD(W; dW) is an isometry with respect to the supremum norms.

The term malformed was introduced by Nakai [2] for subsets W of R with the
propery that fzw

D is surjective yet j i " is not. Royden's theorem [4] on the CD-denseness
of HBD(R) in HD(R) (and that of HBD(W; dW) in HD(W;dW)) leads one to believe
that there are no malformed subsets. However, Nakai [1, 2] showed that on an arbitrary
hyperbolic Riemann surface R corresponding to each unbounded function h e HD(R)
there is a malformed region W with h£ iio(HD(W; dW)). The proof of this important
result on the classification of Riemann surfaces is elaborate and difficult. In this paper we
show that on a suitably chosen R the task of exhibiting malformed subregions is
considerably simpler. From this point of view the result presented here is weaker.
However, due to its simplicity one can observe a new phenomenon: the existence of
malformed subregions such that the deficiency of /u.̂ , i.e. the dimension of
HD(R)/n%(HD(W;dW)), is infinite.

1. We use the Royden ideal boundary extensively and refer to [5] for the notations
and results. Let T be the Toki surface, a Riemann surface in the class OHD\Oa. The
harmonic boundary of T consists of a single point p*. Thus, if U is any subregion of T
with T\U compact, then dim HD(U; dU) = dim HBD(U; dU) = 1. Let gT be the Green's
function on T with pole at a fixed point qoeT. For any ae(0 , +00) let Ga =
{peT|gT(p)<a} and set <oa = ( l -a" 1 g T )U0. Note that coaeHBD{Ga;dGa) and
wo(p*) = l.

LEMMA. For a e (0, +°°) the Dirichlet integral of (oa over T is given by

(1)

For the proof consider the polar coordinate differentials dr, dd on T defined by
drlr = -dgT, d6 = -*dgT. Whereas r = e~8r is a global function on T, 0 = -g* is defined
only locally. There is a neighborhood of each point of T except the countably many

Glasgow Math. J. 24 (1983) 101-106.

https://doi.org/10.1017/S0017089500005152 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005152


102 MOSES GLASNER

critical points of gT in which re'e may be used as the local parameter. Thus we have

where Cp is the positively oriented boundary of {peT\ r(p)<p} and / is a suitable
function on Ga. For all but countably many p e (0,1) we know that

f dO = 2TT (3)

(cf. [5, p. 199]). Setting / = gT in (2) and using (3) to evaluate the right hand side gives
DG (gT) = 2TTO. Since DT(wa) = DGa(a"1gT), we conclude that (1) holds.

2. We follow the procedure of [3] for forming a Riemann surface by welding
subsurfaces of T to a region in the complex plane C. Fix ve(0, +°°) such that T\Gv is
homeomorphic to a closed disc and does not contain critical points of gT. Set c = 2TT/V and
fix a number ae ( l ,2 ) . Define two sequences

ak = akv, pk=2kv, k = 1, 2 , . . . .

Note that Gv <= Gttk <= GPt. By the lemma in Section 1 we have

D T ( c O = c / a \ fc = l , 2 , . . . . (4)

We also remark that 1 -o)3k | dGv = /S^CgT I d G J D1 = 0^ ' v C\ 1 = 2~k and in particular,

l - < o p j 3 G v < i fc = l , 2 , . . . . (5)

We prepare copies Tn, n = 1, 2 , . . . , of T and for any a e (0, +°°) we let G£ be a copy
of Go in Tn. For n = 1, 2 , . . . define Xn = GZ, Wn = G^, Vn = G^. We view <oa as being
defined on Tn and set w,, = a>an \ Wn, vn = w3n | Vn. We weld the surfaces Vn to the region

O = C \ L ) { | z - 3 n | ^ l } by identifying dVn with { |z-3n| = l}, n = 1, 2, Denote the
i

resulting Riemann surface by R. The functions vvn, vn can be viewed as being defined on
the subsurfaces Wn, Vn of R. Then according to (4) and (5) we have

DWn(wn) = c/an (6)
and

l-vn\dXn<i n = l , 2 , . . . . (7)

3. Denote the harmonic boundary of R by A. Since dim HD(Xn; dXn) = 1 we see
that Xn DA consists of a single point which we denote by p*. Set A, = {p*, p*,. ..}.

LEMMA. AJ IS dense in A.

Assume that there is a point q* e A\A,. Then we can find a function u e HD(R) such
that 0 < u < l , u | A1 = 0, u(q*) = l. For each n, u(p*) = l-un(p*) = 0 and u | a V n < l =
l -u n |3V n . Thus w| V n < l - u n | Vn and in view of (7) we have u\dXn<%. Consider
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the region Ro = R\\J Xn. Clearly, u |dRos§. Since Ro is planar we conclude that
i

u | i?0 —I a nd consequently u | R < | . This contradicts u(q*) = 1 and the assertion follows.

4. Set W= U Wn and define a function w on i? by setting w | l ? \ W = 0 , w|Wn =
i ^

wn, n = 1, 2 , . . . . Clearly w e HB(W; dW). By (6) we see that DR(w) = I D w (wn)< +oo
i

and hence w£HBD(W;3W). Since w | A 1 = l , the lemma in Section 3 implies that
w | A = 1. Thus Ac{ p *eR* | w(p*)>0}<= W; i.e. W is a neighborhood of A in R*.

PROPOSITION. The extremization n%D: HBD(W; dW) -» HBD(R) is surjective.

This follows from Theorem 2 of [1] or can be established directly. Let h be any
function in HBD(R). Then wh is in the Royden algebra since each factor is and we can
set u = TTR\w(wh), the harmonic projection of wh on W (cf. [5, p. 165]). Since ue
HBD(W; dW) and /x^Du |A = u\ A = wh |A = h\ A, it follows that n%Du = h.

5. Define a measure a on A as follows:

cr(A\A1) = 0, o-({p*}) = DWn(wtl), n = 1,2,. . . . (8)

The space HD(W;dW) is completely determined by a.

PROPOSITION. HD(W;dW) \ A = L2(A,<r).

Assume that u e HD(W; aW). Then u\Wn = u(p*)wn and hence by (8) we see that

+°o>Dw(u) = Y,Dw (u) = I(u(p*))2a({p*}). Conversely, let |€L2(A,cr) and define £„ =
i i

| ( p * ) . The function u = 5 | n w n is in HD(W;dW) and u(p*) = £,, n = l , 2 , . . . . Thus
i

u | A = £, cr-a.e.

6. Recall that the definitions of W and a depend on an arbitrary constant a e (1, 2).
Set WQ = W and <ra = cr to express this dependence.

PROPOSITION. The subset W of R has the property that the deficiency of /x^° is infinite.

For the proof set Za = fi%°(HD(Wa; dWa)). By (8) and (6) it is easily seen that for
a', a" with a < a ' < a " < 2 the space L2(A, cra) is properly contained in L2(A, aa"). Since
extremization leaves values on A fixed, the proposition in Section 5 gives Za | A = L2(A, aa)
and similarly for a', a". We conclude that Za is contained in Z a and that Z", a<a'<2,
form a family of properly increasing subspaces of HD(R).

7. We revert to the notations W and a. In the remainder of this paper we show that
the open set W is contained in a region il such that

A. (9)

Actually, in order to make d£l piecewise analytic it will be necessary to shift our
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considerations to a Riemann surface R' obtained from R by removing a point s0 from R.
Since the harmonic boundary of R' can be identified with A and s0 will not be in W, the
propositions in Sections 4 and 6 will not be affected. The result in (9) implies that the
image of nS coincides with the image of tip in HD(R') and in particular that the image of
JX2D coincides with the image of n™D. Thus our main result will follow from (9) and the
two propositions just mentioned.

THEOREM. There exists a Riemann surface R' and a subregion Cl with dCl piecewise
analytic such that /x2D '"s surjective yet the deficiency of /x£ is infinite.

The region Cl will consist of the union of W, a fixed parametric disc and a collection
of thin strips joining the components of W to this disc. Fix a point p0 in the subset D of R
(cf. Section 2) and let gR be the Green's function for R with pole at p0. Choose 7 e (0, +=°)
such that the set By ={peR | gR(p)>YJ is homeomorphic to a disc and By contains no
critical points of gR. We now fix the arbitrary constant a e (1, 2) that determines W so that
none of the critical points of gR lie on dW.

For each positive integer n let pn be a point in the compact set 3Wrl such that
gR(Pn) = maxaw,, gR. Then grad gR at pn is perpendicular to the tangent to d Wn at p,,. Here
we are using the notations dr, d8 for the polar coordinate differentials of R obtained from
gR. In terms of the local parameter rem we can represent dWn in a neighborhood of p,, in
the form r = fn(6), 6&In, an open interval. The function 6 has a harmonic continuation
along any integral curve of grad gR with 6 being constant on the curve. Thus we may
choose 6n e /„ such that the maximal integral curve of grad gR starting at the point
qnedWn with 8(qn) = 6n, r(qn) = fn(dn) does not terminate at any of the critical points of
gR. Therefore, this curve intersects dB3y and we denote by ln the portion connecting qn

with dB^y.

Let Sn be a region on which 6 is well-defined and which contains /„ but does not
contain any critical point of gR. Then re'e may be used as the parameter on Sn. Denote by
e0 the minimum of the positive quantities min | r -0 n | and inf \6(p)-0n\. For any
e e (0, e0] define le3'- ps3S"

U°n=Wn\J{peR\\6(p)-en\<e and e~^ <r(p)</,,(0)}.

Clearly U"n is a region containing Wn with dUF
n piecewise analytic and f] U'n = Wn U fm

0<e=SE0

where /", = ln\dB3y. Moreover, if n^ri, then the U"n, U'^ constructed here are disjoint.

8. Consider a fixed positive integer n. For each integer m > EQ' there is a function
umeHD(U1Jm; dUxJm) such that um(p*) = l. Extend the definition of wn to R by setting
w,, | i?\Wn = 0. It is easily seen that for m'>m>eo\ w n ^ u m . < u m < l on R. Thus
u = lim um exists on R,

m

w n < u < u m on R, (10)

u I Wn is harmonic and u | R \(Wn n fn) = 0. By (10) we see that if we set u(p*) = 1, then u
is continuous on Wnfllp*}. Since each point in W n \ { q J is eventually contained in
R\U\lm, (10) implies that u vanishes continuously on dW,,\{qn}. Let gR(-,q,,) be the
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Green's function on R with pole at qn. We apply the HB-maximum principle (cf. [5, p.
160]) to wn + r\gR(-, qn)-u for any T J > 0 and let TJ —»0 to obtain wn>u on Wn.
Consequently, u = wn on R\ln. Since the sequence {um} is eventually harmonic at each
point of R \(6Wn U /„), we conclude that

lim grad um = grad wn on R \(dWn U ln). (11)

For m ' > m > e 0 ' , the function um-um, vanishes on (JR\ l/m)U{p*} and is therefore
orthogonal to a harmonic projection on [/„" (cf. [5, p. 162]). In particular,
DR(um - um., Mm) = 0 and consequently

(12)
Similarly,

(13)

Thus {DR(um) | m >£o'} is an increasing sequence bounded above by DR(wn). Set
d = lim DR(um). Let m'—»+°° in (12). By (11) and Fatou's lemma we arrive at 0 <

DR(WH~
 um) — d —DR(um) which, by the triangle inequality, implies that lim DR(um) =

DR(w,,). Choose a positive integer mn such that

DR(wJ/2<DR(um n)<DR(wJ. (14)

We repeat this construction for each n = 1, 2, Set Yn = UlJm", yn = umn and
oo

y= U Yn. Also define a measure T on A by setting T ( A \ A : ) = 0, r({p*}) = DR(yJ. By (14)
I

and (8) we see that O - ( A ) / 2 < T ( A ) < O - ( A ) for any subset A of A. Thus L2(A, a) =
L2(A, T). On the other hand, by the reasoning of Section 5 we can establish that

(15)
It follows that

HD(Y;dY)\A = HD(W;dW)\A. (16)

9. Each component Yn of Y intersects the disc B2y and dYCidB2y has precisely one
accumulation point s0 in R. We now regard R' = R\{s0} as a Riemann surface in its own
right. Let R'* be its Royden compactification and denote by B the closure of a set B in
R'*. Let Do be a punctured disc centered at s0. Then there is a homeomorphism between
R'*\D0 and R*\D0 with harmonic boundary points corresponding to harmonic bound-
ary points (cf. [5, p. 189]). Since the Green's function of R' (with pole at a fixed point in
R') is a potential bounded away from 0 in Do, all the harmonic boundary points of R' are
contained in R'*\D0. In this sense the harmonic boundary of R' can be identified with A.
Thus (16) continues to hold when Y and W are viewed as subsets of R'.

Define £1= Y U S 2 r Clearly O is a region with piecewise analytic d£l in R'. The final
step in our proof is to show that

A. (17)
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Let veHD(Y;dY). Set U = TTMV (where M=Rf\Jl). Then u | A = u | A and since
u | i ? \ n = 0 we have ueHD(Cl;dO,). To establish the converse let feM{R') such that
f\R'\By = l and / | B3y/2 = 0. The support of grad/ is compact in R' and consequently,
for any ueHD(Cl;dfl), fueM(R'). Moreover, fu = 0 onJJl'\Q,)\JB3y/2 which contains
R'\ Y. Therefore the function v = TTN(/U) (where N=R'\ Y) belongs to HD(Y; BY) and
v | A = (/u) | A = u | A.

In view of (17) and (16) we conclude that (9) holds for R'. This establishes the
theorem.
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