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ON THE NUMERICAL SOLUTION
OF CONVECTIVE EQUATIONS*

J.D. FENTON
Communicated by James M. Hill

Finite-difference and spectral methods for the numerical solution

of partial differential equations with convective terms are

discussed. The finite accuracy and limited stability properties

of such schemes are shown to follow from their non-recognition of

the convective nature of the solutions which they seek, unlike

schemes based on the use of characteristics. A numerical method

for convective equations is proposed which incorporates the

solution nature. The method is obvious and can be trivially

derived, but seems not to have been exploited as it might have

been. It uses interpolation only, rather than numerical

differentiation, and for linear equations with constant

coefficients it is exact and unconditionally stable. Although

for more general equations the basic two-time level scheme is of

relatively low accuracy, it can be simply used to generate a

hierarchy of single-step multi-level methods of high accuracy.

1. Introduction

It is a widely-held view that numerical differentiation is an

operation which should ideally be avoided, and yet the approximation of

partial differential equations by finite-difference approximations to
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82 J . D. Fenton

derivatives lies at the heart of computational fluid mechanics,

particularly in the simulation of geophysical problems such as the motion

of the sea and atmosphere. Such finite-difference expressions and methods

are simply derived from the original equations, are computationally cheap,

are capable of use in regions of arbitrary geometry, and they provide

information in a convenient Eulerian sense at points fixed in space. While

each finite difference approximation tries to mimic the differential

equation, most make no attempt to incorporate the nature of the solution.

Most of the equations which are to be solved in fluid mechanics are of

a rather similar convective nature, containing a linear time derivative

term, plus convective terms in which velocities multiply spatial

derivatives, then perhaps some terms due to pressure gradients, viscosity,

rotational effects, and so on. The dominant feature of solutions to these

equations is their essentially convective or travelling-wave nature.

A number of other methods, involving the use of characteristics, do

attempt to build in the wave-like nature of the solutions. These, however,

seem to find greater favour with theoreticians than with problem solvers.

While characteristic-based methods have some very attractive features, such

as usually-unrestricted stability, and the ability to describe the

propagation of discontinuities, relatively little numerical analysis has

been performed on them, often their accuracy is quite low and not made

specific, and information may not be provided when and where it is wanted.

Also, in many problems, characteristics do not exist.

This paper attempts to examine the relationships between the solution

of a simple convective equation, and finite-difference and spectral

approximations to that solution, as a model for rather more general systems

whose solutions show the same behaviour. The equation is

(1) | | + u | | = 0 , for -oo < x < ~ , t > 0 ,

which describes the variation of a scalar 6(x, t) in one space dimension

x and time t , as it is carried by a velocity field w(9, x, t) , subject

to the initial condition

(2) 6(x, 0) = f{x) , -oo < x < » .

Subsequently a numerical method is developed which, although derived

using characteristics, is given in a form so that 8 may be solved at
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given fixed values of x and t , as with finite-difference methods. The

method is unconditionally stable, and for certain problems is exact.

Instead of numerical differentiation, the spatial operations are those of

interpolation, which is less susceptible to error. It is suggested that

approximation by cubic splines is the most robust, accurate and convenient

means of interpolation. As far as representation in time is concerned, the

method is nominally of first-order accuracy only. However, it is shown how

solution methods of high order are easily generated.

2. An exact solution

The differential equation (l) shows that on a characteristic curve

given by dxjdt = u(&, x, t) the convective derivative of G is zero,

thus 8 is a constant. To solve for Q(x, t) it is necessary only to

find the value of x , a: say, through which the characteristic passes at

t = 0 . The situation is shown in Figure 1: for a given (x, t) one has

to find which of the characteristics emanating from the x axis passes

through {x, t) .

+ (x, t)

FIGURE 1. Three typical characteristics, including that passing through

(x, t) .

The solution is

(3) eu, t) = e ( v o) = /(*0) ,

from (2). The differential equation governing the characteristic is
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dx/dt = u[Q{x, t), x, t) , in which 9 is a constant, and the initial

condition is x(0) = x , which is as yet unknown. If the solution is

(U) x = xQ + g[Q(x, t), t) ,

then eliminating x between (3) and {k) gives the exact but implicit

solution

(5) 8(x, t) = f{x-g[e(x, t), t)) .

This is in a form suitable for fixed-point iteration, such that for given

x and t , and some estimate 8 for 6(x, t) , another estimate is

8 = f[x-g{Q , t)) , the procedure being repeated successively. As shown

in [2, §3.3], this will converge to a solution provided |d//d8| < 1 .

Perhaps the least arbitrary initial estimate 8. is 8(x, 0) , which is

given by fix) , in which case (5) can be written as the explicit iterated

function

(6) Q(x, t) = ... f[x-g{f{x-g[f(x), t)), *)) ... .

The physical significance of this is simple. From (U),

•̂(eCa;, t), t) = x - X- is the horizontal displacement of the

characteristic as it travels from {xr\> o) to {x, t) , so that

g[f{x), t) is the horizontal displacement of the characteristic through

(x, 0) , and x\. = x - g[f(x), t) is the value of x at which that

characteristic would intersect the t axis if it were displaced so as to

pass through (x, t) . The next iteration then uses this value of x^

(2)to calculate the next characteristic, subsequently displaced to give x

and so on. This process is shown geometrically in Figure 2.

As an example, consider the quasilinear problem

U + 8 to= ° '

with the initial condition 0(x, 0) = fix) ~ -tanh x • Solutions of such a

problem show gradual steepening, as large values of 8 travel with a

corresponding large velocity 6 . Using the method described above, it is

easily shown that g(Q, t) = tQ , so that the implicit solution is
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(x, t)

FIGURE 1. Iterative calculation of x

X

0

6(a:, t) = -tanh(a;-£6(a;, t)) , and the explicit iterated solution is

Q(x, t) = ... -tanh(a:-i(-tanh(a:-t(-tanh x)))) ... .

2
The condition that this iteration converges becomes t sech (x-td) < 1 .

Thus, the method will converge only for finite t . The significance of

this can be shown by considering the origin x = 0 , at which 6(0, t) = 0 ,

so that t < 1 for convergence. Locally, 6(x, 0) is a straight line for

x small, whose horizontal velocity increases linearly with 9 , thus the

profile of 6 rotates as a straight line in the vicinity of the origin,

until at t = 1 when the iteration method fails, the profile has a

vertical tangent at the origin. It can be shown that this corresponds to

two characteristics crossing at (0, l) .

3. Approximate solutions

For rather more general problems than the system (l) and (2), such as

those involving more than one differential equation in more than one space

variable, the luxury of an exact solution is not available. Here, two

different types of approximations to (l) and (2) and to the solution (5)

will be developed, which are applicable tc more complicated problems.
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A CONVECTIVE APPROXIMATION

The most obvious approximation to the solution obtained through use of

characteristics is to assume that all characteristics, locally at least,

are straight and parallel so that g sa u(x, 0)t , and solution (5) becomes

(7) 6(x, t) «f(x-w(x, 0)t) .

If the velocity u is constant, all characteristics are parallel straight

lines, and (7) is an exact solution. If the velocity is a function of x

or of t , then it is an approximation. It does, however, incorporate the

convective nature of the original differential equation and allows for

travelling wavelike solutions. Henceforth in this paper it will be

referred to as the convective approximation, on which convective methods

are developed. It assumes that the value of 6 at (x, t) is that which

was upstream at time 0 , at just the right distance to have been carried

downstream at a mean velocity equal to that at (x, 0) .

TAYLOR SERIES APPROXIMATIONS

Consider the exact infinite Taylor expansion for 8(x, t) in terms of

the initial 6(x, 0) and its derivatives:

e(x, t) = e(x, o) + tQt(x, o) + %t
2ett(x, o) + ... °° .

I f t h e d i f f e r e n t i a l equat ion ( l ) and the i n i t i a l condit ion (2) are

s u b s t i t u t e d i n t o t h i s , then

(8) 8(x, t) = / - tuf + hi

where / = f(x) and u = w(x, 0) . Finite difference and spectral methods

use this expression or part of it, and approximate the spatial derivatives

numerically.

COMPARISON OF ACCURACY

The level of accuracy of the convective expression (7) can be found by

writing it as the infinite Taylor series

(9) e(x, { ) » / . tufx + %*
2"2f.ca. - . . . « .

Comparing (8) and (9) it is clear that (7) has the relatively low order

error term 0[t J ; it makes no explicit allrwance for a changing
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velocity, as shown in the second order terms in (8), which equation has

made no attempt to include the convective nature of solutions of the

differential equation. It will be shown that this latter omission has some

important consequences.

As the solutions (7) and (8) are valid only for small t , in any

numerical solution a number of small time steps will have to be taken. The

two schemes are here re-written so that if at a given time t , &{x, t)

and u(x, t) are known, denoted by 6 and u respectively, then

Q(x, i+A) after an increment of time A is given by

(i) the convective scheme as

(10) Q(x, t+A) = Q(x-uh, t) + 0(A2) ,

while

(ii) the Taylor series becomes

e -u,e + O(A3) .
XX u X\

= e - Awe + %A2L2e +uu
X ^ XX

4. Finite difference methods

These are based on approximations to the Taylor series (ll). Here,

only explicit schemes will be described.

FIRST-ORDER SCHEMES

Consider (ll) to be truncated after the second term,

A2)(12) Q{x, t+A) = 9 - Auê , + 0(A2) ,

the error term is of the same order as in (10). If it is assumed that the

value of & (x, t) is given by the centred-difference expression
X

Qx(x, t) = [Q(x+6, t)-Q(x-6, t))/26 + 0{&
2) , in terms of the point values

of 6 at grid points x ± 6 , then the scheme (12) can be represented as

shown in Figure 3 (see p. 88), for some points near a local extremum.

According to (12) the value of 6(x, t+A) is equal to that at 6{x, t)

plus the change obtained by travelling along the tangent at a; a

horizontal displacement of -AM . For a time step A such that AM = 6

the values thus predicted are shown by the crosses in Figure 3, the wave
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FIGURE 3. Instability of forward-time centred-space numerical scheme.

Circles show initial profile. The shape of the profile at the

next time step is given by the crosses for uA = 6 .

defined by the crosses being shifted 6 to the right. It is obvious that

the scheme exaggerates extrema and would be unstable. The failure of this

simple and obvious scheme is well known and can be shown by the less-

graphic but more rigorous von Neumann method of stability analysis to be

unconditionally unstable (see Noye [4, §5.1]).

This instability has often been attributed to the use of downstream

information through the use of Q(x+&, t) , however the above geometric

interpretation suggests that it is not the use of the downstream values per

se that causes the instability. Rather, it is the poor attempt of the

scheme (12) at extrapolating the upstream shape of the wave, to predict

what it is at the next time step.

Now consider the scheme (12) but where 6 is approximated by the

backward-difference expression

Q(x, t) = (0(x, t)-Q(x-6, t))/6 + 0(6) ,

which actually is less accurate than the centred-difference expression.

Predicted points now lie on the line joining 9(x, t) and 0(x-6, t) .

Results for wA = %6 are shown in Figure k (a). The method seems to be

stable, however numerical diffusion or damping becomes apparent because of

the relative poorness of straight line interpolation, and is emphasised by

the results given for the succeeding time step. For a value of uA = 6

the scheme is exact, and corresponds to the convective expression, because

(12) now gives Q(x, t+A) = 9(x-6, t) . However, in the general context of
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FIGURE 4. Conditional stability of upwind difference schemes.

o : Initial profile, + : first time step, • : second time

step; (a) is for wA =0.55 , showing numerical damping of the

solution; (b) is for uA = 1.5<5 , showing instability.

possibly quasi-linear equations this value of uA cannot be ensured, and

the exactitude is not an important result. For wA = 36/2 as shown in

Figure k (b) it is clear that the method is unstable, as it would be for

any wA > 6 , when the straight line interpolation becomes extrapolation.

This stability criterion can be established by the von Neumann method [4,

§5-1].

To compare various schemes a model problem was posed, that of a sharp-

crested profile, defined by only five points, being convected by a constant

velocity. Because of the gradient discontinuities this is a rather severe

test of approximation methods, however it is a useful example as it shows

in an exaggerated manner the phenomena to be demonstrated. Results are

shown in Figure 5 (see p. 90), after a total time of 1.58/u when the

wave should have travelled a distance of 1% grid intervals. In Figure

5 (a) results are shown for a time step such that wA/6 = 0.5 ,

necessitating 3 steps to reach the stage required. The numerical damping
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\ (a) Upvind differencing wA/6 = 0.5

(b) Upwind differencing wA/6 = 1.5

\

-Wendroff wA/6 =0.5

-Wendroff wA/6 = 1.5

FIGURii

ej Convective scheme with
cubic splines wA/6 =0.5

(f) Convective scheme with
cubic splines u/\/6 = 1.5

Comparison of different schemes for the problem of a sharp-

crested profile being convected by a constant velocity, after a

time such that the profile has moved 1.5 grid intervals. The

dashed line shows the exact solution, the small closed circles

show the numerical results at the grid points; they are

connected by the interpolating function used in each case.
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is obvious. A value of «A/6 =1.5 was used to obtain the results in

Figure 5 (b). After just one step, the dramatic instability can be seen.

SECOND-ORDER (LAX-WENDROFF) SCHEMES

The defects of the first-order schemes have been seen to flow from the

inadequacy of their spatial approximation, thus the use of higher-order

schemes is suggested. If all the quadratic terms in (11) are retained the

methods are generally known as Lax-Wendroff, whereas if the terms

containing variation in u are not included this is known as Leith's

method. Both are described in Roache [5, pp. 75-83, pp. 2UU-250].

Typically these methods interpolate over two grid intervals by a parabola,

defined by the three points 6(x-S, t), 6(x, t) and 0(a;+6, t) to give

values of 0 (x, t) and 9 (x, t) .cc cccc

The Leith/Lax-Wendroff method for uA/6 = % was used on the test

problem described above, with results shown in Figure 5 (c). The

approximation is better, the numerical damping is less, but the well-known

phase error of the method is apparent, as the numerical solution lags

behind the exact solution. The rather irregular curves joining the

computational points are the interpolating parabolae, drawn upstream over

the interval in which they are required to interpolate. The computational

points at the next time step would be those at the mid-point of each curve

for MA = %6 . It can be seen how the use of piecewise-quadratic

approximation can lead to irregularities in the profile. The situation is

worse in Figure 5 (d), for wA/6 = 1.5 , where the plotted points arose

from a single time step and the initial parabolae used to extrapolate

upstream, outside the interval containing the three defining points. The

results are even more wildly divergent than those shown in Figure 5 (b) for

linear extrapolation, not so surprising when one considers the behaviour of

parabolae compared with that of straight lines. The method seems to be

unstable for wA > 6 , for the same geometric reasons as for linear extra-

polation, and this stability criterion is the case [5, p. 78],

HIGHER ORDER SCHEMES

Kreiss and Oliger [3] studied several higher order schemes and

concluded that higher-order schemes are indeed more accurate. They

considered a sharp profile as in Figure 5, but they took grid intervals

1/10 of those in Figure 5, and time steps such that uA/6 =0.1 ; that
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is, they interpolated upstream only 1/10 of a grid interval, in which

case high-order interpolation should be safe and accurate. For demanding

cases, results from the present work suggest that the use of higher-order

methods with their attendant higher-degree polynomial interpolation may be

hardly worthwhile. The above geometric arguments show that for any local

polynomial approximation, the stability limit of uA/6 = 1 remains the

same, and there seems to be the danger that higher order schemes are less

robust.

OTHER TIMESTEPPING SCHEMES

There are many other schemes in addition to the two time level (that

is, t, t+A ), one step explicit schemes discussed above. For example, by

writing the Taylor expansion (ll) for t - A and subtracting that from

(ll) the "leap-frog:l expression is obtained, in which the error terms are

third order:

(13) 6(x, t+A) = Q(x, t-A) - 2Au6 (x, t) + 0[t?) .

If the 8 (x, t) is approximated by a centred-difference expression, (13)
•X*

is stable provided wA/6 2 1 . Geometrical demonstration of stability for

such a scheme is rather more complicated than for the two time level

schemes, and will not be presented here. Implicit schemes, which involve

the solution of a number of equations at each step, are generally stable.

However stable they are, they still make use of lower order spatial

approximation and numerical differentiation, and have much in common with

the methods already described.

5. Spectral methods

All finite difference methods are based on local approximation. In

this section the application of global approximation by spectral methods

will be discussed, using Fourier series as the simplest example. The

methods described are actually pseudospectral, in that most operations are

performed in physical rather than spectral space. It will be shown that

conventional spectral methods have few advantages over finite difference

methods.

Consider a finite computational region -L/2 5 x 2 L/2 divided into

N equal intervals, and the solution 9(x, t) represented by the point
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values 0 ( t ) = d(mL/N, t) , for m = -N/2 N/2 . Because of the

implied periodici ty in the use of Fourier se r ies , 6 ^.- = 9^,g " T ' l e *

values can be transformed by the (inverse) discrete Fourier transform

(1U) 9 At) = V-L[Q (t); j) = i £ ' 6 (t)exp(-i2nnw7ff) ,
J m ff m=-N/2 m

for j = -N/2, ..., N/2 . The summation over m has a factor of %

multiplying the contribution at ±N/2 . This "trapezoidal" summation is

denoted by £' . The inverse transformation can be obtained in relatively

few operations using standard fast Fourier transform techniques and

exploiting the fact that the 8 (t) are real only, so that the number of

operations is of order (N/2)log~(N/2) if N is equal to some power of

two.

The coefficients 0 .{t) can be transformed using the discrete Fourier
3

transform to recover the point values (see [7, §6.3], which has notational

differences):

(15) Bit) = 0(0. (t); m) = £' e.(t)exp(i2imtf/fl) ,
"• d • 3

d

for m = -N/2 to +N/2 , the summation in j also being over these

values. The interpolating Fourier series which takes the values 9 (t) at

the points x = mL/N is simply

(16) 6(x, t) = X' Q.(t)exvttjkx) ,
0 3

where k = 2TT/L .

Simple considerations based on the result that coefficients 0. of
3

infinite Fourier series vary like Q , where the function 6 has a

discontinuity in the nth derivative, suggest that the truncated Fourier

series (16) has errors of the order of ((/V/2)+l)~ ' , or roughly &n ,

where 6 = L/N . For sufficiently-continuous functions the approximation

is very accurate. However, for functions which are discontinuous

themselves or in their lower-order derivatives, the spatial approximation
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accuracy is comparable with that of polynomial approximation only.

Now consider the first order solution scheme (12):

6(x, t+A) = Q(x, t) - u(x, £)A6 (x, t) + 0(A2) . If 6(ar, t) is

approximated by the Fourier series, then substituting (l6) gives

Q(x, t+A) = £' Q.{t){x-ijkbu{x,
3 °

and at the node point x = mL/N , with u = u [x , t] , the value of 0

at the next time step is predicted to be

(17) (J 2)

The results of applying this scheme are shown for the sharp-crested

wave in Figure 6. The scheme (17) predicts that the solution value after

a time step A will be that obtained by extrapolating back along the

tangent at the grid point a horizontal displacement -Au . However

accurate the value of 9 obtained from the interpolating function, the

results are catastrophic, for the method is unstable in precisely the same

way as finite difference approximations to the derivative.

That the method is unstable is easily shown by the von Neumann method

using the present spectral approach. If u in (17) is a constant, u ,

then the scheme can be written in spectral form 0.(t+A) = 0 . (t) (l-ijk&u) ,
3 3

for each j , and it is obvious that the magnitude of the factor on the

right is greater than unity: the Fourier coefficients grow exponentially

with time and the method is unstable. All the extra trouble of developing

a global method has gained nothing.

If the second-order scheme (ll) is used, then for constant u the

predicted value of Q{x, t+A) is simply that obtained by backwards

interpolation on a parabola which has the required first and second

derivatives at &(x, t) , given by the Fourier approximation. For the case

of the two points at the centre of the sides in Figure 6, the local

curvature of the approximation is zero, and the predicted values of

Q{x, t+A) would be precisely those as shown in the figure, suggesting that

the method is unstable. This instability is easily shown by considering

the Fourier coefficients of the scheme (ll), which gives
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e.(*+A)
J
Q (t) = 1 - ijktsu +

the right side has a magnitude greater than unity, and the method is

unconditionally unstable, unlike the Lax-Wendroff method of finite-

difference approximation to (ll).

If, instead of the two time level approach, a leapfrog method is used,

then the scheme (13) becomes, in spectral space:

0.(t+A) = G.(i-A) - i2jkhuQ.{t) + o(A3) .
3 3 3

By supposing that the ratio of 0. between any two successive time levels

is a constant, r , the quadratic equation is obtained:

p
r + 2r{ijkuh) - l = 0 ,

with solutions

r = -ijkub. ± [l-UkuA)2)% .

Provided |jfewA| - 1 , \r\ = 1 and the scheme is stable. As the maximum

value of j is N/2 , and k = 2 /L , this criterion becomes uA/6 5 1/TT

for stability, which is more demanding than that found for finite

difference leapfrog methods, however the scheme is at least conditionally

stable. In view of the better stability properties of the leapfrog scheme

(13) for both finite-difference and spectral methods, it does seem that it

is a rather more natural way of dealing with hyperbolic equations and is

clearly much to be preferred over two time level (Euler) schemes such as

(11).

Finally a comment can be made on the computational cost of using

Fourier methods. While fast Fourier transforms can be used to evaluate the

coefficients 0. at each step, if the velocity u is a function of x ,
3

the um are not constant, and the iV-term series must be evaluated

directly at each of the N points, giving a computational effort of

0(N ) compared with the 0(N) of finite difference methods.
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6. Convective methods

Consider the scheme (10):

(10) Q(x, i+A) = Q[x-u(x, £)A, t] + 0[h2) .

This is exact if u is constant, but otherwise has the low-order error

term shown. However, it involves no numerical differentiation; rather, it

is only necessary to interpolate to evaluate the right side. That this is

consistent with the differential equation (l) in the limit A -*• 0 can

easily be shown by writing each side as a Taylor expansion about {x, t)

and then taking the limit. Stability of the scheme can be studied for the

case of constant u , and examining one component of (10) in spectral

space. The Fourier coefficient 0. at time t + A is given by
3

0.(i+A) = 0 .(t)exp(-ij'/cwA) , for any j , This further demonstrates the
3 3

nature of the scheme - the coefficients are unchanged in magnitude but are

changed in phase by an amount jkuA , precisely the amount by which the

component exp(-ijkx) should change in time A : the scheme is

unconditionally stable. It is interesting that the first and second order

spectral schemes in §5 are simply low order approximations to this:

exp(-ij'fewA) = 1 - ij'kwA + %(ijku&) - ... ,

but whose magnitudes at each level of truncation are greater than unity,

unlike the left side, and the methods are unstable.

As the convective scheme is stable, and it is consistent with the

differential equation, then convergence of numerical solutions to the exact

solution in the limit as A -*• 0 is indicated [4, §3.1*]. Instead of having

to consider a number of different ways of approximating derivatives,

attention can now be fixed on means of interpolating values of 0 , given

values at a finite number of grid points.

PIECEWISE-POLYNOMIAL APPROXIMATION

In §h it was shown that approximation of the Taylor expansion (ll) by

low-order polynomials had disadvantages. If the polynomials are used

purely for interpolation, some of these problems do not occur. For

instance, instead of extrapolating back a distance of A along a local

tangent, it is now a matter of locating the interval in which x - u(x, t)A
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falls, between x and x .. say, and then obtaining the local

approximation. Linear interpolation would give, for example,

J(e(x_,t)-e(xm,*))
6(x-wA, t) Kt Q[x t)

xm,
nr ' • x .-x

rrh-1 m

It is not necessary to have a constant grid spacing. While the method is

unconditionally stable for constant u , the linear approximation may not

be very accurate. For the problem of a sharp-crested wave shown in Figure

5, application of this method for a time step of A = (n+%)6/w , for any

integer n , would give the results shown in Figure 5 (a) after three such

steps - the method has the same amount of diffusion per time step as the

forward-time backwards-space finite difference method.

A more accurate method of piecewise polynomial approximation is by

Cubic Splines, where third degree polynomials are used which have

continuous derivatives at node points. A complete set of FORTRAN

subprograms is given in [2, §6.73 in which some of the theory of cubic

spline interpolation is given. It can be shown that the error of a cubic

spline interpolant over an interval [a, b] is bounded by

51Q (£)|<5 /38U , where 5 is in [a, b] and 6 is the maximum step

length. Importantly, the computational effort is proportional to N , the

number of computational points, even if u is a function of x . This

compares favourably with spectral methods, 0\N J for a non-constant

convective velocity.

The model problem of the sharp-crested wave was solved using the

convective scheme (10) with cubic splines as interpolating functions.

Results are shown in Figure 5 ( e) for uA/6 = % , the case in Figures 5 (a)

and (c) for finite difference methods. Some numerical diffusion has

occurred, because of the finite accuracy of the spline interpolation,

however, there is no phase error, and the solution is much more accurate

than the other methods. In Figure 5 (f) the results are shown for

wA/6 =1.5 , when the finite difference methods were unstable. The results

are even more accurate than in Figure 5 (e) because fewer time steps have

been taken, with smaller total diffusion. This problem, however, is a very

easy one for the convective method to solve, as the scheme is exact, the

only approximation being in the spatial representation. A more demanding
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quasilinear problem is that solved analytically in §2:

ff + 0 H = 0 , 8(ar, 0) = -tanh x ,

in which the profile of 9 becomes vertical and then multi-valued after

t = 1 •

A computational region (-U, h) was divided into 20 equal

intervals, and various methods implemented. After 10 steps of A = 0.1 ,

by which time the analytical solution develops a vertical tangent at

x = 0 , the results are as shown in Figures 7 and 8.

1 —

-1 —

FIGURE 7. Solution to quasilinear equation at the instant the profile

develops a vertical tangent. The steepest curve is the exact

solution, that close to it is the solution from the convective

method with cubic splines and clustered grid points, while the

line passing through the solid circles was obtained from equi-

spaced points shown.

Figure 7 shows that the convective method (10) with cubic splines developed

oscillations reminiscent of Gibbs' phenomenon in Fourier approximation,

because the gradient, as shown by the analytical solution, became very

steep, and the point spacing was too coarse to describe the region of high

curvature. The numerical solution is, however, oscillating about the

analytical solution as if it were attempting to describe it in a minimum

least-squares error sense. With a trivial modification to the computer
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D

0.9

0.8

FIGURE 8. Comparison of different methods after 10 steps of interval

0.1 for equispaced grid points: exact solution; D

conventional Lax-Wendroff; o Wax-Wendroff with cubic splines;

• convective method with cubic splines.

program, a variable grid spacing was used, points being distributed

according to a cubic power law. Results are very close to the analytical

solution on Figure 7- It seems that the freedom to use variable mesh

spacing might be a useful feature of this method.

In Figure 8 the results of three schemes for equispaced points are

compared over part of the solution region. It can be seen that the

convective method is the most accurate, even though it has lower order

error terms! It seems that the absence of numerical differentiation

contributes more to accuracy than does the inclusion of higher-order terms,

where derivatives become large. In view of the success of the cubic

spline/convection method, the author could not resist the temptation to use

the Taylor expansion (ll) correct to second order, but where the

derivatives were obtained from a cubic spline fit to the grid points. This

was still not as accurate as the pure convection method however, providing

further support for the view that numerical differentiation should be

avoided. The least accurate scheme of the three tested was the nominally

more-accurate conventional Lax-Wendroff method, however, it did perform
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satisfactorily until the solution became very steep.

HIGHER-ORDER CONVECTIVE SCHEMES

Consider the two time level convective scheme (10) with the error

terms shown as an infinite power series, and where the coefficients a

are unknown:

oo

(18) Q(x, t+A) = 9(x-Au(z, t), t) + X a A" •
n=2 n

A hierarchy of higher-order schemes can be generated, theoretically without

limit, by writing (18) for different integer multiples of A and

eliminating the a to a certain order. Thus, for example, the leapfrog

convective scheme is obtained:

(19) Q(x, t+A) = 6 U , t-A) + 9(x-wA, t) - 9(x+wA, t) + 0(A3) ,

where u = u{x, t) . The scheme is accurate to second order. If the

terminology

6 (j) = Q[x+jhu(x, t), t+nh)

is adopted, the scheme (10) becomes

0(A2)

and (19) becomes

6(0) = 6 (0) + 6 (-1) - 6 (1) + 0(A3) .
1 —1 0 0

It is easily shown that the five time level expression, with errors of

fifth order is

(20) 62(0) = 6_2(0) + eQ(-2) - 60(2)

Such schemes cost little more in computing resources, as the

interpolation need only be done at one time level (t) per step in each

method. Most effort is incurred in setting up the coefficients for the

spline approximation, which must be done whatever the order of the method.

The number of subsequent interpolations (that is, polynomial evaluations)
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for each grid point in each scheme is proportional to the order of

accuracy. For example, the fourth-order scheme (20) involves four

evaluations at each point, 6Q(-2), 6g(-l)» 9Q(l)
 a n d e

0(
2) • A t other

time levels, only the data at x is required, the number of time levels to

be stored being equal to the order of accuracy of the scheme. For example,

the scheme (20) involves the four node values 9 ?(0), 9 , (0), 9 (0) , and

although not shown explicitly 9Q(0) must be stored to enable the splines

to be fitted.

Multi-time level schemes do require some starting, however, the five

time level scheme (20) requiring initial values at four time levels. This

can conveniently be done by using lower order schemes with smaller time

steps.

FOURIER APPROXIMATION

If Q(x, t) is represented by a Fourier series (l6), where the

coefficients 9 .(t) are obtained from the point values 9 (t) by (l^),

then the convective scheme (10) gives, for the point values 9 (i+A) :

(21) V t + A ) = I' Qj{t)exp[-ijkumL)exp(i2Twyj/N) + 0{h
2) .

3

It is clear that the effect of the convective velocity is simply to change

the phase of the Fourier coefficients.

It was shown in §5 that for functions which are discontinuous or which

have discontinuous low-order derivatives, that Fourier approximation may be

little better than low-order polynomial methods. To examine this for the

case of a discontinuous function, a simple step discontinuity was

approximated by a 20-term Fourier series and by cubic splines. The

results are shown in Figure 9. At the jump, the two methods agree closely,

however, it is clear that the oscillations of the Gibbs phenomenon in the

Fourier series are larger than in the spline approximation and they persist

for much further away from the discontinuity. While such discontinuities

may not exist in the interior, the possibly-artificial periodicity imposed

by the Fourier approximation may impose discontinuities at the ends, such

as would be the case in the example shown in Figure 7, where 9(-U , t) = 1

and 9(U , t) =-1 , however, a Fourier scheme of period 8 would
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FIGURE 9. Interpolation near a discontinuity by: - - - finite Fourier

series, cubic splines.

introduce 8(-l+~, t) = -1 and 6(U , t) = 1 , giving jumps at each end.

To eliminate such discontinuities it would be necessary to use some form of

polynomial subtraction or artificial extension of the computational

interval and the possible matching of a mirror image of 8(x, t) . This

would not be necessary if, for example, a Chebyshev spectral scheme were

used.

As mentioned in §5, for problems of non-constant u another serious

disadvantage exists, that the series (21) have to be evaluated with a

computational effort proportional to a , rather than the N of piecewise

polynomials. To conclude, it does seem that the Fourier approximation has

little to recommend it for general quasilinear hyperbolic problems.

7. Some other applications of convective schemes

In this section some applications to rather more general problems are

briefly discussed.

THREE SPACE DIMENSIONS

Consider the quasilinear convective equation in three dimensions:

f+u.ve = 0,

where the velocity field U is a vector function of position and time.

The following scheme is immediately obvious, following from (10):

, i+A) = 6(r-uA, t) •
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where r is the position vector. All the higher-order schemes for the

timestepping are immediately applicable. By expressing 6 as a triple

Fourier series in x, y and z and taking the case U = constant it is

trivially shown that the scheme is stable, and by writing a Taylor series

expansion about (1", t) for the left and the right side it can be shown

that the scheme converges to the differential equation in the limit

A -*• 0 . The scheme is independent of the co-ordinates used, and in its

vector form could be written in terms of any orthogonal co-ordinate system.

In three dimensions the problem of interpolation becomes considerably

more complex. Greater reliance may have to be placed on piecewise-

polynomial methods. Such methods may be quite problem-specific.

LONG WAVES IN CANALS

It can be shown that the equations governing the motion of long waves

in rectangular canals are capable of being expressed in characteristic

form:

(A*
and

[•k+ (*-*> i K 2 c > = ° .
where w(x, t) is the horizontal fluid velocity, and

a{x, t) = (gravitational acceleration x local depth)*

is a.measure of the local depth. The convective scheme follows

immediately:

u(x, t+A) + 2e(x, £+A) = w(x-(u+e)A, t) + 2e(x-(u+e)A, t) + 0[h )

and

u(x, t+A) - 2e(x, t+A) = u(x-(w-e)A, t) - 2o{x-{u-a)h, t] + 0(A ) .

The right sides of these equations can be evaluated by some interpolation

method, and the pair of equations solved to give explicit expressions for

w(x, t+A) and c(x, £+A) . All the high-order timestepping schemes may be

implemented from these expressions.
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