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On the lifting of hermitian modular forms

Tamotsu lkeda
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ABSTRACT

Let K be an imaginary quadratic field with discriminant —D. We denote by O the ring
of integers of K. Let x be the primitive Dirichlet character corresponding to K/Q. Let
Fy(n) = U(m,m)(Q)NGL2;, (O) be the hermitian modular group of degree m. We construct
a lifting from Soi(SL2(Z)) to Sgk+2n(an+1), det™"7") and a lifting from Sox41(To(D), x)
to Sgk+2n(an),det_k_”). We give an explicit Fourier coefficient formula of the lifting.
This is a generalization of the Maass lift considered by Kojima, Krieg and Sugano. We
also discuss its extension to the adele group of U(m,m).

Introduction

In this paper, we are going to discuss a lifting of elliptic cusp forms to hermitian modular forms.
This is a hermitian modular analogue of the lifting constructed in [Ike01]. In [Ike01], the author
constructed a Siegel cusp form whose Fourier coefficients are closely related to the Fourier coefficients
of Eisenstein series of Siegel type.

Let us describe our results. Let K = Q(v/—Dg) be an imaginary quadratic field with discrimi-
nant —Dg. We denote the ring of integers of K by O. The primitive Dirichlet character correspond-
ing to K/Q is denoted by x. The hermitian modular group F%n) = U(m, m)(Q) N GLay,(O) is the
group of all elements

A B
such that
A'B=B'A, C'D=D'C, A'D-B'C=1,,.
We let Fg?go be the subset of elements
A B (m)
( A D) et

such that C' = 0. The hermitian upper half space of degree m is defined by
1

Hoy = {Z € M,,(C) ﬁ

(Z -*7) > O}.
For
s= (o ) vmmm
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T. IKEDA

and Z € H,,, we put
9(Z) = (AZ + B)(CZ+ D)™ ', j(g,Z) = det(CZ + D).

Let o be a character of I’ gn)’ which is trivial on

Ly B (m)
W ) er')
A holomorphic function F' on H,, (m > 2) is called a hermitian modular form of weight | with

character o if F(g(Z)) = o(g)F(Z)j(g,Z)" for any g € I‘(Km).

Recall that a semi-integral hermitian matrix is a hermitian matrix H € (v/—Dg) 'M,,(O)
whose diagonal entries are integral. We denote the set of semi-integral hermitian matrices by A, (O).
The set of positive definite elements of A,,(O) is denoted by A,,(O)*. For H € A,,(O), we put
y(H) = (—Dg )™/ det H. Note that v(H) € Z. A hermitian modular form F is called a cusp form
if it has a Fourier expansion of the form

F(Z)= > A(H)exp2rV—1tr(HZ)).

HeAn (O)t
We denote the space of cusp forms of weight [ with character o by Sl(F%n), o).
The Eisenstein series Eglﬂ)(Z ) of weight 2 with character det™! is defined by

ES(Z)= S (detg)i(g,2)7%
gergg’jgo\rg;”>

This is absolutely convergent for [ > m. We define the normalized Eisenstein series 52(?1)(Z ) by

e (2) =2 [ LG -2, - B (2).

i=1
If H € A,,,(O)", then the Hth Fourier coefficient of 52(7’)(Z ) is equal to (see §4)
()| T Fy(H;p ),
plv(H)

Here, I*:'p(H ; X) is a certain Laurent polynomial arising from the Siegel series for H.

Then our main theorem can be stated as follows. For simplicity, we assume that m = 2n is

even. Let
o0

f() =Y a(N)g" € Sari1(To(Dk), X)
N=1

be a primitive form, whose L-function is given by

L(f,s) =[] @ =a@p* +x@p*™ )" ] (1 —alpp )"

p{ Dk p|Dk

For each prime p { D, we define the Satake parameter {a, B} = {ap, X(p)ay, Y by

(1—a(p)X + x(p)p*X?) = (1 - p"a, X)(1 — p*B,X).
1108
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For p | Dk, we put o, = p~*a(p). Put
AH) = WH)[F T Fo(H;ap), H € Asn(0)7,

ply(H)

F(Z)= Y A(H)exp(2nrV—1tr(HZ)), Z € Hap.
HeNA, (O)F

Then our first main theorem in the even case is as follows.

THEOREM 5.1. Assume that m = 2n is even. Let f(7), A(H) and F(Z) be as above. Then we have
F € Sypson(T2 det 5.

(In the case when m is odd, we consider a similar lifting for a normalized Hecke eigenform
f € Sok(SLa(Z)); see Theorem 5.2.) To prove this theorem, we use the theory of a compatible
family of Eisenstein series as in [Ike01]. The theory of a compatible family of Eisenstein series is a
method to prove that a certain Fourier series is a modular form of one variable. The Fourier series
we consider can be regarded as the sum of Whittaker functions, and the behavior of a Whittaker
function is determined by Fourier coefficients of Eisenstein series. In [Ike01], the author considered
the compatible family of Eisenstein series of half-integral weight. In this paper, we consider the
compatible family of Eisenstein series of integral weight. This case is a little more complicated than
that of [Ike01] because the automorphic representation of SLo(A) generated by f may be reducible.
Instead of using a Whittaker function on SLy(A), we extend it to GL2(A). We have to show that
this extension to GLg(A) is possible in a compatible way for a family of Eisenstein series arising

from the Fourier—Jacobi coefficients of 52%2271 This problem is treated in §§8 and 9. Using this
theory, we prove Theorems 5.1 and 5.2 in § 10.

In §§12 and 13, we prove that the lift F' can be extended to an automorphic form on the adele
group of the unitary group U(m,m). The extension Lz’ft(m)( f) is a common Hecke eigenform of all
Hecke operators of the unitary group, if it is not identically zero (Theorem 13.6). Moreover, the
standard L-function L(s, Lift®™ (f),st) is given by (see Theorem 18.1)

[[L(s+k+n—it+ g HLs+k+n—i+3 fx)
=1

Following Kohnen [Koh02], we discuss the ‘linearization’ of the lifting. The case when m is
odd is fairly easy, and will be treated in §14. Assume now that m = 2n is even. Then we refor-
mulate the main theorem in terms of a certain linear map from a subspace S5, | (I'o(Dk), x) C

Sok+1(To(Dg), x) to Sgk+2n(an), det™*~™). (In fact, we need to consider a certain twisting by an
ideal ¢ of K, but for simplicity we consider the case ¢ = O here.) Decompose the character x into a
product x = Hq‘ Dy Xas where x, is a character whose conductor is a power of a prime ¢. Put

ap(N) = [ (14 xg((=1)"N)),
q|Dk
Following Krieg [Kri91], we define S5, | (I'o(Dx ), x) by the space of cusp forms

folr) =Y ap(N)g™ € Saps1(To(Dx), X)
N>0

such that ag (N) = 0 whenever ap, (N) = 0. For each primitive form f € Sopi1(I'o(Dk),X),
we define f* € S5, | (Lo(Dk),x) as the unique element of Sa,y1(Io(Dk ), x) such that ap«(N) =
ap, (N)ay(N) whenever (N, D) = 1. Then we can show that there exists an injective linear map

12 8341 (Do(Di),x) = Sopon (T det™51)
1109
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such that F(Z) is equal to ¢(f*) (Theorem 15.18). It follows that F' = 0 if and only if f* = 0.
It is easy to prove that f* = 0 if and only if n is odd and f comes from a Hecke character of
some imaginary quadratic field (Corollary 15.20). As for the lifting Lz’ft(2”)( f) to the adele group
U(2n,2n)(A), we show that Lift®™(f) = 0 if and only if n is odd and f comes from a Hecke
character of K (Corollary 15.21).

We discuss the case m = 2 in § 16. In this case, the theory of the lifting has already been treated
by Kojima [Ko0j82], Gritsenko [Gri90], Krieg [Kri91], Sugano [Sug85], and Klosin [Klo07a, Klo07b].
In §17, we calculate the Petersson inner product of the hermitian Maass lift in the case m = 2, by
using the results of Sugano [Sug85].

In §18, we discuss the relation to the Arthur conjecture. The Arthur parameter associated to
our lift can be described as follows. We now admit the Arthur conjecture and the existence of the
hypothetical Langlands group Lg. Let m be a positive integer. Recall that the L-group of G =
U(m,m) is a semi-direct product GLg,,(C) x Wq, where Wy is the Weil group of Q. The canonical
homomorphism Lg — Wy is denoted by pr. Let f be a primitive form of Soxy1(I'o(Dk), x) or a
normalized Hecke eigenform of Sy (SL2(Z)) according as m is even or odd. Let 7 be an irreducible
cuspidal automorphic representation of GLa(Ag) generated by f. Note that the central character
w; is equal to x™ 1. We denote the Langlands parameter of 7 by p, : Lo — GL2(C). Let Sym™ ! :
SL2(C) — SL,,,(C) be the m-dimensional irreducible representation of SLy(C). We put

o= (e ) e

for u € Lo,
a b
ot = (¢ 1),
and we put
m—1
(m)(y _ (Sym™(z) 0
Pr (:L‘) < 0 Symm_l(aj) X1

for x € SLy(C). Then, ,ogm) : Lo X SLy(C) — £G = GLgy (C) x Wy should be the Arthur parameter
for Lift(m)( f). By using this A-parameter, we will show that our result is compatible with the
conjectural Arthur multiplicity formula.

Notation

Let K be an imaginary quadratic field with discriminant —D = —Dpg. When there is no fear of
confusion, we drop the subscript K. We denote by O = O the ring of integers of K. The number
of roots of unity contained in K is denoted by wg. The non-trivial automorphism of K is denoted
by x +— Z. The primitive Dirichlet character corresponding to K/Q is denoted by x. We denote
by Of = (vV=D)™ 'O the inverse different ideal of K/Q. For each prime p, we set K,=K®Q,
and O, = O ® Z,. The sets of hermitian matrices of size m with entries in K, K,, O, and O, are
denoted by H,,(K), Hp(Kp), Him(O), and I, (Op), respectively. The adele ring of Q is denoted
by Ag or A. The finite part of the adele ring is denoted by A¢. Similarly, we denote the adele ring
and the finite adele ring of K by Ax and A r, respectively.

Let x = ®, X, be the character of the idele class group A*/Q* determined by x. Then X, is
the character of Q; corresponding to Q,(v/—D)/Q, and is given by the Hilbert symbol

1110

for t € Q.

https://doi.org/10.1112/50010437X08003643 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003643

LIFTING OF HERMITIAN MODULAR FORMS

We set e(T) = exp(2ny/—1tr(T)) if T is a square matrix with entries in C. When p is a prime,
e, is the unique additive character of Q, such that e,(z) = exp(—2my/—1z) for x € Z[p~!]. Note
that e, is of order 0. We put ea(z) = e(zs0) [[,< o €p(2p) for an adele z = (z,), € A.

In §83 and 8, F' will denote a non-archimedean local field. When 1 is an additive character of

F and p is a quasi-character of F*, the L-factor L(s, p) and the e-factor (s, p,1) are defined as in
Tate [Tat79]. We set €'(s, p, 1) = (s, p, ) L(1 — s, p~ L, ) L(s, p) L.

1. Unitary groups and hermitian modular forms

We recall some basic facts about hermitian modular forms (cf. Braun [Bra51]). The unitary group
gm) — U(m,m) is an algebraic group defined over Q, whose group of R-valued points is given by

O _1m t— 0 _1m
9N1,, o )97 1, o

for any Q-algebra R. When there is no fear of confusion, we drop the superscript (m). We define
the hermitian modular group by an) = G™)(Q) N GLyy, (). Put

P(K”QO:{@ g) eP(Km)‘C:O}.

Note that Fg) = SLo(Z) - {a- 15 | @ € O*}. A hermitian matrix H € H,,(K) is semi-integral if
tr(HR) € Z for any R € H,,(O). Note that H € 3(,,,(K) is semi-integral if and only if the diagonal
entries of H are integral and \/—Dg - H € M,,(O). We denote the set of semi-integral hermitian
matrices of size m by A,,(O). Similarly, we define A,,(O,). Then we have A, (O,) = A(O) @z Zy.
The subset of A,,(O) consisting of all positive definite elements is denoted by A,,(O)".

The hermitian upper half space H,, is defined by

1
2y/-1

Note that H; = $; is the usual upper half plane. Then the unitary group G™ (R) acts on H,, by

{g € GL2m(R ® K)

Hm:{ZeMm(C) ' (Z -* Z)>0}.

9(Z) =(AZ+B)(CZ+ D)™, Z&EHm,g= (é g) € GM(R).

We put j(g,Z) = det(CZ + D) for Z € H,, and
A B
g <C D> €Gm(R).
If F(Z) is a function on H,,, we put

(Flig)(Z) = F(9{2))j(9,2)"

for g € G (R). When [ is clear from the context, we sometimes drop it. Let o be a character of

1, B (m)
{5 1) =r}

¥ » which is trivial on
A holomorphic function F' on H,, is called a hermitian modular form of weight [ with character

o if F|jg = o(g)F for any g € an). When m = 1, the usual holomorphy condition at the cusp is

required. A hermitian modular form F(Z) has a Fourier expansion of the form

F(Z)= ) A(H)e(HZ).
Heé\géo)
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Here, H > 0 means that the hermitian matrix H is positive semi-definite. A hermitian modular
form F is called a cusp form if the Fourier coefficients A(H) vanish unless H € A(O)™". The space of
hermitian modular forms (respectively hermitian cusp forms) of weight [ with character o is denoted

by MZ(F(Km), o) (respectively SZ(I‘(Km), 0)).

2. Siegel series for unitary groups

In this section, we consider Siegel series associated to non-degenerate semi-integral hermitian matri-
ces. Fix a prime p. Let e, be the unique additive character of Q, such that e,(z) = exp(—2mv/—1x)
for z € Z[p~']. Note that e, is of order 0. Put &, = x(p), i.e.

1 if K, ~Q, ® Qp,
& =4 —1 if K,/Q, is an unramified quadratic extension,

0 if K,/Qy is a ramified quadratic extension.
For H € A,,,(Op), det H # 0, we put
v(H) = (=Dg)™/? det H.
It is easily seen that (H) € Z,. Similarly, we have v(H) € Z for H € A,,(O).
The Siegel series for H is defined by
by(H,s) = > e,(tr(HR))p~ordr@(B)s = Re(s) > 0.
ReHm (Kp)/Hm (Op)

The ideal v(R) C Z, is defined as follows. Choose an element

<é g) egtm (Qp) NSL2m(0p)

such that det D # 0, D~'C = R. Then v(R) = (det D)Z,. Note that det D € Q,.
We define a polynomial t,(K/Q; X) € Z[X] by

[(m-+1)/2 Y |
K/ X) = [[ a-pX) [] @ -p*4X).
i=1 i=1

There exists a polynomial Fy,(H; X) € Z[X] with constant term 1 such that
Fp(H§p_8) = bp(H7 S)tp(K/Q§p_S)_l'

For a proof of this fact, see [Shi97]. Clearly, F,(*AHA; X) = F,(H;X) for any A € GL;,(Op).
Moreover, Fj,(H; X) satisfies the functional equation

Ey(H;p 2" XY = x (y(H))™H (p X) 4 Dy (H; X),

which follows from the results of Kudla and Sweet [KS97]. We will discuss it in § 3.

The functional equation implies that deg F,(H; X) = ord,y(H). In particular, if p { y(H), then
F,(H;X) =1

DEFINITION 2.1. For H € A,,(O,), det H # 0, we put
Fp(H; X) = X (H;p~mX—2).
Note that the highest term and the lowest term of F,(H;X) are X°%7(H) and Xp(’y(H ))m-t

X—ordpy(H) pegpectively. The following lemma follows immediately from the functional equation of
F,(H; X).

1112
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LEMMA 2.2. For H € A, (Op), det H # 0, we have:

Fy(H; XYY = F,(H; X) if m is odd,
Fy(H; XY = XP(W(H))FP(H; X) ifm is even,
Fy(H; &, X7 = Ey(H; X) if m is even and pt Dg.

We will need the following lemma later.

LEMMA 2.3. There exists a constant M > 0 such that

|y (H;w)| < pMordr D)
for any H € Ay, (O,), det H # 0 and any w € C, |w| = 1. The constant M does not depend on p.
Proof. We may assume that p|y(H). Put d = ord,(y(H)) = deg F),(H; X). For each

p(X) =) anX" e ClIX]),
N=0

we put Hy(p) = max(|agl, ..., |aq|). Then
Ha(p1p2) < (d + 1) Ha(p1)Ha(p2)
for ¢1, @9 € C[[X]]. For each positive integer [, we define a formal power series ab; (t) such that
ay(p™°) = > ep(tr(HR))p~ ot H)s.
Rep=tAm(Op)/Am (Op)
Then it has been proved by Shimura [Shi97] that, if [ > 2d + 1, then ol (p~%) = b,(H, s). Since
by(H,s) =t,(K/Q;p~%)F,(H;p™?%), we have
Ha(ty (1/Q: X) Fyp (H; X)) < pPH 0™ < %0,

On the other hand, we also have

m

Hy(t,(K/Q; X)) < Hy (H(1 _piX)—1>
i=1
<(d+1)m™ ! ﬁHd((l —pixX)™h

=1
< (d+ 1)m—1pdm(m+1)/2'

By the obvious estimate (d + 1) < p?, we have
Hy(F,(H; X)) < (d 4 1)mpmm+1)/23dm? o pd(tm?+3m)/2,
Since |w| = 1, we have
|Fy(H;w)| = |Fy(H; p™w™2)| < (d + 1)pdTm?*+3m)/2 ¢ pd(Tm*+3m+2)/2.

It follows that |F,(H;w)| < pdTm?+3m+2)/2 0

3. A proof of the functional equation

In this section, F' = F, is a non-archimedean local field. We denote the ring of integers, the absolute
value, and the order of the residue field by o, | | and g, respectively. Let E be either a quadratic
extension of F' or F' @ F. We denote the character corresponding to E/F by x. We denote the

1113
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discriminant ideal of E/F by ®. Put G = SU(m,m)g/p. For a quasi-character p : F* — C*,
we denote the degenerate principal series Ind%(p - | |*) by I(p,s). Here P is the Siegel parabolic
subgroup of G. The space of I(p, s) consists of all locally constant functions ®(g) on G such that

o((5 1)) =laecaragg)

A B
<o tA—1>EP

Fix an additive character ¢ of F'. For ®(g) € I(p,s) and a non-degenerate hermitian matrix

H e H,,(FE), put
1,, =z
MGs.p)2(e) = [ @(w(o ; >g> dr,
Hm (E) m

Whir(s)(g) = | m@)@(w (5 1) o) ot Ao

Here, the Haar measure dx is the self-dual measure for the pairing (z,y) — ¥(tr(zy)). These
integrals are absolutely convergent for Re(s) > 0 and can be meromorphically continued to the
whole complex plane. If s is not a pole of M(s, p), then M(s, p)®(g) € I(p~!, —s). Moreover, it is
known that Why(s) is entire.

for any

and any g € G.

PROPOSITION 3.1 (Kudla and Sweet). The following functional equation holds:

Whp(—s) o M(s,p) = kr (s, p, ) Wha(s),

where

ku (s, p,0) = p(det H) ™ det H| >y (E/F, )™= D2y (det H)™ ' [ /(s =m+r,px" ') "

r=1

Here v(E/F, 1) is the Weil factor for E/F with respect to 1, and &'(s, p,v) = (s, p,)L(1 —
s,p Y)L(s,p)~t. This proposition is Proposition 3.1 of Kudla and Sweet [KS97] when E is a
quadratic extension of F. When E = F' & F', see [KS97, p. 303].

We assume that ¢ has order 0 and p = 1 is the trivial character. Let (I>(()S) € I(s,1) be the

unique element such that ®y(g) =1 for g € G N SLy;,(0). Then WhH(s)CD(()S)(lgm) is an analogue of
the Siegel series considered in the last section. It is known (cf. Shimura [Shi97]) that there exists a

polynomial F,(H; X) € Z[X] such that WhH(s)@gs)(lgm) is equal to

“ 1
m(m—1)/4 I | . ., —S—m
2 e} Lis+m+1—-rx"1) Fu(Hiq )

By standard Gindikin—Karpelevich argument, we have

L(s—m+r, KT_I)

() _ ppmlm-1/2 ] 5
M(s,1)®5" = [D] EIL(ererl—r,y‘l)% '

1114
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It follows that

L(s—m+7rx"1)
L(s+m+1—7rx"1)

Why(—s) o M(s, )0 (1g,) = |21/ H

1
X -Fy(H; %M.
UL(—s+m—r+1,y—1) v

By Proposition 3.1, we have

|det H|~*y(E/F,¢)™™D/2x(det H)™~ IHES—m—i—rxr L)y L By (H g™
r=1
_ |©‘m(m—1)/4Fv(H; qs—m).

Since (s, x,v) = Y(E/F, )" D>~ /2 and ~v(E/F,¢)? = X(—1), we obtain the following func-
tional equation for F,(H; X).

COROLLARY 3.2. The polynomial F,,(H; X) satisfies the following functional equation:
(i) if m = 2n,
Fy(Hyq 2" X 1) = x((=1)" det H) (" X) 4" D E, (1 X);
(ii) if m =2n+ 1,

FU(H;q_2mX_1) — (qmX)—ord(’D" detH)Fv(H;X).

Remark 3.3. When E/F = K,/Q,, we obtain the functional equation of Fj,(H;X). Note that

Xp(_l) = Kp(_D)v since
we=(g0) =

4. Fourier coefficients of hermitian Eisenstein series

(m) (

For simplicity, we assume that [ is a sufficiently large integer. Let Ej; "’ (Z, s) be the Eisenstgin series
of weight 21 on the hermitian upper half space H,,. For Z € H,,, we put X = (Z +'Z)/2 and

Y = (Z —'Z)/(2y/—1). Then the hermitian Eisenstein series Eél )(Z, s) is defined by

EY(Z,5) = (detY)*™ 3" (detg)'i(g, 2) 7 |j(g, 2)| 2
gery Ay

The series Egn)(Z, s) is absolutely convergent for Re(s) > m and

Egn)(*% 5)|21g = (det g)—lEg”)(*’ s)

m)

for any g € Fg{ . Then the Fourier expansion of Egn)(Z, s) is

Eé}n)(Z,s): Z an)(H;Y,S)e(HX).
HEA,(0)

1115
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If H is non-degenerate, we have

(m) D =1/ s—l= . —23
cy (H;Y,s) = 71 (det V)" ' Z2(Y,H;s+1,s — Hb
D\ mm=b/A oy E(Y,H;s+1,s— 2
- <Z> (det Y) Hz L2 +1—i Xz ) I £f

plv(H

Here (see Shimura [Shi97]),

=(g, h;s,s) :/ e(—haz)det(z +vV—1g) " det(z — vV—1g)~* da.
Hm (C)

If s =1 > m, we get the Fourier expansion of the holomorphic hermitian Eisenstein series Eglﬂ) (2) €
Moy (T det ™). If H € A,y (O)*, then

(_ 1)ml om(2l—m+1) 2ml

2(Y,H;2l,0) =
(¥, H;21,0) 'n(20)

(det H)?~™me(/=1HY),

where
Cpn(s) = amm=1/2 HF(s +1—1).
i=1
The Hth Fourier coefficient of Eglﬂ)(Z ) for H € A,,,(O)" is equal to
(_1)ml2(4ml—m2+m)/2D—m(m—1)/4ﬂ_2ml
LoD T L2L+ 1 — i, )Y

(det H)E=m) H E,(H;p™).
ply(H)

It follows that the Hth Fourier coefficient of Eglﬂ)(Z ) for H € A,,,(O)T is equal to the product of

A2 [T LG =21, )

i=1
and
)P T Fo(H;p™) = ()= H Fy(H;pl=m/2),
plv(H) Pl (H
Here
A, = 1 fm=2n-+1
(=)™ ifm=2n
Observe that
—(m/2) m—1 I+(m/2)
1L 7 )= TI x, ()™ Eylip /2
ph(H plv(H)
:Am H FP(H p l+(m/2))
plv(H)

by Lemma 2.2. We define the normalized Eisenstein series by

ey (z)y =2 T LG —2,x"Y) - ES”(2) € My (T, det™).
=1
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When m = 2n + 1, the Hth Fourier coefficient of SéifL:zlg(Z ) is equal to

(H)F WD T Eo(H; p ¥+ 072
ply(H)

for any H € Ag,y1(O)" and any sufficiently large integer &’. When m = 2n, the Hth Fourier

coefficient of 52(32271(2 ) is equal to

NE)F T] FoHsp™)
ply(H)

for any H € Ay, (O)" and any sufficiently large integer £'.

5. Main theorems

We first consider the case when m = 2n is even. We refer to this case as Case E. In this case, let
f(r)=3%_1a(N)g" € Sor41(To(D), x) be a primitive form, whose L-function is given by

L(f.s) = [0 = ap)p™ + x()p™ ) T - alg)g™) 7"
ptD q|D
For each prime p{ D, we define the Satake parameter {c,, 8y} = {ayp, x(p)ey, 1 by
(1= a)X + x(P*X?) = (1 = pPa, X)(1 - p"6,X).
For q | D, we put oy = ¢ *a(q).
For each H € Ay, (O)", we put

AH) = ()" [] Fp(Hsap).

plv(H)
Here p extends over all primes that divide y(H). We put
F(Z)= Y.  A(H)e(HZ), Z € Hop.

HeMo, (0)F
Then our main theorem for Case E is as follows.

THEOREM 5.1 (Case E). Assume that m = 2n. Let f(7), A(H) and F(Z) be as above. Then we
have I’ € Sgk+2n(an), det_k_").

Now we consider the case when m = 2n + 1 is odd. We refer to this case as Case O. In this
case, let f(7) = Y. %_; a(N)g" € Sox(SL2(Z)) be a normalized Hecke eigenform, whose L-function
is given by

L(f,s) =[] = alp)p~® +p*172) 7",
P
For each prime p, we define the Satake parameter {a, a, 1 by

(1= alp)X + 5% 1X%) = (1= D0, X)(1 = b~ 120 1),

Put
AH) = y(H)[FY2 1] F(Hiap),  H € Agppa (0)7,
ply(H)
F(Z)y= > A(H)e(HZ), Z € MHani1.
H€A2n+1(0)+
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Then our main theorem for Case O is as follows.

THEOREM 5.2 (Case O). Assume that m = 2n + 1. Let f(7), A(H) and F(Z) be as above. Then
we have F' € Sngrgn(anH), det=F=m).

In both Case E and Case O, the definition of F(Z) is independent of the choice of «,, by
Lemma 2.2. Observe that F(Z) is absolutely convergent on H,, by Lemma 2.3 for any m. Since
F,(*AHA; X) = F,(H;X) for any H € Aj,(O) and any A € GL,(O), we have Flogiong =
(det g)~*"F for any g € F(Kmio We call F'(Z) the lift of f(7) to Sgk+2n(F§?), det %) and denote
it by Lift(™(f).

6. Fourier—Jacobi expansions

We define the Jacobi group Jp, ,(O) by

1, *x|*x x
_ 0 =*|*x % (m) B
M = 0 0L 0 el |detM =1
0 =*|*x %

We consider only the case r = m — 1. Fix S € A,,,_1(O)™.

For a holomorphic function ¢(7, 21, 22) on $; x C™ ! x C™ !, we define a function on H,,_1 x
91 x C L x C™~ L by ¢(Z) = e(Sw)é(T, 21, 22). Here

w V4 _
7 = <tz Tl> w € Hm_1, T € N1, 21,29 € C™ L.
2

We shall say that the function ¢ is a weak Jacobi form of index S and weight [ if and only if
o1 M=o
for any M € Jpm—1(0). A weak Jacobi form is called a Jacobi form if ¢ has a Fourier expansion
o(1,21,22) = Z Z c(z,N)e(*zz; +' x29)e(NT)
xg(oﬁ m—1 NeZ
such that c¢(z, N) = 0 unless N —* 2S5~ 1z > 0.
For each ¢ € K™™' we define the theta function 01 (S; 7, 21, 22) by
O(Sim21,22) = Y e("(w+ &S+ &7+ (z+ Sz + (v + €)Sz2).
ze@m—1
Choose a complete representative Z = Z(9) for S~HO#)™~1/0m 1,

Then a Jacobi form ¢(7, 21, z2) of index S can be expressed as the sum

(b(Ta 21, Z2) = Z 9[5}(57 Ty 21, Z2)¢5(T)7

£eE

de(r) = Y (S N)e((N -"ES)T).
N—]:[Eeszégo

It is well known that, for each

a b
v = <c d> € SLy(Z),
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there exists a unitary representation ug : SLy(Z) — GL(CZ) with kernel containing some congruence
subgroup I' C SLy(Z) such that

011 (S5 7', 21, 25) = (T + d)m1 Z ug(Y)ne €(Szi(cr + d)_lthQ)H[m (S;7,21,29),
ne=
where 7/ = (at +b)(ct +d)7Y, 2L = zi(er +d)71, i = 1,2. Tt follows that
Se(7(7) = (e +d)' 7" us(y)gedn(7)

nez

y = <Z 2) € SLy(Z)

Let §(Z) be a holomorphic function on H,, that has a Fourier expansion
§(2) = 3 A(H)e(H2)
H>0

Here H extends over positive semi-definite elements of A,,(Q). We assume that A(*X HX) = A(H)
for any X € GL,,(O) and any H € A,,(O). For each S € A,;,_1(O), we put

Fs(r,z1,) = Y UH)e(N7)e("Zz + ‘w2).

ER

for any

and any £ € =.

Here H extends over all positive semi-definite elements of A,,(O) that are of the form

H = (tS “’“) .
z
As in [Ike01], we have an expansion
Fs(mz1,2) =D _ 0 (S:7, 21, 22)8s.6(7),

£e=

S = 2 A (g5 ) ey —eson.

N—t£S¢£>0
We call Fse(r) the (S,&)-component of the Fourier-Jacobi expansion of §(Z). Since the theta
functions {0)(S; 7,21, 22) | £ € =} are linearly independent, §s(7, 21, 22) is a Jacobi form of index
S and weight 2[ if and only if

Fse(v(m) = (er + )™ ug(7)yeSsn(7)

ne=

where

for any

y = <Z 2) € SLy(2)

and any £ € =.

7. Vector-valued modular forms

Let K = SLa(Z,,) be the standard maximal compact subgroup of SL2(Q),). We put I = Hp KCp. Let

(u, V) be a finite-dimensional continuous representation of K. A V-valued modular form h(r) with
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type u is a holomorphic function of 7 € $; with values in V' that satisfies the following conditions (1)
and (2):

(1) A(g(r)) = (er +d)*u(g) " h(7) for any g € SLy(2);

(2) h(r) has a Fourier expansion of the form

[ee]

)= 3 dN)g
N=0

for some positive integer M.

We define vector-valued cusp forms similarly.

For each prime p, let R, = C[X,, X, 11 be a copy of the Laurent polynomial ring. Put
R = @, Rp- Then R is the ring of Laurent polynomials ®(X) = ®(X», X3,...) € C[X2, X5 1, X3,
X;',...]. Note that R is a unique factorization domain (UFD), although it is not noetherian. Let
az, as,...,ap, ... be non-zero complex numbers. Then the value of ®(X) at (X2, X3,...,X,,...) =
(az,as,...,ap,...)is denoted by ®({a,}).
LEMMA 7.1. Let ®(X) be an element of R. Assume that ®({p~*}) = 0 for an infinite number of
s € R. Then ®(X) is identically 0.

Proof. Write ®(X) as a sum of monomials:

T

(I)(X) = Z a; H X;i’p.

=1 P
Here e;;, = 0 for almost all p. Put N; = [[,p®». Then our assumption implies that > a;N;* = 0
for infinitely many real numbers s. Since Ny, ..., N, are mutually distinct, we have a1 = --- = a,
= 0. O
DEFINITION 7.2. Let h(7) be a modular form of weight x for some congruence subgroup I'. Then
we denote by V(h) the C-vector space spanned by {h|y | v € GL2(Q)*}. If u : K — GL4(C) is a

representation of rank d, then Z(V(h)? u) is the space of C%valued modular forms of type u whose
entries belong to V(h).

We first consider Case E. For Case E, we put

[e.e]

B
Fatin() = = 12 1 57 (S x(@ ) € M (Ta(D). )
N=1 “dIN

Note that L(s, Eary1,) = ((s)L(s — 2k, x). In particular, the Satake parameter of Eoj i1, (7) is
{r™* x(p)p"} for pt D and {q~*} for ¢|D.

DEFINITION 7.3 (Case E). Let k{, be some fixed large integer. We define a compatible family of
Eisenstein series {Fox11(7)}przpy as follows. A compatible family of Eisenstein series is a family
of modular forms

Foprsr (1) = b2K +1;0) + Y N¥b(2k + 1;N)gV
NeQ}
satisfying the following conditions (1), (2), and (3):
(1) Forr41 € V(Eawr41,y) for any integer k' > ki;
(2) for each N € QZ, there exists an element @y (X) € R such that
b(2K + L;N) = en({p*});
(3) there exists a congruence subgroup I' C SLy(Z) such that Fopr1 € Mogr11(T) for all & > k).
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As in [Ike01], we have to prove the following lemma.

LEMMA 7.4. Let

Fr)=>"a(N)g" € Syt1(To(D),X)
N>0
be a primitive form and o, a Satake parameter of f(7). Assume that there are a finite-dimensional
representation (u, C?) of K and ®y(X) = (P n(X),..., 24N (X)) € RT (N € QF) satisfying the
following conditions (1) and (2).
(1) For each integer k' > ki), there exists a vector-valued modular form

—

Foprsr (1) = b(2K + 1;0) + Y N¥b(2K + 1;N)gV
NeQX
of type u.

(2) For each i (1 <i < d), the ith component F; o/41(T) of For41(7) is a compatible family of
FEisenstein series such that

bi(2k + 1;N) = &, y({p™"'}).
Here b(2k' +1; N) = t(by (2K’ + 1;N), ..., ba(2K' +1; N)).
Put
hr)= Y N*&y({aph)g".
NeQ}

Then we have h(t) € Z(V(f)% u).

The lemma is proved at the end of §9, using results in the following two sections.

8. Behavior of the Whittaker functions

In this section, we will investigate the behavior of Whittaker functions on GLo, which will be used
to prove Lemma 7.4.

In this section, F' = F,, will denote a non-archimedean local field. We fix a non-trivial additive
character ¥ of F. The maximal order of F, the prime ideal, and the order of the residue field are
denoted by o, p, and g, respectively. We put R, = C[g®, ¢~*] and K, = GL2(0). The Borel subgroup
of GL, that consists of all upper triangular matrices is denoted by B. We put B = BN SLy and
K, = K, N SLy.

Let x, x, and x, be characters of F . The principal series representation I (Xl X XTS) =

IndgL2 (x;| I°®x,| |7%) is the representation of GLy that is induced from the character of B
given by

“0) X (@, (@) ad 7
(6 2)

Similarly, the principal series representation I(y, s) = IndSBLz (x| |°) is the representation of SLy that
is induced from the character of B given by

(6 ) = (@l

Then the restriction of j(K1 X x,,s) to SLy is canonically isomorphic to I(K1X2_l’ 2s).

In this section, we assume that y is a unitary character.
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An R,-valued function on GLg can be regarded as a function f(g,s) on GLg x C such that
f(g,s) € Ry, = Clg®,q 7] for each g € GLy. We say that a function on GLg x C or on SLy x C is
right /C,-finite if there is an open subgroup K¢ of K, such that f(g, s) is right KS-invariant for any
s. We also consider R,-valued functions and right IC,-finiteness for SLs. Let u be an irreducible
representation of K,. Then we shall say that a right KC,-finite function f(g,s) has IC,-type w if
f(g,s) has KC,-type u for each s € C.

DEFINITION 8.1. A right /C,-finite R,-valued function f(g, s) on GLy is called a holomorphic section
of f(&lgxw s),if f(g,s) € j:(Xl@KT s) for each s € C. A holomorphic section f(g, s) of j(X1 XX, s)
is called a standard section if the restriction of f(g,s) to K, x C does not depend on s € C. We
define holomorphic sections and standard sections of I(x, 2s) similarly. We also define vector-valued
holomorphic and standard sections of I(x,2s) in an obvious way.

For f € I(x,2s) or f € f(zl X x,,s), we put

Wiy = [ 7(w (5 7)s)on
o= (1 )

The Haar measure dx is the self-dual measure with respect to the additive character . This in-
tegral is absolutely convergent for Re(s) > 0. If f(g,s) is a holomorphic section of I(x,2s), then
Why(f(g,5)) is an R,-valued function on SLy. Thus Why (f) is meaningful for any s € C. We denote

Wy (I(x,2s)) = {Why(f)|f € I(x,2s)} for each s € C. It is known that Wy, (I(x, 2s)) # (0) for any
s € C. If I(x, 2s) is irreducible, then W, (I(x,2s)) is equal to the Whittaker space of I(x, 2s).

We need to investigate the behavior of Whittaker functions at the points of reducibility of
I(x,2s). Since I(x|[*',2s) ~ I(x,2(s 4+ '), we have only to consider real s by changing x if
necessary. If XQ # 1, then there are no real points of reducibility of I (x,2s). When x = 1, the real
points of reducibility of I(1,2s) are s = +1/2. Then I(1,1) contains the Steinberg representation
St, and the quotient of I(1,1)/St is the trivial representation 1; and I(1,—1) contains 1, and
I(1,-1)/1 ~ St. We have

where

Ker(Why, : I(1,1) — Wy (1(1,1))) = {O}

Ker(Why, : I(1,—1) — Wy (I(1,-1))) =
If X =1, x # 1, then the real point of reducibility of I(x,2s) is s = 0. In this case, I(x,0) is the
direct sum of two irreducible representations I(y, Oterl (x,0)~. This decomposition is described
in terms of the normalized intertwining operator M*(2s,x,%) = &(2s,x,%)M(2s,x). Note that
M*(2s,x,%a) = x(a)|a|*M*(2s, x, ), where ¥4 (z) = ¥(az). The irreducible constituents I(x,0)"
and I(x,0)” are the spaces of elements of I(x,0) on which M*(0,x,%) acts by 1 and by —1,
respectively. Furthermore,

Ker(Why, : I(x,0) = Wy (1(x,0))) = I(x,0)"-

LEMMA 8.2. Let x be a character of F* such that KQ = 1. Any irreducible representation of IC, is

~— —

multiplicity-free in T 11X X_l, s). Moreover, the set of irreducible representations of IC,, that occur
in I(1X X', s) is independent of s.

Proof. Tt is enough to consider the restriction of I(1 X K_l, s) to SLa. Note that the restriction is
isomorphic to I(x,2s). Put B= B NK, and

(!
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We are going to prove that the induced representation Indg” X is multiplicity-free. Let H(B\C,/B; x)
be the Hecke algebra that consists of all locally constant functions ¢ on K, such that ¢(b1kbs) =
X(b1b2)p(k) for any b1,by € B, k € K. It is enough to prove that H(B\K,/B; x) is commutative.

We consider the anti-involution
Ty _ (v oy
Z W z T

k:(m y)elcv,
Z w

there exist by, by € B such that "k = bikby and x(b1b2) = 1. If z € 0%, then one can easily find
ny,ne € N such that "k = nikns. If z € p, then

1 0
e=(5 1)

for some 2’ € p and b € B. In this case one can choose by = b~!, by = Tb. This completes the proof
of the first assertion. The last assertion of the lemma is clear. O

of IC,,. We shall prove that, for any

Let (u,C?%) be an irreducible representation of C,, which occurs in I (x,2s). There is a vector-
valued standard section

fu(g7 8) = (fu,l(gﬂ 5)7 s 7fu,d(97 5))

of I(x,2s) such that f,(gk,s) = fu(g,s)u(k) for any k € KC,. By Lemma 8.2, such a section is unique
up to a scalar multiplication. The standard section fu(g, s) can be uniquely extended to a standard
section fy(g,s) of I(1X yx,s). Set

Wu(g,s) = Why(fu(g,s)) = (Why(fu1(g,9)),- .-, Why(fu,a(g,5))),

Wu(g, 5) = th(fu(% 8)) = (th(fu,l(ga 5))7 s 7th(fu,d(g7 8)))
Let ayy(s) € Ry be the generators of the ideal of R, generated by {W, i(g,s) | g € SLa, 1 < < d}.
Set W/ (g,s) = aupu(s) 'Wy(g,s). Then we have W (gk, so) = W (g, so)u(k) for any k € K, and
so € C. In particular, {W} ,(g,s) | 1 < i < d} is linearly independent. It follows that fy(g,s0) €
Ker(Why) if and only if av, ,(s0) = 0 for any 1 <4 < d. Note that I(x, 2s0) is reducible in this case,
since Ker(Why,) # I(x,2s0).

Similarly, let @&,(s) € R, be the generators of the ideal of R, generated by {W,.(g,s) | g €

GLa,i =1,...,d}. Then, dy,(sg) = 0 if and only if u = 1 and ¢?* = ¢~!. Note that a,(s) does not
depend on the choice of .

LEMMA 8.3. If u =1 and 1 is of order 0, then ¢, (s) = ay (s). For each irreducible representation
u of ICy, there is an element a € k™ such that &, (s) = oy, (). Here, q(x) = ¢ (az).

Proof. The first part can be checked by direct calculation. For the proof of the latter part, we
may assume that u # 1. We may also assume that x is either the trivial character or a ramified
character of order 2. If x = 1 and ay () # @u(s), then the KCy-type u occur in I(x",0)~, where

X" is the unramified character of order 2. Note that I(x"",0) = I(1,7y/—1/logq). In this case, one
can choose a € k™ such that x"(a) = —1.

Now let x be a ramified character and XQ = 1. Assume that the KCp-type u occur in I(y,0)!
and I(xx"",0)°?, where €1,e2 € {£1}. Choose a € k* such that x(a) = ¢; and xyx"(a) = €. Then
1, satisfies the condition of the lemma. O
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DEFINITION 8.4. A right C,-finite R,-valued function W (g, s) on SLy is an R,-valued Whittaker
function if W (g, so) € Wy(I(x,2s0)) unless I(x,2s0) is reducible. Similarly, a right /C,-finite R,-

valued function W (g, s) on GLg is an R,-valued Whittaker function if W (g, so) € Wy (I(1 X X, s0))

unless T 11X Xs s0) is reducible. When we need to refer to v, we shall say ‘R,-valued 1-Whittaker
function’.

LEMMA 8.5. Let u be an irreducible representation of K,. Set
Woi(9:8) = apu(s)  Wailg,s), Wi i(g,s) = auls)™ Wailg, 5)-
Then the R,-module generated by the R,-valued Whittaker function of I(x,2s) with K,-type u

is generated by {W, ,(g,s) | 1 < i < d}. Similarly, the R,-module generated by the R,-valued
Whittaker function of I(1 X X, s) with IC,-type u is generated by {W&Z(g, s)|1<e<d}.

Proof. We prove only the first part. Note that {W, ;(g,s0) | 1 < i < d} is linearly independent
for any so € C. Let W (g, s) be an R,-valued Whittaker function of I(x,2s) with /C,-type u. Then
there exists ¢;(s) € Q(R,) such that W(g,s) = Z?:l ci(s)W,, ;(g,5), where Q(R) is the quotient
field of R,. Assume that ¢;(s) ¢ R,. Then there exists sop € C such that ords—s,ci(s) > 0, where

ord is the order of the pole. We may assume that e = ords—s,c1(s) = ords—s,c;i(s) for i = 2,...,d.
Then
d
Z((S - SO)eci(s))s:so : W,(gy 80) =0,
i=1
which contradicts the linear independence of {W; ;(g,s0) | 1 < i < d}. O

Let W (g, s) be an R,-valued -Whittaker function of I(x,2s) with IC,-type u. If s is not a point
of reducibility of I(y,2s), one can extend W (g, s) to a 1)-Whittaker function W(g,s) of I(1 Xx,s).

LEMMA 8.6. Set By (s) = & (8) Ty u(s). Then By, (s)W (g, s) is an R,-valued Whittaker function
of (1 Xy, s).

Proof. This lemma follows immediately from the fact that the R,-module generated by the R,-
valued Whittaker function of I(x,2s) with K,-type u is generated by {ons.(s) " Wai(g,s) | i =
1,...,d}. O

LEMMA 8.7. Let Mo C R be an infinite subset such that I(x,2s) is irreducible for any s € Ng.

(1) Let W(g,s) be a right IC,-finite R,-valued function on SLy such that W (g,s) € Wy(I(x,2s))
for any s € No. Then W (g, s) is an R,-valued Whittaker function of I(x,2s).

(2) Let W (g, s) be a right K,-finite R,-valued function on GLy such that W (g, s) € Ww(f(lﬁx, s))
for any s € My. Then W (g, s) is an R,-valued Whittaker function of (1 X X, 8).

Proof. We will prove only part (1), as the proof of part (2) is similar. Let (u, C?) be an irreducible
representation of IC,,. By standard arguments, it is enough to prove the following.

(1') Let W(g,s) = (Wi(g,s),...,Wal(g,s)) be a vector of R,-valued functions on SLy such that
Wi(g,s0) € Wy(I(x,250)) (1 < i < d) for any sg € Ny and W(gk,s) = W (g, s)u(k) for any
k € K,. Then W;(g,s) € Wy(I(x,250)) (1 < i < d) for any sy € C such that I(x,2so) is
irreducible. B B

By Lemma 8.2, there exists an element ¢(s) € R, such that W (g, s) = ¢(s)ayu(s) " Wa(g, s). Since
the zero of av,(s) is a point of reducibility of I(x,2s), the lemma follows. O
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9. Adelic compatible family
We put Z = [1,Zy and 7* = [, Z;. Let

~ * ok
- )
be the standard Borel subgroup of GLy. Put K = SLy(Z), K = GLy(Z), and
- a b .
Ko = {(C d> € GLQ(Z)

Recall that, given h € My 1(To(D), ), one can define an adelic cusp form h* on GLy(A) by
the formula

CEDZ}.

h¥(g) = x(d)(flgee) (V1)
for g = ¥googo € GLa(A) with v € GL2(Q), goo € GL7 (R), and

a b ~
go—<c d>€]€0.

For a primitive form f € Sy, 1(To(D), x), we put £ = f% We also put Eop11y = (E2k1+17x)ﬁ. Let
7~ Q. m, be an irreducible cuspidal automorphic representation of GL2(A) generated by f. Then
the central character of 7 is x, and 7 is the (limit of the) discrete series representation of GLa(R)
with minimal weight +(2k + 1). The p-component 7, is isomorphic to

[ GL B
I(l X Xpa SO,p) = Indé(éi?p)q . |50,p X Xp| . | 80,1))’

where sg, € C is a complex number such that e *0»1°8? = o, Note that Re(sp,) = 0 by the
Ramanujan conjecture.

Let V(f) be the C-vector space spanned by the right translates of f by GLa(A¢). Then V(f) can
be regarded as the representation space of ®; <oo Tp- We define V(Egy11,y) similarly; V(Egp/41,y)
peoo L(LBIX K.
For each h € V(f) or h € V(Eg41,), we can associate a function £(h) on $ by
f(h)(T) = h(goo)j(gooa \% _1)2k+1
for goo € GLo(R)T C GL2(A), goo(v/—1) = 7.
LEMMA 9.1. The map § gives surjections V(Egpr11,) — V(Eopr41,) and V(f) — V(f).

Proof. This follows from the equality GLy(A;) = GLo(Q)T - Ko, which follows from the strong
approximation of SLs. O

is isomorphic to &)

One can define an action p of SLa(A¢) on V(f) or on V(Eap11,) by p(g)h = hly~!, for v €
SL2(Q) sufficiently close to g € SLa(Af). Note that SLo(Q) is dense in SLy(A¢) by the strong
approximation theorem.

The maps £ : V(BEawi1y) — V(Eawt1,y) and € @ V(f) — V(f) are SLa(A¢) equivariant. In
particular, & : V(Eop41,y) — V(Faw41,) is an isomorphism for sufficiently large &, since the
restriction of I(1 X X, s) to SLa(Qp) is irreducible for Re(s) > 1/2.

For z = (2y)v € A, we set ex(2) =[], ep(zp)-€(20). Then for any non-trivial additive character
1 of A/Q, there is a rational number ¢t € Q* such that ¢(z) = ep(tx). We assume that ¢ > 0. For
h € V(Egp41,) or h € V(f), the Whittaker function Wy, , of h is defined by

Wy n(g) = /@\Ah<<é f) g)de.
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If the weight of h is 2k + 1, then the Whittaker function W, can be decomposed into a finite part
and an infinite part:

0
Ww,h = Ww,quj??2k+1’
Here, the infinite part vazk 41 1s given by

o a x\ {cos® —sin6
Y2k+1\ \ o 1 sin@ cos6
2™V ltw (1) kH(1/2) g=2mtay/=1(2E+1)0 if ¢ > (),

If ¢'(x) = ¢ (ax) for a € QF, then we have

0
Woale) =W ((§ 1)a). oo

DEFINITION 9.2. Let k{, be some fixed large integer. An adelic compatible family of Eisenstein series
is a family {Fop41}4>4, that satisfies the following conditions (1) and (2):
(1) Fopry1 € V(Egp41,) for each k' > kf;

(2) Ehere ii 221,1 R-valued function Wy (g;X) on GL2(A¢) such that Wy r, . (9) = Wy (g; (1
or each k£'.

This definition does not depend on the choice of 1). We call W, (g; X) the R-valued 1)-Whittaker
function associated to the family {Foj/ 41 }4. It is easily seen that {Eq 41, }4 is an adelic compatible
family of Eisenstein series.

LEMMA 9.3. Let {Fopry1}ir be a family such that {Fopr 1|7} i is a compatible family of Eisenstein
series for any v € SLg(Z). Then there exists an adelic compatible family {Foj41}g such that

E(Fapr1) = Fopr 41
Proof. Put Fopry1 = &1 (Fopry1). Let W$7F2k,+l be the finite part of the Whittaker function of
Foir11. We have to prove that Wg Fou s is an R-valued function, i.e. there exists an element

©g(X) € R such that ngsz/H(g) = ¢y ({p™"'}) for each g € GLo(A¢) and k' > k). First assume that

g € SLa(Ag). Then {p(g)For’+1 1 is a compatible family of Eisenstein series, since SLa(Q) = B(Q) -
SLa(Z) (cf. the proof of [TIke01, Lemma 10.3]). Then W&F%,H(g) = W,g p(g)F%,H(l?) is essentially

the tth Fourier coefficient of p(Foxs41), where t is the rational number such that ¥ (x) = ey (tx).
By Lemma 8.7(1), the restriction of Wg Foyy O SLa(A¢) is an R-valued 1-Whittaker function. We

shall show that qu,F%,H is an R-valued function on GL2(Af). We may assume that Foz/1 1 has an
irreducible K-type u = [], u,. By Lemma 8.6, (][, Bq’[,p,up((9))1/1/'15})7];%,+1 is an R-valued Whittaker

function of I(1X X,5). By Lemma 8.3, there exists a non-trivial additive character ¢’ such that the
greatest common divisor of By, y,(s) and By 4, (s) is 1 for any p. It follows that ngsz/+1 is an
R-valued Whittaker function. Hence the lemma is proved.

Proof of Lemma 7.4. Put F;op1 = &Y (Fiop41). Then, by Lemma 9.3, {F; /41 }r is an adelic
compatible family. Let

W(97X) = t(Wl(g,X), s 7Wd(gax))

be the R%-valued 1-Whittaker function associated to {Fap 41 }x. Put Wi(g) = W, (gr, L DWi%y 1
(9oo) for g = grgoo, g € GL2(Af), goo € GL2(R). Note that W;(gr, {cp}) is a well-defined Whittaker
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function of ®; IAX X, 50,p) by Lemma 8.7(2). Then

nio = 3 wi( (5 9)s) even

acQx

fori =1,...,d, since m is an irreducible cuspidal automorphic representation. Put h= t(hy,..., hy).
Then we have h = £(h) € Z(V(f)%;u). O

10. Proofs of Theorems 5.1 and 5.2

Now we can prove Theorem 5.1. Let &’ be a sufficiently large integer. Then there is a vector-valued
modular form of weight 2k’ + 1 with values in C= = Map(Z, C) whose &th component is the (S, €)-
component of the Fourier—Jacobi coefficient of the Eisenstein series

bseows1+ Y NV [Hﬁp(Hs,f(N);p‘k')] g2,
NeZ4 p|N

Here bg ¢ 25741 is some rational number and
A =[(OHm1: 5O = D™ 1(det S)?,
Hs(N) = (tgs N/AsftES{) |
As we have seen in §6, this vector-valued automorphic form is of type ug. Note that the type ug
does not depend on &'
By [Ike94, Theorem 3.2], £g¢ belongs to the space V(Eai11,) for each sufficiently large in-

5(2”)

teger k. It follows that, when k" extends over sufficiently large integers, (&, n

compatible family of Eisenstein series. By Lemma 7.4,

> N <H Fy(Hsg(N); Oép)>qN/A
N=1

p|N

)s.¢(7) make up a

is a vector-valued automorphic form with type ug. It follows that

> Og(Sim2) Y N (H Fy(Hs ¢(N); ap)>qN/A
N=1

Ee= p|N
is a Jacobi form with index S. For
_fa b
’Y - c d 9
we put
1m—1 0 Om—l 0
_ 0 a 0 b
T Om—l 0 1m—l 0
0 c 0 d

Then we have F(Z)|agrony = F(Z) for any v € SLy(Z). It is proved by Klingen [Kli56] that I‘(Km)

is generated by F%n()x) and
Om _]-m
1, Op
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(see also §12). Therefore F|ogio, g = (detg) *"F for any g € F%n). This completes the proof of
Theorem 5.1.

Now we consider Case O. Since the proof for Case O is almost the same as for Case E, we just
describe an outline. Let

B
Eoi(7) 2’“ + Z <Z d?- 1>q € Moy, (SLy(Z))
d|N
be the usual Eisenstein series. Note that the Satake parameter of Ey, is {pF~ 1/2), _k+(1/2)}.

DEFINITION 10.1 (Case O). We define a compatible family of Eisenstein series {Fop/ (7)}prpy as
follows. A compatible family of Eisenstein series is a family {Fop/(7)}x of modular forms

Fow (1) = b(2K;0) + > NF=O2p2k’; N
NeQf
satisfying the following conditions (1), (2), and (3):
(1) Fopr € V(Eqy) for any integer k' > ky;
(2) for each N € Qi, there exists an element ®y(X) € R such that
b2 N) = D (™ H0/2;
(3) there exists a congruence subgroup I' C SLy(Z) such that Fopr € Moy (T) for all &' > k.

As in Case E, one can prove the following lemma.

LEMMA 10.2. Let
f(r) =) a(N)g" € So(SLa(Z))

N>0
be a normalized Hecke eigenform and o, a Satake parameter of f(7). Assume that there are a finite-
dimensional representation (u,C?) of K, and ®n(X) = Y@y n(X),...,P4n (X)) € RUN € Q%)
satisfying the following conditions (1) and (2).

(1) For each sufficiently large integer k’, there exists a vector-valued modular form
Forr (1) = b(2K:0) + Y N*=O/2p(2k; N)g™
NeQX

of type u.
(2) For each i (1 < i < d), the ith component F; o/ (7) of Fo (7) is a compatible family of
FEisenstein series such that

bi(2k'; N) = ®; y({p ¥ T/},
Here b(2K'; N) = *(b1(2K/; N), ..., bg(2K'; N)).

Put

= > NFUPan({a,})g"

NeQ}

Then we have h(t) € Z(V(f)% u).

The proofs of Lemma 10.2 and Theorem 5.2 are the same as in Case E.
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11. Existence of some hermitian matrices

LEMMA 11.1. If m is divisible by 4, then there exists an element Hy € A,,,(O)" such that v(H;) = 1.

Proof. We may assume that m = 4. We define hermitian matrices Hs and Hy by
0 -1 D2 0
_ /TPl 2 _
H,=vD <12 O), i, <0 13).

Then Hy € Ay(O), Hy > 0 and det Hy = det Hy. Since det Hg = det Hy, there exists an element
X, € GL4(K}) such that Hs = X,H;'X,, for each prime p (cf. Scharlau [Sch85]). Replacing X, by

det X;1 0
p
Xp < 0 13> ’

we may assume that X, € SL4(K,). We may also assume that X, € SL4(O,) for almost all p.
By the strong approximation theorem for SLy, there exists an element X € SL4(K) such that
X~1X, € SLy(O,) for any p. Put Hy = XH,;'X. Then we have H; € Ay(O)" and y(H;) =1. O

LEMMA 11.2. Assume that m is odd. For any integer N > 0, there exists an element Hy € A,,(O)"
such that |y(Hy)| = N.

Proof. By Lemma 11.1, we may assume that m = 1 or 3. If m = 1, we put Hy = (V). The proof
in the case m = 3 is similar to Lemma 11.1. One can take

-N 0 0

~1
Hy=1| 0 0 —/-D7'), H;= <ng 10> .
0 +-D! 0 ?
Then one can find a desired element Hy € A,,,(O)" as in Lemma 11.1. O

LEMMA 11.3. Assume that m = 2n is even. Let N > 0 be a rational integer such that there exists
an element y € OF such that Dyy = (—1)"N mod D. Then there exists an element Hy € A,,(O)T
such that |y(Hy)| = N.

Proof. We may assume that m = 2 or 4. Put z = (Dyy — (—1)"N)/D. In the case m = 2, one can

put
HN=<$ y)
y 1

In the case m = 4, we put

Ty 0 0
|y 1 0 0 _(ND7%2 0
=109 o 0 V=D-1| Hd_( 0 13)°
0 0 —/-D! 0
Then one can find a desired element Hy € A,,(O)" as in Lemma 11.1. O

LEMMA 11.4. If m = 2n is even, then there are an infinite number of primes p such that |y(H)| = p
for some H € A, (O)*.

Proof. If p = (—1)"mod D, then there exists H € A,,,(O) such that |y(H)| = p by Lemma 11.3.
Hence the lemma is proved. O

12. Hermitian modular groups of general type

In this section, we prove some facts about hermitian modular groups. We follow the argument of
Klingen [Kli56].
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For a fractional ideal a of K, the absolute norm of a is denoted by N(a). For an integral ideal
of K, the set of prime divisors of 3 is denoted by Supp(f3).

LEMMA 12.1. Let a be a fractional ideal and b an integral ideal of K. Let a € a=" and b € O be
elements such that (aa,b,b) = 1. Then there exists an element x € a~! such that ((a + zb)a,b) = 1.

Proof. Decompose the integral ideals aa and b into products of integral ideals

aa = By, b=y, (Br,m) = (B2,72) = (11,72) =1

such that Supp(1) = Supp(2). Let 73 be an integral ideal that belongs to the same ideal class as
any_l, such that (73, 3171) = 1. Let  be an element such that (z) = a~!7573. Assume that there is
a prime ideal p such that p|((a + zb)a, b). Then p|F; or p|ye. If p|F2, then p|F1, which is impossible,
since (01, za) = (B1,727y3) = 1 and (51,b) = 1. Now assume that p|y,. This is also impossible, since
plxba and p t aa. Hence the lemma is proved. O

LEMMA 12.2. Let «, ay, as, and m be fractional ideals of K. Then there exist elements y1, y2 € K
such that y; € a, m = yja; + ya20s2.

Proof. Choose a non-zero element 1y € mal_1 Na. Put n = ya;m~!. Choose an integral ideal b that

belongs to the same ideal class as m~'ay, such that (b,n) = 1. Put (y2) = ma, 'b. Then we have

Y101 + Y200 = mn 4+ mb = m. O
We fix fractional ideals aq,...,a,, of O. We define an O-module 9t by
M= {"(ar,...,am) € K™ |a; €a;(i=1,...,m)}.

Note that the isomorphism class of 91 is determined by the ideal class of a; ---a,,. We define a
group U by

U ={g € GLy(K) | g9 = M}.

LEMMA 12.3. Let x = "(x1,...,2) and y = *(y1,...,ym) be column vectors in K™. Then there
exists an element g € U such that gx =y if and only ifxlal_l +o b apant = ylal_1 + o ymant.

Proof. The ‘only if’ part is clear from the definition. We may assume that m > 1. Assume that
a4t rpant = yiayt oo+ yman!t # {0} Let G be the algebraic group defined by G' =
{9 € SL,,(K) | gx = x}. Then the strong approximation theorem holds for G ~ K™ ! xSL,,_1(K).
Put Ry = {g € GLy,,(Kp) | g9, = My} for each prime p of K. Here, M is the closure of M in K"
Then [], & x GLn(C) is an open subgroup of GL;,(Af). Choose an element h € GLy,(K) such
that hx =y. The set

ht <H Ry ¥ GLm((C)> NG(Ag)
p

is a non-empty open subset of G(Ax) by our assumption. By the strong approximation theorem
for GG, there exists an element

geh? (H Ry X GLm((C)> N G(K).
p
Then we have hg € U and hgx =y. U

We define a group T' by

r— {g € U(m,m)(Q) ‘9 (;;) - (99;33’)}’
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where M = {*(a1,...,an) € K™ | a; € ;'(i = 1,...,m)}. We temporarily call T' a hermitian
modular group of general type associated to 91. If M; and My are isomorphic O-modules, then
the corresponding groups I'; and T’y are conjugate by an element of U(m,m)(Q). We define the
subgroups M, Nr, and Nr of T' by

tB =B = (bij), bij S Clz'aj},

 _J(Im O\ |tp_ o _ 1 -1
NF_{(B 1m> B—B—(bi]’),bijECli Clj }

Let us denote the subgroup generated by My, Ny, and Ny by I'. We shall prove that IV = T". To
prove this, we may assume that a; = O, by replacing a; by al_laz-, and T" by

<ﬁ? Pﬂa$1m>11<%r Nhn§*1m>’

Since it is easy to prove that IV = T for m = 1, we consider the case m > 2.

LEMMA 12.4. Assume that m > 2 and that a; = O. Let by,...,by, ¢1,...,¢n be elements of K
satisfying the following properties (1) and (2):

(1) X bia; ' + cidg = O;

(2) bicy + -+ + byém € 7.

Put e; = *(1,0,...,0) € K?™. Then there exists an element g € TV such that
gel :t(blv"'vbmacl7"'7cm)'

Proof. Note that by, c; € O, since a; = O. Note also that the properties (1) and (2) are preserved by
changing *(b1,...,bm,C1, ... ¢m) by g-%(b1,...,bm,c1,...,cm) with g € T. By using Lemmas 12.2
and 12.3, we may assume that c3 = --+ = ¢, = 0. If ¢ = c3 = 0, then *(by,...,b,,) is the first row
of an element of U by Lemma 12.3, in which case we are done. Assume that (¢, c2) # (0,0). Put
a=Y"obat of =37 bia; ! By Lemmas 12.2 and 12.3, we may assume that
C1C9 75 0, O/|CQE(2.

If b1 = 0, we replace by by by + ¢1. Thus we may assume that

(bl,blagl,a,cl) = 1, blclcg 750, C3 = -~ :CmZO, O/|CQEIQ.

Let p be the product of all prime ideals p such that p|by, p { b1. Then we have (beay ', a, p,by) = 1.
By Lemma 12.1, there exists x € ay such that ((by + blm)agl,a,p) = 1. Note that (b1, (b2 +
bix)ay ', a,c; — Zey) = 1. Decompose the integral ideals ((by 4 byx)ay ', @) and by into products of
integral ideals

((ba +brz)ay ' @) = fim, b1 = P,
(Brm) = (B2,72) = (1,72) = 1,
such that Supp(81) = Supp(f2). Put y = N(v;). We shall show that
(b1 +yler — Tea), (by + brz)ay bt ) = 1.

Let p be a prime divisor of the left-hand side. Then we have either p|3; or p|vy1. If p|y1, then we have
ply, and so p|b;, which is impossible. Now we assume that p|3;. Then we have p|fs2, and so p|b;.
It follows that p|y(c1 — Zcg). Note that p|(e; — Zeo) contradicts (b, (b2 + biz)ay ', a, 1 — Zeg) = 1.
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If p|y, then we have p|71, since p|y171 and p|F;. This implies that p 1 by, and so p|p, which contradicts
to ((by + biz)ay ', o, p) = 1. Hence we have (b + y(c; — @ca), (b + biz)a; ' a) = 1. We replace
t(bl,... ,bm,cl,... ,Cm) by

100 |00 0 100 |00 0 by
010 |000 210 (00 0 b2
00 1,,/0 00 00 1,,/00 0 :
y 00 |[100 000 |1 -z 0 ol
000 |010 000 |01 o0 e
000 |00 1, 000 |00 1,

where m’ = m — 2. Then we have b; al_l + b2a2_1 + -+ bna, = O. In this case, the proposition can
be easily proved by using Lemma 12.3. O

Now we prove that I'' = T by induction with respect to m. Let g be any element of T' and put
Y(b1, ..., bmyc1,. .. em) = ger. Then it is easy to see that by, ..., by, c1,. .., ¢y, satisfy the properties
(1) and (2) of Lemma 12.4. By Lemma 12.4, there exists an element h € I' such that ge; = he;.
Put

0 0
0 B
1 0
0

O OO =
Q ol o

D

By the induction hypothesis, we have g; € I'. Clearly, we have g; 'h=1g € T'. Thus we have
g€ hgIV=T".

PROPOSITION 12.5. Put a; = N(a;) (i = 1,...,m). The hermitian modular group I is generated by
MI‘NF and

3

L
S O =IO OO
OOOOQ@O
_ O OO O O

Proof. Put A = diag(ay,...,an). Then we have

0 A 0 A\ -
<A—1 o)NF <A—1 o)zNF'

Thus the proposition follows from Lemma 12.4. O

PROPOSITION 12.6. Let P be the Siegel parabolic subgroup of G = U(m, m). Then we have G(Q) =
P(Q)-T.

Proof. Put G =SU(m,m), P, = PNGy, and I'y =T NG (Q). It is enough to prove that G;(Q) =
Pl (Q) N ].-‘1.
Let Ky be the maximal compact subgroup of Gi(A¢) defined by K1 = Gi(A¢) N ([ ], GLam (Op)).
For j =1,...,m, we choose elements t; € A} such that ordyt; = ordpa;, (tj)e = 1. Put
t = diag(ty, ..., tm,L; oo E00) € G(Ag),
Kr =ttt
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Then we have G1(Q) N KrG;(R) = T'y. Note that the Levi factor of P is isomorphic to {m €
GL,(K) | detm € Q*}. In particular, the class number of P; is 1. Thus we have

P (Q)KrGi1(R) = Pi(A)KrGi(R) = G1(A).

Hence we have

G1(Q) = ~(Q) - (G1(Q) NKrGi1(R)) = A (Q) - T'1.

Hence the proposition is proved. O

13. Extension to the unitary group

In this section, we discuss the extension of Lift(m)( f) to an automorphic form on the adele group of
the unitary group G = U(m, m). Since G need not have class number 1, we need to consider several
congruence subgroups. Let T be the maximal torus of G, which consists of all diagonal elements.
Let K be the maximal compact subgroup of G(A¢) defined by K = G(A¢) N ([, GL2m(Op)).

LEMMA 13.1. There is a natural bijection between the double coset G(Q)\G(A)/KG(R) and the
ideal class group Cx of K.

Proof. Put H = U(1). Then by strong approximation of SU(m,m), there is a bijection G(Q)\G(A)/
KG(R) — H(Q)\H(A)/ZH(R), where Z is the image of I in H(A¢). Consider the exact sequence

1— Ay —Ag — H(A) — 1,
where the map A% — H(A) is given by  +— 2z~ !. One can easily show that 7 C H(Ay) is equal to
the image of [, Oy° C Aj ;. Then we have H(Q)\H(A)/TH(R) ~ A /A5 [], Oy C* ~ Ck. O

Fix a complete set of representatives {71,...,7,} for the double coset G(Q)\G(A)/KG(R). We
may assume that v; = 19, and
t; 0

Let ¢; be the ideal of K such that ord(c;) = ordy((det t;)y), where det t; is considered as an element
of Aj. Then the bijection G(Q)\G(A)/KG(R) — Ck is given by

G(Q)1KLG(R) — the ideal class of ¢;.
Put
=T = G(Q) N (K- G(R)).
Then I'; is a hermitian modular group of general type considered in §12. Put
A (0); ={H € Hn(K) | t; pHt; p € Ay (O,) for any p}.
The set of positive definite elements of A,,(0); is denoted by A,,(0);.
For a holomorphic function F' on ‘H,, and g € G(R), we introduce the notation
Fllag = (detg)' - Fly g.
When [ is clear from the context, we drop it from the notation. For m > 2, put
My (T, det™!) = {F'| F|jgyg = F for any g € T';}.

For m = 1, we require the usual holomorphy condition at cusps. Then F' € MQ[(Fi,det_l) has a
Fourier expansion of the form

F(Z)y= Y A(H)e(HZ).

HeAm(0);
H>0
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The space of cusp forms So;(I';, det™!) is defined by
{F € My/(T;,det™) | A(H) = 0 unless H € A,,(O);}.

Puti=+—1-1,, € H,,. For (F1,...,F,) € EB?:I MQ[(Fi7det_l), we put
(Fi...., Fu(g) = (Filla2)(3) = Fi(a(®) j(z, 1) 2 (det o)’

for g = uyizk, u € G(Q), z € Q(}R) k € K. Then (I, ..., )" is an automorphic form on G(A). We
denote by My (G(Q)\G(A),det™") the space of automorphlc forms obtained in this way. Similarly,
we put So(G(Q)\G(A), det ™ ) {(Fy,...,Fp)t | Fy € Sy(T;,det™)}.

Let fy be the function on G(A) defined by

f2(g) = H|detdd )5t 7(goos 1) % (det goo ),

where g = (gy)» € G(A),

b by
o=t ) (5 ) eron

and kp, € K. We consider the normalized Eisenstein series

m

ES () =2 [[LG -2 Y fabg).

i=1 YEP(Q\G(Q)

Then we have E%”) € Moy (G(Q)\G(A), det_l). We denote the corresponding Eisenstein series for I';
by 8@21. Thus (Si,Qla ey & 2l)ﬁ — g;n) and

Eia(Z)=2""[[LGi—20,x"") D (detg)i(g,2)"*,
i=1 g€l 00\

where I'; oo = P(Q) NT;. Note that P(Q)\G(Q) ~ I'; »o\I'; by Proposition 12.6. As in §4, one can
show that the Hth Fourier coefficient of &; 9(Z) is equal to

[y (H)| /2 H |det ti,pt_i,p‘zl/QFp(t_i,thi,pQp_l+(m/2))
P
for any H € A,,,(O); and any sufficiently large integer . Set
®;(H,X) = [ [ Idet tptip[7/* Fp (£ p Hti i X,) € R
p
Then, for sufficiently large k', the Hth Fourier coefficient of &; gpr 12, is equal to [y(H)[F = (/2 (H,
{p~ ¥+ where n = [m/2], ¢ = m — 2n.

THEOREM 13.2. In Case E, let f(7) € Sor+1(I'o(D), x) be a primitive form with Satake parameter
{ap,Bp}. Then, fori=1,...,h, the Fourier series

F(Z)= )  WE)®i(H {ap})e(HZ)

HGAQn (O)j—

belongs to 52k+2n(1“l(.2"),det_k_"). Put F = (F,... ,Fh)ﬁ. Then F is independent of the choice of
the representatives {y1,...,v}
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THEOREM 13.3. In Case O, let f(7) € Sor(SL2(Z)) be a normalized Hecke eigenform with Satake

parameter {ay,, agl}. Then, for i =1,...,h, the Fourier series
F(Z)= Y hEFY0(H {a,})e(HZ)
H€A2n+1(0)?—

belongs to 52k+2n(rg2n+l)7det_k_n). Put F = (F},..., F;)*. Then F is independent of the choice of
the representatives {y1,...,7}

We prove only Theorem 13.3. The proof of Theorem 13.2 can be treated in the same way.

Proof. By Proposition 12.5, I' = T'; is generated by Mpr Nt and w; (j = 1,...,m), where M, Np
and w; are as in §12. Clearly, F;(Z) is modular with respect to MpNr. As in § 10, one can prove
that F;(Z) is modular with respect to w,,. By permutation of coordinates, F;(Z) is also modular
with respect to w; (j =1,...,m). Therefore F;(Z) is a hermitian modular form with respect to I';.
The modularity of F; follows from this. That F; is a cusp form follows from Proposition 12.6.

We prove that the definition of F is independent of the choice of {71,...,74}. Let M be the
Levi factor of the parabolic subgroup P such that

A 0
M(Q):{<0 tA_1> ‘AEGLm(K)}.
Then the natural map

M@N\M(A)/ (KN M(Ag)) M(R) — G(Q\G(A)/LG(R)

is surjective. Let {7],...,7,},
0
’yz{ = (02 75—(_1) € T(Af)

2

be another set of representatives. Then there exists u; € M(Q) such that t; € u;t;(NM(Ag))M(R).
By multiplying some element in K from the right, we may assume that ¢, = u; t;, where u; = u; u; o,
uis € M(Af), uioo € M(R). Note that

fy-a;:<ui_l O>7f<ui’°° 01>x
! 0 ‘tu;) " 0 tﬂi_po

for z € G(R). We define ] ,, and F} by using the representative 7; instead of 7;. Then we have

. m Ui, 00 0 .
(Esarla)® =BG 50) = (il (5 121 ) ) )

1,00
—1
u; 0
&, = & i V).
i = Coallar | g,

Comparing the Fourier expansion, we have
—1
U, 0
F = F i -
7 1H2k+2n 0 tui )

which implies the desired independence. O

It follows that

DEFINITION 13.4. We call F in Theorem 13.2 or Theorem 13.3 the lift of f(7) to Sax+2,(G(Q)\G(A),
det™"=") and denote it by Lift(™(f).
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Next, we shall show that Lift(m)( f) is a common Hecke eigenform for all Hecke operators if it

m) .

is not identically zero. Recall that the Eisenstein series E(
Hecke operators for (G(A¢), K).

Recall that the action of a Hecke operator can be described as follows. Let T' = KgK be a double
coset for ¢ € G(Ay). Let

is a common Hecke eigenform for all

Kqk = H’CQTa ar € g(Af)a
rel
be a decomposition into a sum of left cosets, where [ is a finite index set. For each r € I, and
Jj€{1,...,h}, choose i, ; € {1,...,h} and u,; € G(Q) such that v;q, € u,;7i, ;KLG(R). Then the
action of the Hecke operator T on Sy (G(Q)\G(A),det ™) is given by

#
(Fla"'a <Z‘FZ7~1H21url7"'7Z‘FinhH2lu7“_J1L>'

rel rel
Note that one can assume that u,; € P(Q) by Proposition 12.6.
PROPOSITION 13.5. For each Hecke operator T for (G(A¢), K), there exists an element ®p € R such
that

|T (I)T({ —k’+(e/2)})E(m)

(m)
E 2k’42n°

2k'4+2n
where ¢ = 0 in Case E and ¢ = 1 in Case O.

Proof. Put E2k,+2n|T (Evr, ..., Epr). Then, by using Proposition 12.6, one can easily show that
E; 1 has a Fourier expansion

Eqr(Z)= Y hE)F e, {p Y
HeAR(O)F

for some @] (X) € R (cf. [Ike01, p. 664]). If m # 2mod 4, then there exists an element H € Ay, (O)

such that |y(H)| = 1 by Lemmas 11.1 and 11.2. For such an H, we have F},(H, X) = 1 for any prime
p. Therefore the eigenvalue is equal to ®} .(H, {p~*+/DV) If m = 2mod 4, there exist an infinite

number of primes p such that p = —y(H) for some H € A,,(O)" by Lemma 11.4. Choose such primes
p1 # p2 with p1 = —y(H;) and p; = —y(Hz). Note that ord,, F},, (H1,X) = ordy, F}, (H2, X) = 1.
By the functional equation, we have F}, (Hy,X) = F,(Hz, X) = 1+ X. It follows that

HFp(HlaXp) = Xp, + Xp117 HFP(H27XP) = Xp, + Xp_zl’
P

By Lemma 7.1, we have
(Xpl +Xp_11) /l,T(H27X) = (sz + Xp_gl) II,T(HhX)'

By unique factorization of R, we have ®} 7(H1,X)/(Xp, + Xp_ll) € R. Hence the proposition is
proved. ]

THEOREM 13.6. The automorphic form Lift(m)( f) is a common eigenform of all Hecke operators
for (G(A¢), ). Moreover, for each Hecke operator T for (G(A¢), ), we have

Lift ™ (HIT = Sr({ep ) Lift"™ (f).
Proof. As in [Ike0O1, §11], the theorem follows from Proposition 13.5 and Lemma 7.1. ]

Let ¢ be an integral ideal of K. We assume that ¢ is prime to D. Set C' = N(c¢). We choose a
finite idele t = (¢,), € Ag ¢ such that ordyt, = ordyc for each prime ideal p of K. Set

t_1m_10 [t 0
Lo t) "7\o t')°
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DEFINITION 13.7. We set

I d = 6(@) N (K- G(R)).
A (O ={H € H,,(K)|H > 0,t,Ht, € Ay (O,) for any p}.
If f € Sor(SLa(Z)) is a normalized Hecke eigenform, then the lift of f in Sgk+2n(an+1) [c], det~F~™)
is denoted by LiftEQnH)( f). Similarly, if f € Sop+1(To(D), x) is a primitive form, then the lift of
f in Sgk+2n(an) [c], det ™*™™) is denoted by Liftgzn)(f). When ¢ = O, we simply drop ¢ from the

notation.

Note that F(Km) [c] is & hermitian modular group of general type considered in §12. We have
Lift!™ (f) = c7Fn ST oy ()P T Bt Hy: p)e(HZ),
HeAs, (0)+ P

where e = m—2[m/2]. If ¢; = O, cq,...,cp is a representative for the ideal class group, then we have

Lift™ () = (Lift™ (£, Lite™ (f), .. Lift™ ()%

The proofs of the following lemmas are the same as for Lemmas 11.2 and 11.3. We omit the
details.

LEMMA 13.8. Assume that m is odd. For any integer N > 0, there exists an element Hy € AS, (O)*
such that Cly(Hy)| = N

LEMMA 13.9. Assume that m = 2n is even. Let N > 0 be a rational integer such that there exists an
element y € ¢~'OF such that CDyj = (—1)"N mod D. Then there exists an element Hy € AS,(O)T
such that Cly(Hy)| = N

14. Linearization of the lifting for Case O

In this section, we consider only Case O. Put m = 2n 4+ 1. We fix an integral ideal ¢ of K such that
C' = N(c) is prime to D. We choose t as in the last section. Let f(7) € Sox(SL2(Z)) be a normalized
Hecke eigenform. For each N > 0, we put

o xetl _ x—e—1
X-Xx-1t 7
U(N;X) =[] ¥p(V; X,) € R.
pIN
Then the Nth Fourier coefficient ay(N) of f is equal to N*¥(N; {a,}).
Fix an element H € A, (O)*. Then F),(t,Ht,; X) belongs to the C-vector space

{® e X o LOHC[X?) | (X7 = &(X)}.

Cly(H)| >
U, ——— X
{ p< P
is a basis of this vector space. It follows that there exists ¢(a, H) € C for each a?|Cy(H) such that
Oy )2 T EGpHty Xp) = Y. éla, H)Y (CM ) X).

plCy(H) a?|Cy(H)

One can easily show that ¢(a, H) € Q. Moreover, ¢(1,H) = 1 for any H € A5, ,(O)", as the
constant term of F,(t,Hty; X) is 1.

U, (N; X) = e = ord, N,

Note that

0<2i < ordefy(H)}
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For each fo(7) = Y noo @, (N)g" € So(SLa(Z)), we put

)@= S S e, H)ay (%)qu

H€A§n+1(o) a?|Cy(H)

If f is a normalized Hecke eigenform, then ¢(f) = C’k+”Lift£2n+l) (f). Since normalized Hecke eigen-
forms span So(SLa(Z)), the image of ¢ is contained in SQk_l’_Qn(PgnJrl)[c]’ det™+"m).

We shall show that ¢ is injective. Assume that ¢(fy) = 0 for some fy € Sor(SLa(Z)). We show
that all Fourier coefficients of fy are 0. By Lemma 13.8, there exists an element Hy € A, (O)"
such that Cly(Hy)| = N. Then the Hyth Fourier coefficient of «(fy) is ag, (IV) + (lower terms).
It follows that af,(/N) = 0 by induction. Thus we have proved the following theorem.

THEOREM 14.1. There exists an injective linear map
Lt Soe(SLa(Z)) — Sapran (@[], det ")
satisfying the following properties:
(1) for each fo = n-gas(N)g" € Sox(SLa(Z)),we have
Clyv(H
) (2)= >, >, (e Ha <%>e<m>;

HEAS, 1 (0) a?|Cy(H)
(2) if f(r) € So(SLa(Z)) is a normalized Hecke eigenform, then (f) = C*+Lift!*" TV ().

COROLLARY 14.2. Let f(7) € Sor(SL2(Z)) be a normalized Hecke eigenform. Then Liftgznﬂ)(f) is
not identically zero.

Obviously, Corollary 14.2 implies that Lift(2”+1)( f) # 0 for any normalized Hecke eigenform
[ € S2,(SLa(Z)).

15. Linearization of the lifting for Case E

In this section, we consider Case E. Put m = 2n. We fix an integral ideal ¢ of K such that C' = N(c)
is prime to D. We are going to show that the lifting can be described by a linear map

541 (To(D), X) — Sopyon (T[], det ™),

where S5 (I'o(D), x) is a certain subspace of Sox11(I'0(D), ). Unlike Case O, the subspace S5;

(To(D), x) depends on the ideal class (more precisely, the genus) of c.

Let @p be the set of all primes that divide D. For each prime ¢ € (Jp, we put D, = qordaD

We define a primitive Dirichlet character x, by

xX(N') if (N, q) =1,
Xq(N) = .
0 if q|N,

where N’ is an integer such that

1 mod Dq_lD.

Then we have x = [] qlD Xa- Note that D, is the conductor of x, and that x, corresponds to the
quadratic field with discriminant x,(—1)D,. One should not confuse y, with X,

N = {N mod D,,

LEMMA 15.1. If ¢t N, then x4(N) = Xq(N)'
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Proof. Since x4 corresponds to Q(1/xq(—1)Dg)/Q, we have

Xq(=1)Dg, N
u = (Mg
_ <—D,N> " H <Xq/(—1)Dq/,N>'
Qq q€Qp Qq
a'#q
In this equation, the second factor is trivial since both x4 (—1)Dy and N are units in Qg, and
Xq¢(—1)Dy = 1mod 4 if ¢ = 2. O

When @ is a subset of Qp, we set

xo=][xe xo= ] xeo Dao=1]] Ds-

qeqQ q€Qp q€Q
q¢Q

When Q = {q}, X/{q} is simply denoted by x.
As in §13, let ¢ be an integral ideal of K such that C'= N(c¢) is prime to D. Put €(Q) = xq(C).
Then we have
e(0) =¢e(@Qp) =1,
e(@Q)e(Q) =e(QUQ)E(QRNQ),
for any Q,Q" C Qp. By genus theory (see e.g. Hecke [Hec81, §48]), any function € : {Q | Q C

Qp} — {£1} with these properties is obtained in this way. Moreover, two integral ideals ¢ and ¢
give the same function ¢ if and only if ¢ and ¢’ belong to the same genus. If Q@ = {q}, we denote
£({q}) simply by £(q).

We fix a primitive form f = 3" a(N)g" € Sar11(To(D), x). Recall that, for each subset Q C Qp,
there exists a primitive form

Jo= Z b(N)g"™ € Sopt1(To(D), X)
N>0

such that (see Miyake [Miy89, Theorem 4.6.16])
b(p) = xqp)as(p) ifp¢Q,
{b(q) = Xo(@)ar(q) ifqeQ.
Note that (fg)g = for where Q" = (QUQ) — (QN Q).

DEFINITION 15.2. If f € Sop41(Fo(D), x) is a primitive form, we put

=" e@xo(=1)"fo
QCQp

When ¢ = 1, f¢* is simply denoted by f*.
Obviously, (fg)** = e(Q)xq(—1)"f*.

DEFINITION 15.3. Following Krieg [Kri91], we define
ap(NV) = J[ 1 +e@x((-)"N)) = J] (1 +x, (=1)"CN)).

q€@p q€@p
afN
Here, ¢(q) = e({q}). When ¢ = 1, a3,(N) is simply denoted by ap(N). Note that aj,(N) = ap(CN).
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LEMMA 15.4. The Nth Fourier coefficient of fq is equal to

as,(N) = ap(N'Nyas(No) [ | X, (N
q€Q

N = Hporde’ NC/Q _ H qorqu’ NQ — H qorqu
ptD

q€Qp q€Q
q¢Q

Proof. Tt is enough to consider the case when @ = {¢} and ¢|N. In this case, we have
ato(N) = agy(N')ag, (NG)ag, (Ng)
= af(N'Ng)as(N@)xq(N'Ng)xg(Ng)-
By Lemma 15.1, we have x4(N'Ng) = Kq(N/NCIQ)' We shall show that

G(Vg) = (22 ) = x, (V)

It is enough to show that X;(q) = Xq(q), since Ng is a power of ¢. By Lemma 15.1, we have

_Daq
[T wo=II ()
q7'€Qp q€Qp 4
q'#q q'#q

where

By the Hilbert product formula,

Xq(9)x,(a) = <_§<’q> 1 <_<Sz:q>'

PEQD
The first factor on the right-hand side is 1 since ¢ > 0. The second factor is 1 because both —D and
q are units in Q,, and —D = 1mod4 if 2 ¢ Qp. Hence the lemma is proved. ]

COROLLARY 15.5. The Nth Fourier coefficient of f¢* is given by

age(N) = ap(N') [ J(ar(Ny) +x,(=1)"CN)as(N,))
qalD

=ap(N)ag(N') [ (ar(Ng) + x, (=1)"CN)ay (N,)).
ql(D,N)
Here Ny = Nyg. In particular, we have ay«(N) = a5 (N)ay(N) for (N, D) = 1. Note that f* is
characterized as the unique element of Soi11(I'o(D), x) with this property.

COROLLARY 15.6. The form f*(7) = 0 if and only if f(7) comes from a Hecke character of
Q(v/x@(—=1)Dq), for some Q C Qp, £(Q)xq(—1)" = —1. In particular, f* = 0 if and only if n is
odd and f(r) comes from a Hecke character Q(\/—Dq) for some Q@ C Qp, xqo(—1) = —1.

Proof. If f(r) comes from a Hecke character of Q(\/xq(—1)Dgq) with (Q)xo(—1)" = —1, then
obviously f** = 0, since f* = (fg)** = —f**. Conversely, assume that f* = ZQCQD e(@Q)xo(—=1)"
fo = 0. As the primitive forms are linearly independent, there exists a subset Q C @p such that
fo = fand e(Q)xq(—1)" = —1. It follows that f comes from a Hecke character of Q(/xq(—1)Dq)
by Labesse and Langlands [LL79]. O

DEFINITION 15.7. For each primitive form f € Sor+1(To(D), x), put

m(f) =Y e@xqo(=D"™
QCQp
fo=f
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LEMMA 15.8. If k > 0, then 0 < n5,(f) < 2. When k = 0, we have 0 < n5(f) < 4.

Proof. That 7% (f) < 4 follows from Labesse and Langlands [LL79]. To prove the first part, it is
enough to prove that, if k& > 0, then there is no non-empty @ C Qp such that f = fg, xo(—-1) = 1.
Assume that f = fg, Q@ # 0, xo(—1) = 1. Let K¢ be the quadratic field corresponding to xq.
Since xg(—1) = 1, the quadratic field K¢ is real. Then f(7) comes from a Hecke character of Kg.
Comparing the gamma factor, it is impossible if £ > 0. O

LEMMA 15.9. We have f* = 0 if and only if n5,(f) = 0.
Proof. This lemma follows from Corollary 15.6. U

Recall that the Petersson inner product of cusp forms f1, fo € S;(I") for a congruence subgroup
I'" C SLs(Z) is given by

(1o f2) = [SLa(Z) : T - {£1}] ) / F1 () o)y de dy.

I"\$1
The complete adjoint L-function A(s, f, Ad) is defined by
A(s, f,Ad) =Tr(s+ 1)I'c(s + 2k)L(s, f,Ad),
Tr(s) = 7 %0 (s/2), Tc(s) = 2(2r)~°I'(s),
L(s, f,Ad) = [ JI(1 = a8, 'p™*) (1 =)L =, Bpp ™)) [ J(L =)
ptD alD
The following lemma is well known (cf. e.g. Hida [Hid00, Theorem 5.15] for k£ > 0).

LEMMA 15.10. Let f € Sop+1(To(D), x) be a primitive form. Then we have
() =220 LA [+

q|D
In particular, we have (f, f) = (fq, fq) for any Q C Qp.
LEMMA 15.11. Put t = Q) p. Then we have
(f*, 1) = 2 m(H)(F. 1)
Proof. We may assume that f* # 0. Let {Q1,Q2,...,Q;} be a maximal subset such that {fq,,
fQs»-- - fo,} are linearly independent. Then 7, (f)l = 2* and f* = n,(f) 22:1 fo.- Note that
(foi fo;) =0 for1<i, j<I, i#j,

since fg, and fg, are different primitive forms. Therefore we have (f*, f*) = In.(f)*(f, f) =
2% (F){S £)- O

PROPOSITION 15.12. The form f*(7) is identically zero if and only if n is odd and f(7) comes from
a Hecke character of some imaginary quadratic field.

Proof. Tt is enough to prove that f comes from a Hecke character of some quadratic field K’,

then K’ = Q(y/xq(—1)Dg) for some Q@ C Qp. Let p = @), pv be the Hecke character of A*/Q*
corresponding to K’/Q. Then j:(l X X, s0,p) is isomorphic to j:(,op X PpX,» s0,p) for each prime p.

Comparing the conductor, one can shows that either p, or p,,x;l is unramified. It follows that
K'K/K is unramified, and so K’ = Q(y/xq(—1)Dg) for some Q C @p by genus theory. O

LEMMA 15.13. Let fo(7) be an element of So11(I'o(D), x). Assume that the Nth Fourier coefficient
af,(N) is zero whenever (N, D) = 1. Then fo = 0.
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Proof. This is a special case of Miyake [Miy89, Theorem 4.6.8]. O

LEMMA 15.14. Let N be a rational integer. Then there exists an integer y € ¢ *O! such that
CDyy = (—1)"N mod D if and only if a7,(N) # 0.

Proof. As remarked in Krieg [Kri91, p. 670], we have
ap(N) =t{u € ©O*/O | Dui = (—1)"N mod D}.
Choose « € ¢ such that (a, D) = 1. Put ¢ = (a)c™!, €' = N(¢’). Then ¢ and ¢’ are integral ideals
that belong to the same genus. Note that xo(N(a)) = xo(C)xq(C’) =1 for any Q C @p. The map
y — u = ay induces an isomorphism ¢ 'OF/c~! ~ ©Of /O. Then we have
a5,(N) = ap(C'N) = #{u € O*/O | Dua = (-1)"C'N}

=t#{y € < 'O/ | N(a)Dyj = (-1)"C'N}

—t{y € 'O}/ [ CDyy = (—1)"N}.
Hence the lemma is proved. O

LEMMA 15.15. Let N be a positive integer. Then there exists an element H € AS, (O)" such that
Cly(H)| = N if and only if a7,(N) # 0.

Proof. Assume that a7,(N) # 0. Then, by Lemmas 13.9 and 15.14, there exists an element H €
A5, (O)T such that C|y(H)| = N. Conversely, assume that N = C|y(H)| for H € A, (O)". Tt is
enough to prove that Kq(N) = Kq((—l)”C) for any q|D, ¢ N. Since y(H) = (—=1)"NC~' € Z), we

have F,(H,X) = 1. Then Xq('V(H)) = 1 by Lemma 2.2. Hence the lemma is proved. O

DEFINITION 15.16. Let S5; (F'o(D), x) be the space of cusp forms

fo(r) = Z afo(N)qN € Sar11(To(D), x)
N>0

whose Nth Fourier coefficient is zero whenever a7, (V) = 0. If ¢ = 1, then S5;_ ;(T'o(D), x) is simply
denoted by S5, (Lo(D), x)-

Let {fi}ier be the set of primitive forms in Sy41(T'o(D), x). By Corollary 15.5, f&* € S5,
(T'o(D), x). The following proposition is essentially Krieg [Kri91, p. 671, Proposition].

PROPOSITION 15.17. The space S5; | (T'o(D), x) is spanned by { f;i* }ier-

Proof. Let {fi}icr be the set of primitive forms of Soxy1(To(D), x). Then it is well known that
{fi}ier is a basis of Syy1(T'o(D),x). Let g be an element of S5; ,(I'o(D),x). Then g can be
uniquely expressed as a linear combination g = > ;. a; - fi. For Q C Qp, set ¢ = > .cra; - (fi)o-
If (Dg,N) =1, then the Nth Fourier coefficient of g — £(Q)xq(—1)"¢' vanishes. By Lemma 15.13,
we have g = (Q)xq(—1)"¢’. Hence the lemma is proved. O

Let f € Sopt1(I'o(D), x) be a primitive form. In terms of Satake parameters, age(NN) can be
expressed as follows. Put
Xep,N+1 o gX—l ep,N+1
c ( - _1) p g QD7
UP(N; X) = X —&EX
Xer.N +Kp((—1)”CN)X_erN p € Q@p,

where e, y = ord, N and &, = x(p). Put

UE(NV;X) = [ ¥V X,) € R
p|DN
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Then we have afex(N) = N*¥¢(N;{a,}) by Corollary 15.5. Note that ¥¢(N;X) = 0 if and only if
a;,(N)=0.
Fix H € AS,(O)*. Then F,(t,Ht,; X) belongs to the Q-vector space

V={®ecx QX |ox") = X, (C(H))®(X)}.
We put

0 < 20 < ardy (O (1), (S ) 2o,

(5

Fp(tpHty; X) = Y ¢p(p", H)T;, <%; X>

Since

e By |

is a basis of 'V,

prEBL(H)
for some ¢, (p", H) € Q. Note that
1
5 € C~y(H
1 otherwise.

The set B(H) = [[,, Bp(H) can be identified with the set of positive integers a such that a®|Cy(H)
and a5, (C|y(H)|/a*) # 0. For each a = Hp|ap’"1’ € B(H), we put ¢(a, H) =[], ¢p(p"?, H). Then we

have
1 51ty X,) H[ Z ¢pp H)w <C|’Y( )I’Xpﬂ

P P LpreBy(
Z qb(a, H)\P€<O|’Y(2 )|;X>.
a€B(H) “

Here we have used the fact that \Iff,(aQN; X) = ¥ (N; X) for p 1 a. Note that 1 € B(H) by
Lemma 15.15. One can easily see that ¢(1, H) = ( Iy(H)|)~t # 0.
);

g
D
For each fo(1) = Y nwoas(N)g™ € S5, (Lo(D),x), we put

@)= XS aota ag, (S eiiz),
HeAS, (O)t aeB(H)
If f e Sou1(To(D), x) is a primitive form, then
L(f5) = CHLIEE™ (f) € Soppon (T[], det™F™).
Since { fi* }ier spans S5; (Fo(D), x), the image of ¢ is contained in Sngrgn(an) (], det~F=™),
THEOREM 15.18. There exists an injective linear map
: S5741(Do(D), x) = Sarrzn(T"[d], det 77
satisfying the following properties:
(1) for each fo € S5, (T'o(D),x), we have

2= Y ¥ 2’f¢aHafo<%>e<Hz>,

HEAS,, (0)+ acB(H
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where

B(H):{aez

a> 0,a2\C’Y(H)aaD<%> a 0};

(2) if f is a primitive form in Spy11(To(D),det™"""), then 1(f**) = Ck+”Lift£2n)(f).

Proof. We need to prove the injectivity of ¢. Assume that ((fo) = 0 for fy € S5; (T'o(D), x)-
We have to show that az,(N) = 0 for a},(/N) # 0. By Lemma 15.15, there exists an element
Hy € A%, (O)t such that C|y(Hy)| = N. As in Case O, the Hyth Fourier coefficient of ¢(fy) is
equal to a5, (N)tay, (N) + (lower terms). By induction, we have af,(N) = 0. O

COROLLARY 15.19. Let f(7) € Sor+1(I'o(D), x) be a primitive form. Then Lift.(f) = 0 if and only
if f comes from a Hecke character of a field Q(\/xq(—1)Dq) such that e(Q)xq(—1)" = —1.

COROLLARY 15.20. Let f(7) € Sap+1(To(D), x) be a primitive form. Then the following conditions
are equivalent:

(1) Lift®(f) = 0;

(2) fr=0;

(3) n is odd and f(7) comes from a Hecke character Q(,/—Dq) for some QQ C Qp, xo(—1) = —1;
(4) n is odd and f comes from a Hecke character of some imaginary quadratic field.

COROLLARY 15.21. Let f(7) € Sops1(Do(D),x) be a primitive form. Then Lift®™(f) € Sypyon

(G(Q)\G(A), det~*~™) is identically zero if and only if n is odd and f comes from a Hecke character
of K.

Proof. Note that Lift(2”)(f) = 0 if and only if f¢* = 0 for any . Assume that f¢* = 0 for any «.
Then n is odd, since otherwise f* # 0. If n is odd, we have

f o fQD _ 2l—th5* _ 0’

where t = §Qp. Conversely, if n is odd and f = fqg,,, then f* = 0 for any €. Hence the corollary is
proved. ]

16. An example: the case m = 2

The case m = 2 was first considered by Kojima [Koj82] for K = Q(v/—1) and later by
Gritsenko [Gri90]. Krieg [Kri91] and Sugano [Sug85] investigated the Maass spaces for arbitrary
imaginary quadratic field. In this case, Lift(Q)( f) is called the Maass lift of f. Recently, Klosin
[K1o07b] defined the Maass space for U(2,2) in the adelic setting, and constructed the extension of
Lift(2)( f) under the assumption that the class number hg is odd. As we described in § 15, there is
an injective linear map S5, _;(To(D), x)"* — Sar+2(G(Q)\G(A), det=*~1) in this case.

We do not give a detailed proof for the results in this section, as most of the results are not new,
and are contained in the references above (at least when ¢ = O).

Let ¢ be an integral ideal of K such that C' = N(c) is prime to D.

DEFINITION 16.1. The function

F(Z)= Y Ap(H)e(HZ) € Mopso(T' [c], det ™+ 1)
HeA5(0)

satisfies the Maass relation if and only if there is a function
a*F : Z;O — C
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such that

H
Z d2k’+1 * <O|1li(2 )|> fOI'H;éO
dle(H
Here

e(H) = max{q € Z=q | ¢ "H € A(0)}.

Note that the values a}.(N) for a7,(N) = 0 play no role. We denote the space of elements of
M2k+2(I‘g),det_k_l) satisfying the Maass relation by M%Cﬁzs(Fg),det_k_l). We set Sy
(T2, det 1) = Mo (02, det™ 1) N Sappo(TS, det ™1,

It is known that the normalized hermitian Eisenstein series

e _ Bop2Bokiiy (2
F=tnl2) = 8(k+1)(2k + 1) 2h+2(Z)

satisfies the Maass relation for ¢ = O. The function o}, is given by

0 aD(N) =0,
Oz*F(N) — —B2k+1,x/(4k + 2) N =0,
N Y xa(=N/dXgdd* N >0, ap(N) #0
dIN QCQp

(cf. Krieg [Kri91, p. 679]; Krieg [Kri91] assumed w|(2k + 2), but the modification is easy). Using
these results, one can calculate the Laurent polynomial F,(H; X) as follows:

b a—2i
PO DRI S it p1 D,
i=0  j=0
~ b . . .
Fy(H; X) = {3 p' (X% 4 x (y(H))X***) it p|D,2b < a,
PP P X 4 Xt if p|D,2b = a.
1=0

Here a = ord,y(H), and b = ordpe(H). When the class number of K is 1, this has already been
essentially calculated by Nagaoka [Nag92, Theorem 1.3.1]. Using this formula, we have

[TA5) - ¥ o o (Sl q,5<cwvcl<2 1)

dee(H
for H € A5(O)". Tt follows that the map

02 85541 (Do(D). X) — Sarsa(TP[d], det 1)

is given by
CI (I (Ch)
_ 2k+1,
HeA2(O)* dee(H)
In particular, the image of ¢ is contained in S3;% (Fg) [c], det~F1).
For F' € Sop4o (Fg) [c], det™*~1), consider the first Fourier-Jacobi coefficient

d1(T,21,22) = Z AF<< t))e(lT—l—tzl—i—tzg).

lec—17
tec 1ot
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Then there exist functions fl,(7) (u € ¢~ 1O /c1) such that
1 (7—7 21, 22) = Z QM(T, 215 Z2)f[u] (T/O)7
uec— 10t /¢—1

where

H[u} (7—7 21, 22) = Z e(adT +az + CLZQ),
acu+c 1t
Then one can show that:

(1) flu) € Sak41(I'(D)), where I'(D) is the principal congruence subgroup of SLz(Z) modulo D;
(2) flu(m +1) = e(=Cu) fi;

(3) frglews1[§ 0] = —(1/V=D) Lecm10t/e-1 (Cub +vad)) fiu);

(4) fio) € Sak+1(To(D), x)-

If ¢ = O, this is proved in Krieg [Kri91, p. 669]. One can easily treat the general case by using the
theta transformation formula for a hermitian theta function (see Shintani [Shi75], Shimura [Shi97,
AT]). Set

QE)(r) = Y fu(D7).
u€c— 10 /c—1
Then we have Q(F) € S5;, 1 (To(D),x). If F € S%‘"‘_‘";S;(Fg) [c], det 1), then we have
Sy (r) = > arp(N)e(NT/D),

N=—CDuu mod D

7) =) ap(N)ap(N)e(NT).

N>0

It follows that ¢ gives the isomorphism between S5; | (T'o(D), x) and S35 (I i )[c], det~F=1).

17. Petersson norms of Lift(m)(f)

We recall the definition of the Petersson inner product for hermitian modular forms. For Fy, Iy €
Sl(an),a), the Pertersson inner product (F, Fy) is defined by

(Fl,F2>:/( : FI(Z)Fy(Z)(det V)72 dX dY,

where X = (Z +%2)/2, and Y = (Z —'Z)/(2y/—1). The measure dX on the space of hermitian
matrices is defined by dX = [];; dXij Hz‘<j dXz'(j)7 where X = X +/=TX) and XZ(J),XZ'(J») e R.

In this section, we investigate the Petersson norm of the lifts of f. For simplicity, we only consider
the case ¢ = O.

Let f € Sopi1(To(D), x) be a primitive form. Put F = Lift®) (f) e 52k+2(Fg),det_k_1). As we
have seen in § 16, the first Fourier—Jacobi coefficient ¢; of F' has the decomposition
$1(r,21,22) = Y fug (T (7, 21, 22),
oLyl
e[u} (T7 21, 22) = Z e(adT +az + (122),

a=umod O
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where

S (1) = Y. ap(N)e(Nt/D)

N=—Duumod D
for each u € O%/O. Note that f*(7) = > ueotjo Ju) (D7)
The Petersson inner product (¢1, ¢1) is defined by

/ d1(7, 21, 29) 1 (T, 21, 22)y1_4e_”|zl_22|2/y dt1 dwy dts dwo dx dy.
J\(h1xC2)

Here, J = J51(0), T =2+ vV—-1y, 21 =t; + vV—1wy, and 23 = to + V-1 ws.
ProrosITION 17.1. We have
vD
<¢1)¢1> = T Z <f[u]’f[u}>
ue0t/O

Proof (cf. [EZ85, Theorem 5.3]). Since the non-trivial element of the center of SLy(Z) acts on C2/L.,
by (z1,22) — (=21, —22), we have

I\(b1 x C?) = {(7,21,22) | T € SLa(Z)\b1, (21, 22) € (C*/Ly)/{£1}}.
It follows that (¢1, ¢1) is equal to

1

3La(@) T [ Fr () TP

2 E(T(D)\h) R

u,ve0t /O

X / O (7, 21, 22)0p) (T, 21, 22)6_”y|zl_22| dt1 dwy dty dws dx dy,
C2/L,

where L, = {(AT + p, AT + ji) | A\, u € O}. Tt is easy to show that

_ _ D
/ 01 (7, 21, 22)0p) (T, 21, ZQ)S_W‘ZI_ZQF/?J dt1 dwy dts dwsy = 5w£y.
C2/L, 2

Hence the proposition is proved. O
LEMMA 17.2. Set N,, = —Duai € Z/DZ for each u € O%/O. Then we have
{fra) Fr) = aD(Nw) ™ fi0)s fro1)-

Proof. Let Zueoﬁ/o Cfiy be the space generated by {f, | u € O!/O}. Tt is well known that
the space ) o /O C/f[u can be naturally identified with a subrepresentation of the (finite) Weil
representation (cf. Shintani [Shi75]). Let C[O%/O] = @D, D(C[(’)g /Oq4] be the space of functions on
040 = D, Og/(’)q, where (’)2 = 0% ®p O,. Let ¢, € C[O*/O] be the characteristic function
of u € OF/O. Recall that there exists a representation, called the (finite) Weil representation w of
SLy(Z/DZ) on C[O*%/O], that is characterized by:

0) w3 Dpu = e(-un)ou;

(i) w() 8w =—(1/vV/=D) > veot o e(ut + vi)py.
The Weil representation w is a unitary representation with respect to the natural inner product
on C[Of /O] = L?*(O*/O). For each prime q € Qp, let U, be the kernel of the norm map N/, :
Ky — Qg . Note that the group U = [, p Uy acts on C[OF/O]. This action commutes with the
action w of SLy(Z/DZ). We denote by C[Of /O the space of U-invariants in C[O?/O]. This is an
irreducible subrepresentation of w. Then the space Zueoﬁ /0 C f[u] is isomorphic to (C[Oﬁ / (’)]u as a
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representation of SLy(Z/DZ). Put

@u:aD(Nu)_l Z Pu-

veO! /O
Ny=N,

Then f},) corresponds to @, under the isomorphism. Clearly we have ap(Nu)||pull* = [I@ol|?, since
ap(Nu) = #{v € O?/O | N, = N, }. O
PropoSITION 17.3. We have

> Sy f) = D*T! (H 1+ q—1>> (f F)

ue0t/O q|D

Proof. By Lemma 17.2, we have

> (f[u],f[u]>=< > ap(Nu)~ ><f[o fio)

ue0t /O ueOt /O
= #{N mod D [ap(N) # 0} - {fjo), fjo))
= D(H s(1+ q_l)> (fio) fro))-
qlD
Since
0 -1
Z fr) = —V—=Dfol2k11 [1 0} ;
ueOt /O
we have
ue0t /O gelyle;
Since f*(1) = >_,c0t /0 flu)(DT), the proposition follows. O

By Lemmas 15.10 and 15.11, and Propositions 17.1 and 17.3, we have
(61, 61) = 2_2k_3D2k+(3/2)n1(f)A(1,f, Ad).
Sugano [Sug95, Corollary 8.3] has proved that
(F,F) = 27275 D320 2¢(2)A(2, f, Ad, x){b1, P1),

where

£(s) = T'r(s)((s),
( f)Ad X) FR(S)FC(S+2k) ( 7f7Ad7X)7
L(s, f,Ad, x) = [ [I(1 = agp™)(1 = x(p)p—*)(1 = Bop~*)] "
ptD
XH 1—a )1 —ay 279 h
qlD

Note that Sugano has formulated his theorems in terms of orthogonal groups. In particular, the
normalization of the inner products is different from our normalization. By combining our calculation
and Sugano’s result, we obtain the following proposition.

PROPOSITION 17.4. Let f € Sop+1(To(D), x) be a primitive form, and put F = Llft(2)(f). Then we
have

(FF) = m ()27 7D PPr2¢(2)A(L, £, Ad)A(2, f, Ad, x).
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Proposition 17.4 can be proved by using the method of [RS91]. As in Ikeda [Ike06], we can give
a conjecture on the Petersson norm of Lift(m)( f). We define the modified complete L-functions as
follows. Put

R(s.y) = Tc(s)C(s) if 4 is even,
"0 Pels)L(s, x) if i is odd.
For a normalized eigenform f € Sox(SLo(Z)), we put
L(s, f,Ad) if 7 is even,
L(s, f,Ad, x) ifiis odd,
L(s, f,Ad) = [[[(1 = app™*)(1 = p~*)(1 = Bop~*)] ",

p

L(s, f,Ad,x) = [ JI(1 = apx(@)p™*)(1 = x(p)p~*)(1 = Box(p)p~ )] .

A(Sva Ad, XZ) = F(C(S)F(C(S + 2k — 1) X {

Similarly, for a primitive form f € Sor11(To(D), x), we put

L(s, f,Ad) if 7 is even,

As, f,Ad,x') = Te(s)Te(s + 2K) x
(s, f,Ad,x") = Tc(s)l'c(s ) {L(s,f,Ad,x) if i is odd.

CONJECTURE 17.5. Let f € So1(SL2(Z)) be a normalized Hecke eigenform. Then the Petersson
norm of F = Lift(2"+1)(f) is given by

2n+1
(F,F) =2°DA(1, f,Ad) J] AG,xX)AG, £,Ad, x*)
=2
for some integers v and § depending only on n and k.
CONJECTURE 17.6. Let f € Sopt1(I'o(D),x) be a primitive form. Then the Petersson norm of
F = Lift®™(f) is given by
2n

(F,F) = na(£)27DOA(L, £, Ad) [T AG, X)AG, f,Ad,x'™)

=2

for some integers v and § depending only on n and k. For the definition of ,,(f), see Definition 15.7.

18. An interpretation in terms of automorphic representations

Let f be as in Theorem 5.1 or as in Theorem 5.2. Now we consider the L-function of Lift(m)( f)-
Recall that the L-group of G = U(m,m) is described as

LG = QLy, (T) x W,

where Wy is the Weil group of Q. The action of Wy on GLa,, (C) factors through Wo — Gal(K/Q)
and the non-trivial element of Gal(K/Q) acts by g — g*, where

. 0 —wit _ 0 —1
9" = M) gt ),
w1 0 —w1 0
(—1pm-1
wy = - € GL,,(C).
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The homomorphism st : G — GLy,, (C) is defined by

0
(g ) if u e W,
0 g*
0
g otherwise.
g 0

Here, W is the Weil group of K. Let L(s, f, x) be the twist of L(s, f) by x. In terms of the Euler
product, L(s, f,x) is defined by

L(s, f.x) = [ J(1 = apx(®)p**) 7' (1 = Box(p)p™ ) ' [[(X = o, 'p" )

ptD q|D

gXu—

if m is even, and by

L(s, £,x) = [ [ (1 = apx(p)p" )" (1 = Box(p)p* )~
pID
if m is odd. As in [Ike01, § 11], Theorem 13.6 implies the following theorem.

THEOREM 18.1. Let m, n, and f be as in Theorem 5.1 or as in Theorem 5.2. Assume that
Lift ™ (f) # 0. Let L(s, Lift"™(f),st) be the L-function of Lift"™(f) associated to st : G —
GL41,(C). Then up to bad Euler factors, L(s, Lz’ft(m)(f),st) is equal to

[[LGs+Ek+n—it+ g HL(s+k+n—i+3 f.x)
=1

In terms of the Arthur conjecture, Theorem 18.1 can be interpreted as follows. From now on, we
assume the Arthur conjecture. Let Lg be the hypothetical Langlands group for Q. The canonical
homomorphism Lg — Wy is denoted by pr. Let 7 be an irreducible cuspidal automorphic represen-
tation of GLa(Ag) generated by f. Note that the central character w, is equal to x™ 1. We denote
the Langlands parameter of 7 by p, : Lo — GL2(C). We normalize the irreducible representation
Sym™~! : SLy(C) — SL,,(C) so that

ESym™ (x) 7! = wy Sym™  (2)w; !, € SLy(C).

We put
(m) _ (wr(uw)a-1, b-1,
) = (e 3 ) serta)
for u € Lo,
a b
(¢ 3) =t
and put

m—1
) = (M ) 1

for z € SLy(C). Then we get a homomorphism p&m) : Lo X SLa(C) — £G. One can easily show that
L(s,sto p(m)) = L(s, Lift™(f),st). Thus the Arthur parameter of Lift™™ (f) should be p(Tm).

In Case O, 7 can be considered as an automorphic representation of PGLg(A). The automor-
phic representation generated by Lift(m)( f) can be considered as a functorial lift of 7 by the L-
homomorphism

LPGLy x SLy(C) = SLy(C) x Wo x SLy(C) — g
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given by

a b a-Sym™ (z) b-Sym™ ()
<c d> e <c -Sym™ H(z) d-Sym™ !(x) o

In Case E, we take an auxiliary Hecke character { : Ay /K> — C* such that x| A =X Consider
the algebraic groups G’ and Z defined over Q such that

G'(Q) = {(z,9) € K* x GL2(Q) | Ng/g(z) det g = 1},
2@ ={(2") €G'|2€Q} ~Q".
Then there is an exact sequence
1-7—-G —-U(1,1) - 1.

1) is given by (z,9) — zg. Then ¥ ' X 7 induces an automorphic

Here, the map G' — U(1, X
1)(A). Fix an element ug € Wq, ug ¢ Wg. Then one can define an L-

representation 7 of U(1,
homomorphism

LU(1,1) % SLy(C) = GLy(C) x Wo x SLy(C) — LG

a b a-1,, b-1,, a b
<c d) H <c- 1,, d- 1m> x 1, (c d> € GL(C),
i X(u) - 1o xu, u€ Wk,
-1,, O v
up — 1,, Uuo,

Sym™ () 0
T < 0 Sym™L(z) x1, x € SLy(C).

by

The automorphic representation generated by Lift(m)( f) can be considered as a functorial lift of 7
by this L-homomorphism.

We recall Arthur’s conjectural multiplicity formula [Art89]. Let v : Lg x SLy(C) — LG =
G x Wg be an A-parameter for a quasi-split reductive algebraic group G. Let TI(¢)) and TI,(¢))
be the global and local A-packet for 1. Set S = Cent (1)) /Cent(@)w@. The group S is closely
related to the internal structure of the A-packet. Arthur conjectured that there exist a pairing
(8,Ty)v : S x II,(1p) — C and a ‘sign character’ e;(s) € {1} for each s € S and 7, € II,(¢). (In
fact, Arthur treated these objects locally.) For each 7 = @ m,, m, € I, (1), set

1
my () = ﬁ_S Z €y (s) H<37 )
seS v
Then Arthur’s conjectural multiplicity formula says that the multiplicity of 7 in the space of square-
integrable automorphic forms on G(A) is equal to D () My (7).

Now we consider the case 1) = p(Tm). In this case, the sign character e, (s) must be trivial. One

can easily show that

~

{£1} if 7 comes from a Hecke character of K,
{1}  otherwise.

Let 7 = @, 7, be an element of the conjectural A-packet H(,ogm)). If § = {1}, then the Arthur con-
jectural multiplicity formula suggests that any element of the global A-packet should be
automorphic. In particular, Corollary 14.2 is compatible with the Arthur conjectural multiplicity
formula.
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Now assume that S ~ {£1}. Note that m must be even, since a normalized Hecke eigenform of
Sok(SL2(Z)) does not come from a Hecke character of a quadratic field. Let s € S be the non-trivial
element.

For each prime p, 7, is a principal series induced from

(5 7) = mwlemt

rdyx

Here, p, and v, are characters of Q, such that j,(z) = ap and ppv, = X, The local A-packet

Hp(,ogzl)) should consist of the irreducible components of the degenerate principal series induced
from the character

(1p o N, jq, © det) : P(Qp) — C*.

Here, P is the Siegel parabolic subgroup of G. If 7, € Hp(pi’;“) has a vector fixed by the maximal
compact subgroup G(Q,) N GLay,(O)), then the character (x,m,), should be trivial.

At infinite place, the local A-packet should consist of certain cohomologically induced modules
(see Adams and Johnson [AJ87]). If 7, is the lowest weight module of G(R) generated by Lift™(f),
then (s, Too)oo = (—1)"/2 by the result of [AJ87]. Therefore Corollary 15.21 is compatible with the

Arthur conjectural multiplicity formula.

Next, we describe the multiplicity formula for G; = SU(m,m). We consider only Case E. Let 1
be the Arthur parameter Lg x SLy(C) — LG, induced from p(Tm). In this case, the group S can be
identified with the group

{xe | fo=r}

For a prime p, the local A-packet II,(¢) should consist of the irreducible constituents of the degen-
erate principal series induced from the character

(,u?) odet) : P1(Q,) — C*.

Here, P is the Siegel parabolic subgroup of G;. We denote the maximal compact subgroup GL2,,(O))
NGi1(Qp) by Kip. If m, is the element of the packet II,(+) with non-trivial Ky )-fixed vector, then
the pairing (x, ), should be trivial. Let ¢ be an integral ideal of K such that C'= N(c) is prime to

Dy . If mp € I1,(¢) has a Ky [¢]p-fixed vector, where KCq[c], is the closure of I‘(Km) [c]NG1(Q) in G1(Qp),
then the pairing S x Hp(p(Tm)) should be given by

(XQTp)p = XQ(p)Ordea p1{Dg.

For v = oo, we have (X0, Too)oo = XQ(=1)™/2. Set 7 = ® Tp @ Too, Where m, € II,(¢)) has a

p<oo
non-trivial Ky [c],-fixed vector. Then my(7) = 1 if and only if £(Q) = xg(—1)"/? for any Q C Qp
such that fo = f. Therefore Corollary 15.19 is compatible with the Arthur conjectural multiplicity

formula.
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