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Abstract

We establish a method of constructing kernels of Bergman operators for second-order linear partial
differential equations in two independent variables, and use the method for obtaining a new class of
Bergman kernels, which we call modified class E kernels since they include certain class E kernels. They
also include other kernels which are suitable for global representations of solutions (whereas Bergman
operators generally yield only local representations).

1980 Mathematics subject classification (Amer. Math. Soc.): primary 35 J 15; secondary 35 C 15.

1. Introduction

Let £! = G x G * c C 2 , where G is a simply connected domain in the complex z-plane
such that Oe G, and G* is the corresponding domain in the z*-plane. Consider the
differential equation

(1.1) Lu = uzz.

where b,ceC°(fi). Note that (1.1) can be obtained from

Aw + A(x, y) wx + B(x, y) wy + C(x, y) w = 0

bysettingz = x + iy,z* = x — iy(x,y complex), and that the absence of the uz- term in
(1.1) is no restriction of generality. We exclude the trivial case c = 0. All C°-solutions
of (1.1) in Q can be locally represented by Bergman operators. Such an operator

Tg: CM(D?) - C°(D. x D*)
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is defined by

(1.2) (T,/)(z,z,z*)= T 0(Z,Z

where r = min (r, 2r), Dx is an open disc of radius 1 about the origin, g e C°(Q0 x J),
n 0 = Dr x D*. c Q, and J = [ - / , / ] .

DEFINITION 1.1. 3 is called a Bergman kernel for L(in Qo) if

(1.3) Kg = 2Tgztt-r
lgzt + 2ztLg=0 {z,z*,t)eQ.oxJ

(1.4a) (zfrVeC^OoXj),

(1.4b) T*g(z. ->0 as r -> + 1 uniformly in O0.

An operator Tg with such a kernel is called a Bergman operator for L (in ft0), and/an
associated function of M = T g /

THEOREM 1.2 (Bergman (1969)). Iffe Ca{Df) and Tg is a Bergman operator for L in
Qo, then u = Tgfe C°(Q0) and Lu = LTg f= 0 in Qo = D.x D*..

By means of Bergman operators one can utilize methods and results of complex
analysis for characterizing general properties of solutions of (1.1); in this way one
obtains theorems on the location and type of singularities, the coefficient problem,
the growth near the boundary of the domain of holomorphy and other basic
properties; for some recent developments, see Meister and others (1976). In general,
an equation (1.1) being given, there exist various Bergman kernels g. In connection
with those applications, the 'simplicity' of g is essential. Hence the development of
methods for constructing suitable Bergman kernels is a fundamental problem,
which has attracted particular interest during the past decade and is far from being
solved, although important special classes of kernels (first and second kind, class E
(see below), class P) have been introduced and investigated.

In connection with Riemanri's method, the determination of the Riemann function
of a given equation (1.1) is often accomplished by means of ordinary differential
equations; see Wood (1976) and Geddes and Mackie (1977). This suggests a similar
approach for Bergman kernels, although K in (1.3) is more complicated than the
adjoint L*. A first systematic contribution in that direction was made by Florian
(1962, 1965). Relations to the theory of class P operators were later obtained by
Kreyszig (1973). In the present paper we show that the method of ordinary
differential equations can be developed to include certain operators of class E and
other Bergman operators which yield global representations of solutions.

https://doi.org/10.1017/S1446788700021613 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021613


456 A. Azzam and E. Kreyszig [3]

2. Ordinary differential equations for modified class £ kernels

For a Bergman kernel

(2.1) g = g(q), q = q(z,z*,t), (z,z*,t)eQxJ

we immediately have from (1.3)

L E M M A 2 .1 . A Bergman kernel (2.1) for L inQ satisfies

(2.2a) rg" + sg' + g = 0, ' = d/dq (z,z*,t)eQxJ,

where

(2.2b) r = [_(zctrlxqt + c-1qz]qt.,

(2.2c) s = (zct)- \xqz.t-\t~
l qz.) + c" \qzz. + bqz.).

The main problem now is the determination of functions q such that (2.2) becomes
an ordinary differential equation with q(z, z*, t) as the independent variable. We shall
give a solution of this problem for g(q) with

(2.3) q(z, z* t) = exp [ £ qM(z, z*) f 1 m e N.
L"=° J

= q with q as in (2.3), then Tg is called an operator of class E and its kernel g a
kernel of class E. A given equation (1.1) is said to admit an operator of class E if (re-
solutions of the equation can be obtained by the use of such an operator; similarly
for other classes of operators. Necessary and sufficient conditions for (1.1) to admit
an operator of class E were obtained by Kreyszig (1955). We shall now determine
conditions on q in (2.3) such that (2.2) becomes an Euler equation

(2.4) ocq2g" + pqg'+g = O

and characterize the operators L in (1.1) which admit Bergman operators with such
simple kernels. The latter include certain operators of the first kind (see Bergman
(1969), p. 12) as well as operators of class E (called operators of exponential type in
Bergman (1969), p. 31). These new Bergman operators and their kernels are said to
be of class EM\ we also call them modified class E operators and kernels, respectively.

THEOREM 2.2. q in (2.3) satisfies (2.2b) with r = ctq2 and (2.2c) with s = fiq if and only
if ft = a. The corresponding solutions

(2.5) g((̂ ) = / l 1 c o s ^ + y 4 2 s i n ^ (<52 = a"'1)

o/(2.4) are Bergman kernels for L with

(2.6) b = 0, c = qt qlz,/2ixz,
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and the coefficients of q are of the form

" -
(a) qo(z) = XQ dv z\ dv = const

(2.7) (b)

[ml, p = - ,

a0 = ao(z*), av = const if v > 0, a — [^(m — 1)],

(c) q2ll(z) = ( - I f Z (,,

3. Proof of Theorem 2.2

(2.2c) can be written

2. + bq2. - pcq) = 0.

Substituting (2.3), dividing by q and abbreviating the exponent in (2.3) by p(z, z*, t)
we have

Let [j] denote the equation obtained from this by equating the coefficient of tj to
zero. From [—1] we have qOz, = 0. Hence by [1],

(3.1) c = (qiq

[0] is an identity. [_/] with; = m + 2,...,2m + l is

v = 0

Ek= 2z^-(*-w-l)L-»-i+(*-(3.2)
L v*

qll = 0 if \i > m.

We show that qmz. — 0. Suppose not. Then

(3.3) Ej = 0, ; = m + 2,..., 2m +1,

from [_/] stepwise, beginning with; = 2m+1, proceeding in descending order and, in
each step, using E( = 0 with i =j + l,...,2m + l. Equation [m + 1] is

m

• + y. E o_ « = o,
v = l m V>Z

= 2(^2 + z^Oz + zb).
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Here 2zqmzz. = mqmz, by differentiating E2m+1 = 0, so that F = 0 by (3.3) and (3.4).
With F = 0 and (3.3), equation [m] becomes simply

Here 2zqm_l_„. = ( m - l ) q m _ l z . by differentiating £2m = 0. Hence qt qmz. = 0 by
(3.5). By the assumption that qmz, # 0 we have qx = 0. Hence by (3.2) and F = 0,
from [m — 1] we finally obtain qmz. = 0, contradicting qmz, ^ 0. The same method
proves

(3.6) qjz. = 0, ; = 3,..., m-\,

stepwise in descending order, for each j obtaining a contradiction to qjz* / 0 from
[ ; - 1 ] . Next we note that (3.3) with; = m + 2,...,2m-l is equivalent to

(3.7) 2zqjz—jqj + (j + 2)qj + 2—0, j = \,...,m — 2,

and remains valid; indeed, this now follows stepwise from [m +1] , [w],..., [4], in this
order. q1 = 0 was obtained from qmz, / 0 which is false, so that qx # 0 becomes
possible. (3.6) is valid in both cases. In the case ql # 0 it gives q2z, = 0 by [2]. Hence
by (3.1),

(a)

(3.8) c ={

(b)

Since c = 0 is excluded (see Section 1), F = 0 now follows from [3] if q^ = 0 and from
[2] if ql =£ 0. From F = 0,

(3.9) b = -dqQ/dz-q2/z.

Furthermore, by integrating E2m+1 = 0 and E2m = 0,

a =k zf"12 q =k z(»"-i>/2

Starting from this and using (3.7), we find that

(3.10) qi(z,z*) = ao{z*)zt+ £ avz" + t,
v = 1

which proves (2.7b) with n = 0. Solving (3.7) algebraically for qj+2, we obtain (2.7b)
with n = \,...,a, stepwise from (3.10). Formula (2.7c) is obtained similarly, first for
H = 1 from (3.7), and then for \i = 2,..., p by the transformed form of (3.7), as before.
We now also see why qJz, = 0,; = 3,..., m, implies av = const, v = 1,..., a, in (3.10), as
shown.
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We now turn to (2.2b) with r = <xq2. Substitution of (2.3) gives

(3-11) t £ q^t" £ vqvt*-'+zt £ q^.t" £ qvzf = xzct.
(1=1 V= 1 / != 1 V = 0

We equate the coefficients of each power of t on both sides, denoting by {j} the
equation corresponding to tJ. Then {1} is ̂ i ^ l z . = 2azc. Hence/? = a by (3.8a). Since
qt = 0 would yield the trivial case c = 0, (3.8b) is excluded and the second formula in
(2.6) is proved. Furthermore, {2} and qlz. # 0 give

This implies b = 0 by (3.9) and also entails (2.7a), which now follows from (2.7c) with
H = 1. The other equations {3},..., {m + 2} are equivalent to (3.7) and (3.3) with
j = 2m, 2m +1, so that they do not cause new conditions. Theorem 2.2. is proved.

4. Further properties of modified class £ kernels

From (2.7a) and (2.7c) it can be seen that the sum of the terms in the exponent of q
in (2.3) containing even powers of t may be arranged in powers of ZT, so that (2.3) then
becomes

(4.1) q(z,z*,t) = exp| £ <Z2,+ 1 (z ,zV" + 1 + £ l(zzY I

where <?v = 2V dv. This is useful in simplifying kernels for a given L, particularly for
obtaining minimal kernels for L, that is, Bergman kernels g(q) with q of the form (2.3)
and of minimum degree in t. (For minimal kernels in other classes of Bergman
operators and their application, see Kracht and Schroder (1973).)

The class EM includes operators which are not of class E. Indeed, this holds for
certain operators of the first kind as well as others. A simple example will be given
below. On the other hand, we have the following remarkable fact.

PROPOSITION 4.1. If Lin (I.I) admits a Bergman operator of class EM, it also admits
a Bergman operator of class E.

PROOF. Suppose that an operator L admits an operator Tg of class EM, whose
kernel we denote by g. From (2.6) and (2.7c) we see that c does not depend on
q2ll(z,z*), n = 0,...,p. Hence by choosing dv — 0, v = 0,...,p, we obtain from g
another kernel

g(q) = Av cos bpy +A2 sin Spy
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for the operator L under consideration; here, p, denotes the first sum on the right-
hand side of (4.1). Clearly, we can take A2 = 0 and Al = 2, so that

(4.2) g(q) =

Substituting this into (1.2) and setting ? = — t in the integral corresponding to the
second term on the right-hand side of (4.2), we obtain a representation of u by an
operator of class E, and the proposition is proved.

EXAMPLE 4.2. We call Aw + y(x, y) w = 0 or

(4.3) L

the generalized Helmholtz equation. Lo admits operators of class EM. The simplest of
them has the kernel

(4.4) g(z, z*, t) = cos qy(z, z*) t, qi(z, z*) = a{z*) z*.

This operator is not of class E. It is of the first kind if and only if a(0) = 0. For
instance, we see that this holds for the classical Helmholtz equation

(4.5) Aw + k2 w = 0 or uzz, + A/C2 u = 0.

This generalizes a result by Florian (1962) for (4.5) which he obtained in a different
way. We further note that the operator Tg with kernel (4.4) maps /n(z) = z" onto
solutions of (4.3) which are essentially Bessel functions; more precisely, from (1.2)
and a well-known integral formula (see Watson (1966), p. 25) we have

un(z,z*) = (TJn)(z,z*) = ^(n)T(n + ^)znql(z,z*yjn(ql{z,z*)).

We finally mention that the operator Tg obtained by the process of reduction in the
proof of Proposition 4.1 has the property that each solution

(4.6) Mn(z,z*) = (f9/n)(z,z*), fn{z) = z\ 11 = 0,1,...,

satisfies an ordinary linear differential equation with x = (z + z*)/2 as the in-
dependent variable, of order independent of n and not exceeding m + \. This follows
from a result by Kreyszig (1956) and is of interest in applying the Fuchs-Frobenius
theory for characterizing singularities of solutions. We conjecture that a similar
result holds for operators Tg of class EM, but the order of the equation may be larger
in this case (although still independent of n).

References

S. Bergman (1969), Integral operators in the theory of linear partial differential equations (Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 23, 2nd revised printing, Springer-Verlag, Berlin).

https://doi.org/10.1017/S1446788700021613 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021613


[8] Method for constructing Bergman kernels 461

H. Florian (1962), Normale Integraloperatoren (Habilitationsschrift, Technische Hochschule, Graz). (For
an extract, see the next reference.)

H. Florian (1965), 'Normale Integraloperatoren', Monatsh. Math. 69, 18-29.
R. L. Geddes and A. G. Mackie (1977), 'Riemann functions for self-adjoint equations', Applicable Anal. 7,

43-47."
M. Kracht and G. Schroder (197 3), 'Bergmansche Polynom-Erzeugende erster Art', Manuscripta Math. 9,

333-355.
E. Kreyszig (1955), 'On a class of partial differential equations', J. Rat. Mech. Analysis 4, 907-923.
E. Kreyszig (1956), 'On certain partial differential equations and their singularities', J. Rat. Mech.

Analysis 5, 805-820.
E. Kreyszig (1973), Gewohnliche Differentialgleichungen fur Erzeugende gewisser Bergman-Operatoren',

J. Reine Angew. Math. 262/263, 74-81.
V. E. Meister, N. Week and W. L. Wendland (1976), Function theoretic methods for partial differential

equations (Lecture Notes in Mathematics 561, Springer-Verlag, Berlin).
G. N. Watson (1966), A treatise on the theory of Besselfunctions, 2nd ed. (Cambridge University Press,

Cambridge).
D. H. Wood (1976), 'Simple Riemann functions', Bull. Amer. Math. Soc. 82, 737-739.

Department of Mathematics
University of Windsor
Windsor, Ontario N9B 3P4
Canada
Permanent address of the first author
Faculty of Engineering,
Ain Shams University
Cairo,
Egypt

https://doi.org/10.1017/S1446788700021613 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021613

