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Abstract

The hyperbolic random geometric graph was introduced by Krioukov et al. (Phys. Rev.
E 82, 2010). Among many equivalent models for the hyperbolic space, we study the d-
dimensional Poincaré ball (d ≥ 2), with a general connectivity radius. While many phase
transitions are known for the expectation asymptotics of certain subgraph counts, very
little is known about the second-order results. Two of the distinguishing characteristics
of geometric graphs on the hyperbolic space are the presence of tree-like hierarchical
structures and the power-law behaviour of the degree distribution. We aim to reveal such
characteristics in detail by investigating the behaviour of sub-tree counts. We show mul-
tiple phase transitions for expectation and variance in the resulting hyperbolic geometric
graph. In particular, the expectation and variance of the sub-tree counts exhibit an intri-
cate dependence on the degree sequence of the tree under consideration. Additionally,
unlike the thermodynamic regime of the Euclidean random geometric graph, the expec-
tation and variance may exhibit different growth rates, which is indicative of power-law
behaviour. Finally, we also prove a normal approximation for sub-tree counts using the
Malliavin–Stein method of Last et al. (Prob. Theory Relat. Fields 165, 2016), along with
the Palm calculus for Poisson point processes.
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1. Introduction

In this article, we study random geometric graphs on the d-dimensional Poincaré ball, a
canonical model for negatively curved spaces in geometry [15, 41]. Random geometric graphs
were first studied in the 1960s, beginning with [24], as a model of radio communications.
Since then, they have been a thriving topic of research in probability, statistical physics, and
wireless networks (see [35, 38, 42, 3, 4, 26]). In its simplest form, the random geometric
graph can be constructed by taking a set of independent and identically distributed (i.i.d.)
points Xn = {X1, . . . , Xn} on a metric space as its vertex set, and placing an edge between any
two distinct points within a distance rn. Most of the studies on such graphs assume that the
underlying metric space is Euclidean or a compact and convex Euclidean subset. However,
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various applications, especially those in topological data analysis, necessitate more general
metric spaces. For example, the extension to a compact manifold without boundary has recently
been investigated in [8, 9, 18]. A crude one-line summary of these studies is that the behaviour
of the graph on a ‘nice’ d-dimensional manifold is similar to that on a d-dimensional Euclidean
space, though the proofs are technically more challenging and boundary effects need to be
accounted for carefully.

Going beyond the class of nice d-dimensional manifolds with positive curvature and the
Euclidean space with zero curvature, we focus on ‘negatively’ curved spaces in this paper. Such
an investigation on hyperbolic spaces was initiated in [30]. Among many equivalent models
for the hyperbolic space, we focus our attention on the widely used d-dimensional Poincaré
ball. Apart from mathematical curiosity, a good reason for investigating hyperbolic geometric
graphs lies in their properties such as sparsity, power-law degree distribution, small-world
phenomena, and clustering. Such properties are often observed in complex networks. For more
details, see the introductions in [30, 25, 20], where the graph is often referred to as the disk
model or the KPKVB model after the authors of [30]. However, we always call it the hyperbolic
random geometric graph. In a broader sense, our work is an addition to the developing literature
on random structures of hyperbolic spaces (see [12, 6, 5, 34, 31, 40, 17, 21]).

The rest of the article is organized as follows. Sections 1.1 and 1.2 provide simulations on
hyperbolic geometric graphs, and a preview of our results and their implications. In Section 2,
we introduce our setup in detail and state all our results. We compare our results with those
in the existing literature in Section 2.4, and Section 2.5 sketches results for analogous models
in the Euclidean case. This is followed by the proofs in Section 3, where we introduce basic
lemmas on the hyperbolic metric and measure and also the abstract normal approximation
bound or second-order Poincaré inequality from [32] needed for our central limit theorem
(CLT).

1.1. Simulations on hyperbolic geometric graphs

We begin by introducing the Poincaré ball and the hyperbolic random geometric graph.
Though there are other models of hyperbolic spaces, they are all isometric to the Poincaré ball
(see [15, Section 7]); therefore, our results are essentially independent of the model selection.
The d-dimensional Poincaré ball, denoted by

B(ζ )
d := {

(x1, . . . , xd) ∈R
d:x2

1 + · · · + x2
d < 1

}
(1)

with negative curvature −ζ 2, is a d-dimensional open unit ball equipped with the Riemannian
metric

ds2 := 4

ζ 2

|dx|2(
1 − |x|2)2

= 4

ζ 2

dx2
1 + · · · + dx2

d(
1 − x2

1 − · · · − x2
d

)2
, (2)

where | · | denotes the Euclidean norm. Then, the hyperbolic distance between the origin (the
same as the origin in the Euclidean plane) and x ∈ B(ζ )

d is given by dζ (0, x) = ζ−1 log
(
(1 +

|x|)/(1 − |x|)), where dζ is the hyperbolic distance induced by (2). Though B(ζ )
d is topologically

the same as any open Euclidean ball, what matters to us is the metric itself. In the notation of
(2), the Euclidean metric can be specified as ds2 = dx2

1 + · · · + dx2
d, and so, on compact sets

of the unit ball, the two metric elements differ only by a constant. This ensures that various
geometric ingredients in the Euclidean case can be carried over to the Poincaré disk when
restricted to a compact set of the unit ball. However, as |x| ↑ 1 in (2), one would expect that the
geometry of the Poincaré disk significantly differs from that of the Euclidean disk; see Figure 1
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1034 T. OWADA AND D. YOGESHWARAN

FIGURE 1. Geodesic line segments and triangles (red lines), geodesic line segments of unit length (violet
lines), and unit circles with centres on the Poincaré disk (green circles) with ζ = 1. These figures were
drawn using the applet NonEuclid [16].

for hyperbolic lines and circles on the Poincaré disk with d = 2. The reader may refer to [41]
for a rigorous discussion of basic features of hyperbolic spaces and geometry.

Let B(0, R) denote the hyperbolic ball of radius R centred at the origin. In addition to the cur-
vature parameter −ζ 2 in (2), our model involves a second curvature parameter −α2 of another
d-dimensional Poincaré ball B(α)

d . We first choose a sequence of radii Rn → ∞ as n → ∞ and

select Nn
d= Poisson(n) i.i.d. ‘uniform’ points X1, . . . , XNn in B(0, Rn) ⊂ B(α)

d . Here, we mean
‘uniform’ with respect to the hyperbolic volume measure with curvature −α2. We then rep-
resent Xi in the hyperbolic polar coordinates as (ri, �i), where ri is the hyperbolic distance
with respect to the curvature −α2, and �i ∈ [0, π ]d−2 × [0, 2π ) is a uniform random vector
specifying angles. Next, we consider Xi = (ri, �i) as the points of B(ζ )

d by keeping their polar
coordinates fixed, and connect any two points Xi, Xj if 0 < dζ (Xi, Xj) < Rn. In other words,

we sample points uniformly in a growing ball in B(α)
d with respect to the hyperbolic volume

measure with curvature −α2, and form a geometric graph on B(ζ )
d with respect to the hyper-

bolic metric with curvature −ζ 2. We denote the resulting graph by HGn(Rn; α, ζ ), for which
four parameters are involved: the dimension d, two curvature paramaters α and ζ , and the
radii regime Rn. As will be clarified in our later analyses, by choosing two distinct curvature
parameters, one can construct a larger parametric family of random graphs with a richer set of
features. We refer the reader to Remark 1 for a discussion about the dependence of our results
on the individual parameters, not just their ratio, unlike many earlier results. After Definition
1, we briefly remark on the relationship of this model to the random geometric graph on a
stationary Poisson process.
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Figure 2 presents five simulation results with d = 2, n = 1000, ζ = 1, Rn = 2 log 1000 =
13.82, and different choices of α. It is useful to keep in mind that for a small α, the space is
closer to the Euclidean space, in the sense that more points are scattered near the centre. For
a large α, the points near the boundary mainly dominate the asymptotics. Furthermore, by the
geometry of a hyperbolic space, the points near the centre easily connect to many other points,
and so the presence of such points will change the connectivity structure. Additionally, we may
notice a phase transition in the connectivity at α = 1, due to the appearance of points closer
to the centre. Some of the above observations will be crystallized later as rigorous theorems,
while many more still await exploration in future works. We now preview some of our results
and place them in the context of the growing literature on hyperbolic random geometric graphs.

1.2. Tree-like hierarchical structures: a preview of our results and some implications

One of the main characteristics of hyperbolic random geometric graphs is the presence
of tree-like hierarchical structures, implying that the vertices on B(ζ )

d are classified into large
groups of smaller subgroups, which themselves consist of further smaller subgroups (see
[30]). This is reflected in our simulations, illustrating that, as compared to the Euclidean
spaces, the non-amenability of a negatively curved space enables one to embed many more
trees in the space.

The study of the hyperbolic random geometric graph started with [30]. Since then, various
features of the resulting graph have been investigated intensively by many authors. Indeed,
there are a number of publications on the subject, in areas including the structure of large
components [10, 22, 29], the probability of connectivity [11], clique-counts [7], the degree
sequence and clustering [14, 25, 21], the bootstrap percolation process [13], the typical dis-
tances and diameter of components [1, 27, 36], and the spectral properties of the graph [28].
More recently, [23] has proved expectation and variance asymptotics as well as CLTs for the
number of isolated and extreme points for the hyperbolic random geometric graph.

The earlier studies cited above, however, treat only a special case, namely,

d = 2 and Rn = 2ζ−1 log (n/ν) (3)

for some ν ∈ (0, ∞), or similar variants. In contrast, the current study assumes a set of condi-
tions more general than (3). For example, we allow for a general dimension d, and we do not
put any restrictive conditions on Rn as in (3). Under this general setup, the primary objective
of this paper is to uncover the spatial distribution of the tree-like structure via sub-tree counts,
i.e., the number of copies of a given tree in HGn(Rn; α, ζ ). In graph-theoretic language, we
count the number of injective graph homomorphisms from a fixed sub-tree to HGn(Rn; α, ζ ).
Our main results in Theorems 1, 2, and 3 establish expectation asymptotics, variance asymp-
totics, and the normal approximation bounds for the sub-tree counts. All of our asymptotic
results crucially depend on a degree sequence of the tree under consideration as well as the
two curvature parameters −ζ 2 and −α2.

More specifically, the present paper studies a more general sub-tree count, denoted by S(γ )
n ,

γ ∈ (0, 1], which counts sub-trees only on the space B(0, Rn) \ B̊(0, (1 − γ )Rn). In other words,
S(γ )

n counts sub-trees in an annulus with inner radius (1 − γ )Rn and outer radius Rn. In partic-
ular, Sn := S(1)

n denotes the sub-tree counts for the ‘entire’ space B(0, Rn). Our results will
reveal that if α is sufficiently large, i.e., the space B(α)

d is sufficiently hyperbolic (for example,

α = 1.2 in Figure 2), then the asymptotics of S(γ )
n does not depend on γ . In other words, the
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1036 T. OWADA AND D. YOGESHWARAN

FIGURE 2. Simulations of HG1000(R1000; α, 1) for d = 2 with R1000 = 2 log 1000 = 13.82 and different
values of α. Isolated vertices have been omitted.

spatial distribution of sub-trees is mostly determined by those near the boundary of B(0, Rn).
In this case, Sn is well approximated by S(γ )

n for any γ ∈ (0, 1). On the other hand, if α is
small, as in Figure 2 with α = 0.8, the distribution of sub-trees will be affected by those near
the centre of the space, and S(γ )

n no longer approximates Sn. To relate the above phenomena
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TABLE 1. Summary of related results for d = 2, ζ = 1, Rn = 2 log (n/ν), ν ∈ (0, ∞). Here Kk
denotes the number of k-cliques in HGn(Rn;α, 1), Pconn = P(HGn(Rn;α, 1) isconnected), and
Pperc = P(HGn(Rn;α, 1) percolates), where, by percolation, we mean the existence of a giant component,
i.e., a component of size �(n).

Regime/Properties Pconn Pperc E(Kk), k ≥ 2 E(S(γ )
n ), γ ∈ (0, 1) \ {1/2}

Results from [11] [10] [7], [14] Corollary 2
α < 1/2 1 1 Not Known ∼ n1+2γ (k−1−kα)

1/2 < α ≤ 1 − 1/k 0 1 �(n(1−α)k) ∼ n1+γ
∑k

i=1 (di−2α)+

1 − 1/k < α < 1 0 1 �(n) ∼ n1+γ
∑k

i=1 (di−2α)+

1 < α < d(k)/2 0 0 �(n) ∼ n1+γ
∑k

i=1 (di−2α)+

d(k)/2 < α 0 0 �(n) ∼ n

to the context of previous studies, Corollary 2 restates our results in the special case when
Rn = 2(ζ (d − 1))−1 log (n/ν). If d = 2, this clearly reduces to (3). Interested readers wishing
to understand this special case can proceed directly to Section 2.4. In particular, Table 1 com-
pares a part of our results with those of earlier works on connectivity, percolation, and clique
counts. If we take the tree to be a single edge, then Sn denotes the number of edges. Our results
restricted to this case are consistent with the power-law behaviour for degree distributions. Our
results also indicate a similar power-law behaviour for more general sub-tree counts, revealing
the dependence of the exponents on the degree sequence of the tree under consideration and
the parameters α, ζ . This is also explained in detail in Section 2.4.

Let us now add a few words on our proofs. The expectation and variance asymptotics for
sub-tree counts involve the Mecke formula for Poisson point processes and various estimates
for the measure and metric on the Poincaré ball. By virtue of the tree assumption, the relative
angles between points will exhibit sufficient independence (see Lemma 2). For the CLT, we use
the abstract normal approximation result (see [32]) based on the Malliavin–Stein method. To
use this result, we derive detailed bounds on the first- (add-one cost) and second-order differ-
ence operators of the sub-tree counts. In many applications to Euclidean stochastic geometric
functionals, the first- and second-order difference operators are bounded by a constant, but
in our setup, the bounds for these operators are unbounded in n. Nevertheless, we manage to
apply [32] by carefully bounding the difference operators, so that their growth is dominated by
our variance lower bounds (see Remark 3(iii)).

2. Our setup and results

2.1. The Poincaré ball

Our underlying metric space is the d-dimensional Poincaré ball B(ζ )
d in (1), which is

equipped with the Riemannian metric (2), where −ζ 2 represents the negative (Gaussian) cur-
vature with ζ > 0. This is a standard model in the literature, but earlier studies (e.g. [10, 22,
29, 11, 7, 14, 25, 13, 27, 36, 28, 23, 1, 19, 20]) treated only the special case d = 2, whereas we
allow for higher dimensions as well. We mention some of the basic properties of this metric
space, and some more will be stated in Section 3.1. For more details on the Poincaré ball, we
refer the reader to [41, 2], while [15] is a good resource for a quick reading. In what follows,
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we often represent the point x ∈ B(ζ )
d in terms of ‘hyperbolic’ polar coordinates: for x ∈ B(ζ )

d ,
we write x = (r, θ1, . . . , θd−1), where r ≥ 0 is the radial part of x, defined by

r = 1

ζ
log

1 + |x|
1 − |x| ,

and (θ1, . . . , θd−1) ∈ Cd := [0, π ]d−2 × [0, 2π ) is the angular part of x. Let dζ denote the
hyperbolic distance induced by (2); then it satisfies dζ (0, x) = r.

Using the hyperbolic polar coordinates (r, θ1, . . . , θd−1), the metric (2) can be rewritten as

ds2 = dr2 +
(

sinh (ζ r)

ζ

)2(
dθ2

1 +
d−1∑
k=2

k−1∏
i=1

sin2 θi dθ2
k

)
, (4)

from which we obtain the volume element,

dV =
(

sinh (ζ r)

ζ

)d−1 d−2∏
i=1

sind−i−1 θi dr dθ1 . . . dθd−1.

We now generate ‘quasi-uniform’ random points on a sequence of growing compact subsets of
the Poincaré ball. First, we choose a deterministic sequence Rn, n ≥ 1, which grows to infinity
as n → ∞. We assume that the angular part of the random points is uniformly chosen from the
density,

π (θ1, . . . , θd−1) =
∏d−2

i=1 sind−i−1 θi

2
∏d−1

i=1 κd−i−1
, (θ1, . . . , θd−1) ∈ Cd, (5)

where we have set κm = ∫ π

0 sinm θ dθ , and trivially, κ0 = π . We use the symbol π to denote
the angular density as well as the famed constant, but the context makes it clear which of them
we refer to. Given another curvature parameter α > 0, we assume that the density of the radial
part is

ρn,α(r) = sinhd−1 (αr)∫ Rn
0 sinhd−1 (αs)ds

, 0 ≤ r ≤ Rn. (6)

This density is described as the ratio of the surface area of B(0, r) to the volume of B(0, Rn),
where B(0, r) and B(0, Rn) are both defined on B(α)

d . So the density (6) can be regarded as a

uniform density (for the radial part) on B(α)
d . Combining (5) and (6), we can generate uniform

random points on B(α)
d . Since their radial coordinates are bounded by Rn, we can also consider

them as points in B(0, Rn) ⊂ B(α)
d . By using the same hyperbolic polar coordinates, i.e., the

same radial and angular coordinates, we now represent these points in B(ζ )
d as well, and con-

struct the hyperbolic geometric graph in B(ζ )
d . Specifically, we connect any two distinct points

Xi, Xj if 0 < dζ (Xi, Xj) ≤ Rn. Obviously, (6) is no longer a uniform density (for the radial part)

on B(ζ )
d , unless ζ = α; it is called ‘quasi-uniform’.

Though the probability density in (6) looks a little complicated, we shall mostly resort to
the following useful approximation. Set T := Rn − dζ (0, X), where X is a random point with
density ρn,α ⊗ π . Denote by ρ̄n,α(t) the density of T; i.e.,

ρ̄n,α(t) = sinhd−1(α(Rn − t)
)

∫ Rn
0 sinhd−1 (αs)ds

, 0 ≤ t ≤ Rn. (7)

https://doi.org/10.1017/apr.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.1


Sub-tree counts on hyperbolic random geometric graphs 1039

In the sequel, we often denote a random point X with density ρn,α ⊗ π by its hyperbolic polar
coordinates X = (T, �), where � is the angular part, and the radial part is described by T rather
than dζ (0, X). The approximation result below was established for d = 2 in [14]. The proof is
in Section 3.

Lemma 1.

(i) As n → ∞, we have

ρ̄n,α(t) ≤ (
1 + o(1)

)
α(d − 1)e−α(d−1)t

uniformly for 0 ≤ t < Rn.

(ii) For every 0 < λ < 1, we have, as n → ∞,

ρ̄n,α(t) = (
1 + o(1)

)
α(d − 1)e−α(d−1)t

uniformly for 0 ≤ t ≤ λRn.

More concretely, this lemma claims that if t is restricted to [0, λRn] for some fixed λ ∈ (0, 1),
then ρ̄n,α(t) is asymptotically and uniformly equal to α(d − 1)e−α(d−1)t. If there is no such
restriction on the range of t, we can only bound ρ̄n,α(t), up to constant factors, by the same
quantity. For the exact asymptotics of ρ̄n,α(t), we apply the result in Case (ii), while Case (i) is
used for bounding ρ̄n,α(t).

Now we define our main object of interest, the hyperbolic random geometric graph. The first
ingredient is the Poisson point process on B(ζ )

d . For every n ≥ 1, let (Xi, i ≥ 1) be a sequence

of i.i.d. random points on B(ζ )
d with common density ρn,α ⊗ π . Letting Nn be a Poisson ran-

dom variable with mean n, independent of (Xi), one can construct the Poisson point process
Pn = {X1, X2, . . . , XNn} whose intensity measure is n(ρn,α ⊗ π ).

Definition 1. (Hyperbolic random geometric graph) Let Rn → ∞ as n → ∞. The hyperbolic
random geometric graph HGn(Rn; α, ζ ) is a simple, undirected graph whose vertex set is
the Poisson point process Pn with intensity measure n(ρn,α ⊗ π ), and whose edge set is
{(Xi, Xj):Xi, Xj ∈Pn, 0 < dζ (Xi, Xj) ≤ Rn}.

Finally, we remark that even if α = ζ , the process Pn is not the restriction of a station-
ary Poisson process to B(α)

d unless |B(0, Rn)| = n. A random geometric graph on a stationary
Poisson process is a different model, which is actually beyond the scope of this article.

2.2. Expectation and variance asymptotics for sub-tree counts

We introduce the notion of a graph homomorphism to define our sub-tree counts. Suppose
H is a simple graph on [k] := {1, . . . , k} with edge set E(H). Given another simple graph
G = (V(G), E(G)), a graph homomorphism from H to G refers to a function f :[k] → V(G) such
that if (i, j) ∈ E(H), then (f (i), f (j)) ∈ E(G), i.e., the adjacency relation is preserved. We denote
by C(H, G) the number of injective graph homomorphisms from H to G, i.e., of functions f as
above that are injective homomorphisms. Informally, C(H, G) counts the number of copies of
H in G. This can be represented easily as follows:

C(H, G) =
�=∑

(v1,...,vk)∈V(G)

∏
(i,j)∈E(H)

1
{

(vi, vj) ∈ E(G)
}
, (8)
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where
∑ �= denotes the sum over distinct k-tuples v1, . . . , vk and 1{·} is an indicator function.

Notice that the subgraphs counted by C(H, G) are not necessarily induced subgraphs in G
isomorphic to H. By (8), it is easy to derive a monotonicity property: if H1, H2 are simple
graphs on [k] such that E(H1) ⊂ E(H2), then C(H2, G) ≤ C(H1, G).

Let us return to our setup in Definition 1. If Nn ≥ k, we denote a collection of k-tuples of
distinct elements in Pn by

Pk
n,�= := {

(Xi1 , . . . , Xik ) ∈Pk
n :ij ∈ {1, . . . , Nn}, ij �= i� for j �= �

}
. (9)

Set Pk
n,�= = ∅ if Nn < k. Define the annulus Dγ (Rn) := B(0, Rn)\B̊(0, (1 − γ )Rn) for 0 < γ ≤ 1,

where Å denotes the interior of a set A. Constructing the hyperbolic random geometric graph on
Pn ∩ Dγ (Rn) as in Definition 1, we denote it by HG(γ )

n (Rn; α, ζ ). For k ≥ 2, let 
k be a tree with

nodes [k] and edge set E. Our interest lies in the sub-tree counts S(γ )
n := C(
k, HG(γ )

n (Rn; α, ζ )
)

for γ ∈ (0, 1]. Recalling that Ti = Rn − dζ (0, Xi) and using (8), one can represent S(γ )
n as

S(γ )
n =

∑
(X1,...,Xk)∈Pk

n, �=

∏
(i,j)∈E

1
{
0 < dζ (Xi, Xj) ≤ Rn, Ti, Tj ≤ γ Rn}. (10)

In particular, we write Sn := S(1)
n . Then Sn = C(
k, HGn(Rn; α, ζ )

)
. Our first result gives the

asymptotic growth rate of E(S(γ )
n ) for γ ∈ (0, 1].

Theorem 1. Let 
k be a tree on k vertices (k ≥ 2) with degree sequence d1, . . . , dk, and let
S(γ )

n be the sub-tree counts in (10). For γ ∈ (0, 1) \ { 1
2 }, we have

E

(
S(γ )

n

)
∼
(

2d−1

κd−2

)k−1

αk(d − 1) nke−ζ (d−1)(k−1)Rn/2
k∏

i=1

a(γ )
n (di), n → ∞, (11)

where

a(γ )
n (p) :=

∫ γ Rn

0
eζ (d−1)(p−2α/ζ )t/2dt, p ∈N+.

For γ = 1/2, we have

E
(
S(γ )

n

)= �(nke−ζ (d−1)(k−1)Rn/2
k∏

i=1

a(1/2)
n (di)), n → ∞. (12)

Furthermore, let d(1) ≤ d(2) ≤ . . . ≤ d(k) be the degree sequence of 
k arranged in ascending
order. If 2α/ζ > d(k), then, for all γ ∈ (0, 1], we have

E(Sn) ∼E(S(γ )
n ) ∼

(
2d−1

(d − 1)κd−2

)k−1

αk
k∏

i=1

(
α − ζdi

2

)−1

nke−ζ (d−1)(k−1)Rn/2, n → ∞.

(13)

Remark 1. Many of the previous studies cited in Section 1.2 set either α or ζ to be 1,
because in their setup, the asymptotics of the hyperbolic random geometric graph is completely
determined by the ratio α/ζ . The crucial assumption in these studies is

Rn = 2
[
ζ (d − 1)

]−1 log (n/ν) with d = 2, (14)
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for some positive constant ν. In the current study, however, we do not put any stringent assump-
tions on Rn as in (14). Consequently, as seen in (11)–(13), ζ contributes, as an individual
parameter, to the asymptotics of sub-tree counts via the term e−ζ (d−1)(k−1)Rn/2.

Theorem 1 indicates that the asymptotics of E
(
S(γ )

n
)

are crucially determined by the underly-
ing curvatures −ζ 2 and −α2. To make the implication of the theorem more transparent, we fix
ζ and think of α as a parameter. If α > 0 is sufficiently large, i.e., the space B(α)

d is sufficiently
hyperbolic, sub-trees are asymptotically dominated by the contributions near the boundary of
B(0, Rn). More specifically, if 2α/ζ > d(k), then a(γ )

n (di), i = 1, . . . , k, all converge to a positive

constant, and thus the growth rate of E
(
S(γ )

n
)

does not depend on γ , implying that the spatial
distribution of sub-trees is completely determined by those near the boundary of B(0, Rn). In
fact, for each γ ∈ (0, 1), the growth rate of E

(
S(γ )

n
)

coincides with that of E(Sn).

On the other hand, if α becomes smaller, i.e., the space B(α)
d becomes flatter, then the spatial

distribution of sub-trees begins to be affected by those scattered away from the boundary of
B(0, Rn). For example, if d(k−1) < 2α/ζ < d(k), we see that as n → ∞,

a(γ )
n (d(k)) ∼ 1

d − 1

(ζd(k)

2
− α

)−1
eζ (d−1)(d(k)−2α/ζ )γ Rn/2 → ∞,

while a(γ )
n (d(i)), i = 1, . . . , k − 1, all tend to a positive constant. In this case, the growth rate

of E
(
S(γ )

n
)

is no longer independent of γ , and the growth rate becomes faster as γ ↗ 1, i.e., as
the inner radius of the corresponding annulus shrinks. Moreover, if α becomes even smaller, so
that d(k−2) < 2α/ζ < d(k−1), then a(γ )

n (d(k−1)) also asymptotically contributes to the growth rate

of E
(
S(γ )

n
)
. Finally, if 0 < 2α/ζ < d(1), then all of the terms a(γ )

n (di) contribute to the growth

rate of E
(
S(γ )

n
)
.

The corollary below claims that if an underlying tree 
k is a k-star such that
d(k) = k − 1, d(k−1) = · · · = d(1) = 1, then even more can be said about the asymptotics of
log E(Sn).

Corollary 1. Let 
k be a k-star with k ≥ 2. Moreover, assume that Rn satisfies

Rn

log n
→ c, n → ∞, for some c ∈ [0, ∞]

(note that c = 0 or c = ∞ is possible). Let a ∨ b = max{a, b} for a, b ∈R.

(i) If 2α/ζ > k − 1,

E(Sn) ∼
(

2d−1

(d − 1)κd−2

)k−1

αk (α − ζ (k − 1)/2
)−1

× (
α − ζ/2

)−(k−1)
nke−ζ (d−1)(k−1)Rn/2, n → ∞. (15)

(ii) If 1 < 2α/ζ ≤ k − 1,

log E(Sn)

Rn ∨ log n
→ k(c ∨ 1)−1 − α(d − 1)

(
1 ∨ c−1)−1

, n → ∞.

(iii) If 0 < 2α/ζ ≤ 1,

log E(Sn)

Rn ∨ log n
→ k(c ∨ 1)−1 − (d − 1)

(
αk − ζ (k − 1)/2

)(
1 ∨ c−1)−1

, n → ∞.
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Our ultimate goal is to establish the CLT for the sub-tree counts S(γ )
n for 0 < γ ≤ 1. Before

describing it, however, it is important to investigate the variance asymptotics. The theorem
below provides an asymptotic lower bound for Var(S(γ )

n ) up to a constant factor. Similarly
to Theorem 1, if α/ζ > d(k), the lower bound of Var(S(γ )

n ) is independent of γ , whereas it
depends on γ when α/ζ ≤ d(k). Furthermore, if α/ζ > d(k), we can obtain the exact growth
rate of Var(Sn). For two sequences (an) and (bn), we write an = �(bn) if there exists a posi-
tive constant C such that an/bn ≥ C for all n ≥ 1. Furthermore, C∗ denotes a generic positive
constant, which may vary between lines and does not depend on n.

Theorem 2. Let 
k be a tree on k vertices (k ≥ 2) with degree sequence d1, . . . , dk, and let
S(γ )

n be the sub-tree counts in (10). For 0 < γ < 1,

Var(S(γ )
n ) = �

(
n2k−1e−ζ (d−1)(k−1)Rn a(γ )

n (2d(k))
k−1∏
i=1

a(γ )
n (d(i))

2

∨ nke−ζ (d−1)(k−1)Rn/2
k∏

i=1

a(γ )
n (di)

)
. (16)

Suppose further that α/ζ > d(k); then, for all γ ∈ (0, 1], we have

Var(Sn) ∼Var(S(γ )
n ) ∼ C∗[n2k−1e−ζ (d−1)(k−1)Rn ∨ nke−ζ (d−1)(k−1)Rn/2

]
, n → ∞. (17)

The main point of (17) is that the growth rate of Var(Sn) is determined by how rapidly Rn

grows to infinity. To see this in more detail, we consider a special case for which Rn = c log n
for some c ∈ (0, ∞). Then we can observe the following phase transitions:

Var(Sn) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C∗n2k−1−cζ (d−1)(k−1) if 0 < c < 2ζ−1(d − 1)−1,

C∗n if c = 2ζ−1(d − 1)−1,

C∗nk−cζ (d−1)(k−1)/2 if c > 2ζ−1(d − 1)−1.

Moreover, Theorems 1 and 2 imply that, in the case of α/ζ < d(k) < 2α/ζ , Var(S(γ )
n ) grows

super-linearly, while the expectation exhibits only linear growth. A similar phenomenon has
been observed for isolated points in [23, Theorem 1.1]. This is indicative of a power-law
behaviour in the sub-tree counts.

2.3. Central limit theorem for sub-tree counts

Having derived variance bounds, we proceed to prove the CLT for S(γ )
n . Before stating the

normal approximation result, we need to define the two metrics to be used: the Wasserstein
distance dW and the Kolmogorov distance dK . Let Y1, Y2 be two random variables, and let
Lip(1) be the set of Lipschitz functions h : R→R with Lipschitz constant of at most 1. Then
we define the two metrics as follows:

dW (Y1, Y2)= sup
h∈Lip(1)

∣∣E(h(Y1)
)−E

(
h(Y2)

) ∣∣,
dK(Y1, Y2)=sup

x∈R

∣∣ P(Y1 ≤ x) − P(Y2 ≤ x)
∣∣.
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Although we have defined dW , dK as distances between two random variables, they are actually
distances between two probability distributions. Let N denote the standard normal random
variable, and let ⇒ denote weak convergence in R. In our proof, we derive more detailed,
albeit complicated, bounds that indicate the scope for improvement.

Theorem 3. Let 
k be a tree on k vertices (k ≥ 2) with degree sequence d1, . . . , dk, and let
S(γ )

n be the sub-tree counts in (10). Assume further that Rn satisfies

ne−ζ (d−1)Rn/2 → c ∈ (0, ∞]. (18)

For every 0 < a < 1/2, there exists 0 < γ0 < 1/2 such that for all 0 < γ < γ0, we have

dW

⎛
⎝S(γ )

n −E(S(γ )
n )√

Var(S(γ )
n )

, N

⎞
⎠= O(n−a), dK

⎛
⎝S(γ )

n −E(S(γ )
n )√

Var(S(γ )
n )

, N

⎞
⎠= O(n−a). (19)

Furthermore, if α/ζ > d(k), then

Sn −E(Sn)√
Var(Sn)

⇒ N, n → ∞. (20)

Here, we claim that for a small enough γ , the CLT holds for S(γ )
n , and if α/ζ > d(k), the

CLT holds for Sn as well. Heuristically, a larger α/ζ means that the space B(α)
d is more hyper-

bolic relative to B(ζ )
d and hence contains more points in the boundary. So in that case, Sn is

well approximated by S(γ )
n . Note that the CLT for S(γ )

n possibly holds even when the variance
grows super-linearly in n. It is still unclear whether or not the CLT holds for Sn under super-
linear growth of the variance. In [23, Theorem 1.3], it is shown that the CLT for ‘isolated
points’ cannot hold under super-linear growth of the variance. Finally, Remark 4 at the end of
Section 3.3.3 gives a more precise quantification of the bounds in (19).

Remark 2. If the constant c in (18) is finite and 2α/ζ > d(k), we see from (13) that E(Sn)
is asymptotically equal to n, up to constant factors. This implies that Sn behaves similarly
to the subgraph counts in the thermodynamic regime of the Euclidean setting (more detailed
arguments on this point are given in Section 2.5). If c = ∞ in (18), Rn grows more slowly, so
that the spatial distribution of 
k becomes denser. For the sparse phase asymptotics, the first
author’s ongoing work studies the case in which Rn diverges faster than (18), so that E(Sn) is
asymptotically equal to a positive constant. In this case, the tree-like structure rarely occurs,
and Sn will be approximated by a Poisson random variable.

2.4. Special case and comparison with previous studies

The objective of this section is to restate our results in the special case

Rn = 2[ζ (d − 1)]−1 log (n/ν) (21)

for some positive constant ν ∈ (0, ∞). By doing so, we can make an easy comparison with
previous studies. As mentioned before, most earlier works (e.g. [10, 22, 29, 11, 7, 14, 25, 13,
27, 36, 28, 23, 1, 19, 20]) are concerned only with the case

d = 2 and Rn = 2ζ−1 log (n/ν) for some ν ∈ (0, ∞), (22)
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or its variants; hence, (21) serves as a higher-dimensional version of (22). Assuming (21) and
2α/ζ /∈N, it is easy to see that as n → ∞,

a(γ )
n (p) ∼ ∣∣(d − 1)(α − ζp/2)

∣∣−1
(n

ν

)γ (p−2α/ζ )+
, p ∈N+, (23)

where (a)+ = a if a > 0 and (a)+ = 0 otherwise.

Corollary 2. Let Rn = 2[ζ (d − 1)]−1 log (n/ν), let 
k be a tree on k vertices (k ≥ 2) with
degree sequence d1, . . . , dk, and let S(γ )

n be a sub-tree count as in (10). Suppose that 2α/ζ

is not an integer. For γ ∈ (0, 1) \ { 1
2 }, we have, as n → ∞,

E(S(γ )
n ) ∼

(
2d−1

(d − 1)κd−2

)k−1

αk
k∏

j=1

∣∣∣ α − ζ

2
dj

∣∣∣−1
νk−1−γ

∑k
i=1 (di−2α/ζ )+n1+γ

∑k
i=1 (di−2α/ζ )+ ,

and for γ = 1/2, we have

E

(
S(γ )

n

)
= �

(
n1+2−1 ∑k

i=1(di−2α/ζ )+
)

. (24)

Furthermore, as for the variance asymptotics, we have for γ ∈ (0, 1)

Var(S(γ )
n ) = �

(
n1+2γ (d(k)−α/ζ )++2γ

∑k−1
i=1 (d(i)−2α/ζ )+ ∨ n1+γ

∑k
i=1 (di−2α/ζ )+

)
.

If 2α/ζ > d(k), we have for γ ∈ (0, 1]

E(Sn) ∼E(S(γ )
n ) ∼

(
2d−1

(d − 1)κd−2

)k−1

αk
k∏

j=1

(
α − ζ

2
dj

)−1
νk−1n, n → ∞. (25)

If α/ζ > d(k), we have for γ ∈ (0, 1]

Var(Sn) ∼Var(S(γ )
n ) ∼ C∗n, n → ∞.

To avoid repetition, we do not state the corresponding CLT. However, it holds under the
assumptions of Corollary 2. Note that (24) is a partial generalization of [14, Claim 5.2] to
higher dimensions.

Now we compare the results in Corollary 2 with those in the existing literature. If we choose
k = 2 in (25), then Sn represents the number of edges with d(2) = 1. Moreover, Sn/2n denotes
the empirical degree distribution. Then (25) asserts that E(Sn/2n) → C∗ if α/ζ > 1/2. The
convergence of the expected typical degree to a constant indicates that this regime is, in nature,
the thermodynamic regime. Furthermore, when 1/2 < α/ζ < 1, the expected degree distribu-
tion converges to a constant, but the variance diverges. This is consistent with the power-law
behaviour for degree distributions with exponent 2α/ζ + 1, which itself was predicted in [30].
Such a power-law behaviour for degree distributions was proven in [25, 19] for d = 2. For
2α/ζ ≤ 1, the expected average degree grows to infinity, which is again consistent with the
conjecture that the degree distribution has a power-law behaviour with exponent 2 (see [30]).

In Table 1, we summarize some of the results in the existing literature and those in this
paper in the case d = 2, ζ = 1, Rn = 2 log (n/ν), ν ∈ (0, ∞). As seen in Table 1, our results
demonstrate various phase transitions. For example, for 1 < α < d(k)/2, the expected sub-tree
counts grow super-linearly in n, whereas the expected number of k-cliques is linear, and there
is no ‘giant component’. This justifies our observation in Section 1.2 that hyperbolic random
geometric graphs contain many tree-like hierarchical structures, as compared to their Euclidean
counterparts.
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FIGURE 3. Simulations of EG1,100 with πr2
100 = 100 and EG2,500 with πr2

500 = 500, s500 = 1 for d = 2.

2.5. Comparison to subgraph counts of Euclidean random geometric graphs

In this section, we sketch asymptotic results for subgraph counts of analogous random geo-
metric graph models in the Euclidean space. We claim that the behaviour of the subgraph
counts of the Euclidean analogues is significantly different from that of the counts in the
previous sections. For example, in contrast to Theorem 1, the growth rates for the subgraph
counts in the Euclidean case do not depend on the degree sequence of the subgraph under
consideration.

For simplicity, we restrict ourselves to the case α = ζ = 1 and Rn = 2(d − 1)−1 log (n/ν)
for some ν > 0 as in Section 2.4. Then, by Corollary 2, we have that E(En) = �(n), where
En denotes the number of edges in HGn(Rn; 1, 1). We now consider two possible Euclidean
analogues in the setting of Corollary 2. One of them is defined by following the construction
of HGn(Rn; 1, 1), and the other is defined to ensure that the expected degree is of the same
order as HGn(Rn; 1, 1). It is a moot point as to which is the right analogue, and hence we make
comparisons to both. See Figure 3 for the simulations of these Euclidean graphs.

The two analogues are constructed as follows:
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1. Consider Poisson(n) points distributed uniformly in a sequence of growing Euclidean
balls of radius rn → ∞, and connect any two points within a distance of rn (this is
the dense regime). We call this graph EG1,n. It has been defined by mimicking the
construction of HGn(Rn; 1, 1).

2. Consider Poisson(n) points distributed uniformly in a sequence of Euclidean balls of
radius rn, and connect points within a distance sn such that the expected number of
edges grows linearly in n (this is the thermodynamic regime). We call this graph EG2,n.
The expected degree of this graph is of the same order as HGn(Rn; 1, 1).

We now give a sketch of the calculations for the subgraph counts in the above two models,
referring the reader to [38, Chapter 3] for details. Denote by Xn the collection of Poisson(n)
points distributed uniformly in Brn (0) ⊂R

d, where Brn (0) is the d-dimensional ball of radius
rn centred at the origin. Then EGn(rn, sn) denotes the graph with vertex set Xn and edges
between Xi, Xj ∈Xn such that |Xi − Xj| ≤ sn, where | · | is the Euclidean metric. In this notation,
EG1,n = EGn(rn, rn) and EG2,n = EGn(rn, sn), where sn is chosen such that the expected num-
ber of edges grows linearly in n. Let 
 be a connected graph on k vertices, and let Ji,n(
),
i = 1, 2, denote the number of copies of 
 in EGi,n, i = 1, 2. By the Mecke formula, we
have that

E(J1,n(
)) = nk C1

rdk
n

∫
Brn (0)k

∏
(i,j)∈


1
{|xi − xj| ≤ rn

}
dx1 . . . dxk = �(nk).

Since the order of E(J1,n(
)) is the same as that of the complete subgraph on Xn, we call
it the dense regime. We observe that the choice of rn and the degree sequence of 
 do not
contribute to the growth rate of E(J1,n(
)). This shows a striking contrast to the asymptotics
for hyperbolic random geometric graphs in Corollary 2.

As in the above case, assuming sn = o(rn), we can also derive that E(J2,n(
)) =
�
(
nk( sn

rn
)d(k−1)

)
. In the special case of k = 2 and sn = n−1/drn, this implies that the expected

number of edges is asymptotically equal to n, up to a constant factor. The resulting regime
is called the thermodynamic regime (see [38, Chapter 3]), since the expected average degree
(or empirical count of neighbours) is asymptotically constant. In contrast to the hyperbolic
random geometric graph, the above calculation indicates that the asymptotics of E(J2,n(
))
is again independent of the degree sequence of 
 and the choice of rn. Finally, we wish to
emphasize that the broad message remains unchanged even for the second-order results; see
[39, 8] for more detailed computations.

3. Proofs

We first prove the basic lemma on an approximation of the hyperbolic probability density.
Subsequently, Section 3.1 presents a few more lemmas concerned with hyperbolic distance.
Utilizing these lemmas, we prove expectation and variance results for the sub-tree counts in
Section 3.2. Finally, Section 3.3 establishes the required CLT. Throughout this section, C∗
denotes a generic positive constant, which may vary between lines and does not depend on n.

Proof of Lemma 1. We see that

ρ̄n,α(t) = eα(d−1)(Rn−t)
(
1 − e−2α(Rn−t)

)d−1∫ Rn
0 eα(d−1)s

(
1 − e−2αs

)d−1
ds

. (26)
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Applying the binomial expansion

(
1 − e−2αs)d−1 =

d−1∑
k=0

(
d − 1

k

)
(− 1)ke−2αks, s > 0,

we find that
∫ Rn

0 eα(d−1)sds is asymptotically the leading term in the denominator in (26). Using

the obvious inequality
(
1 − e−2α(Rn−t)

)d−1 ≤ 1, we complete the proof of (i).
For the proof of (ii), we need to handle the numerator of (26) as well. By another application

of the binomial expansion, we have that

eα(d−1)(Rn−t)

[
1 +

d−1∑
k=1

(
d − 1

k

)
(−1)ke−2αk(Rn−t)

]
= eα(d−1)(Rn−t)(1 + o(1)

)

uniformly for 0 ≤ t ≤ λRn, where 0 < λ < 1. �

3.1. Lemmas on hyperbolic distance

We first present a crucial lemma that explains why we consider (not necessarily induced)
sub-trees, which are counted as injective homomorphisms in the hyperbolic random geometric
graph. In particular, the conditional independence proven in Lemma 2 below does not hold for
more general subgraph counts. The asymptotics of general subgraph counts is highly non-
trivial not only for ‘induced’ sub-tree counts, but also for even seemingly simple triangle
counts. For the latter case, [14] introduced the notion of a global clustering coefficient defined
as three times the ratio of the number of triangles to the number of paths of length two.

Lemma 2. Let 
k be a tree on k vertices with edge set E. Let X1, . . . , Xk be i.i.d. random
points with common density ρn,α ⊗ π . Define Ti = Rn − dζ (0, Xi), i = 1, . . . , k, and write T =
(T1, . . . , Tk). Then it holds that

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E | T
)=

∏
(i,j)∈E

P
(

dζ (Xi, Xj) ≤ Rn | T
)

almost surely (a.s.).

Proof. Let �i be the angular part of Xi, i = 1, . . . , k. For the proof, it suffices to show that

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E | �1, T
)=

∏
(i,j)∈E

P
(

dζ (Xi, Xj) ≤ Rn | T
)

a.s. (27)

Let us denote by �12 the relative angle between �1 and �2. Then, because of the uniformity
of the angular density of �i in (5), we can derive that the density πrel of �12, which is also the
same as the conditional density of �12|�1, is given by

πrel(θ ) := (κd−2)−1 sind−2 θ, θ ∈ [0, π ]. (28)

Note that dζ (X1, X2) depends only on T1, T2, �12, and so we obtain that

P
(

dζ (Xi, Xj) ≤ Rn | �1, T
)= P

(
dζ (Xi, Xj) ≤ Rn | T

)
a.s. (29)
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Suppose that 
k is of depth 1 rooted at vertex 1. In this case, since X2, . . . , Xk are i.i.d.,

P
(

dζ (X1, Xj) ≤ Rn, j = 2, . . . , k | �1, T
)=

k∏
j=2

P
(

dζ (X1, Xj) ≤ Rn |�1, T)

=
k∏

j=2

P
(

dζ (X1, Xj) ≤ Rn |T) a.s.

Suppose, for induction, that (27) holds for any tree 
k rooted at vertex 1 with depth M ≥ 1.
Assume subsequently that 
k is rooted at vertex 1 with depth M + 1. Let 2, . . . , m be the
vertices connected to 1, and S2, . . . , Sm the corresponding trees rooted at 2, . . . , m. Let E(S�)
be the edge set of S�. Then, from the disjointness of the trees and independence of the points
Xi, we have

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E | �1, T
)=

m∏
�=2

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E(S�) | �1, T
)

a.s.

Now, an application of conditional expectations for each � = 2, . . . , m gives us the desired
result as follows:

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E(S�) | �1, T
)

=E

[
1
{
dζ (X1, X�) ≤ Rn

}
P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E(S�) \ {(1, �)} | ��, T
)∣∣�1, T

]

=E

[
1
{
dζ (X1, X�) ≤ Rn

} ∏
(i,j)∈E(S�)\{(1,�)}

P
(

dζ (Xi, Xj) ≤ Rn | T
)∣∣�1, T

]

=
∏

(i,j)∈E(S�)

P
(

dζ (Xi, Xj) ≤ Rn | T
)

a.s.,

where the induction hypothesis is used for the second equality, and (29) for the third
equality. �

We now mention some lemmas that help us to approximate the Poincaré metric. Given

u1, u2 ∈ B(0, Rn), let θ12 ∈ [0, π ] be the relative angle between the two vectors
−→
Ou1 and

−→
Ou2,

where O denotes the origin of B(ζ )
d . We also define ti = Rn − dζ (0, ui), i = 1, 2.

Lemma 3. Set θ̂12 = (
e−2ζ (Rn−t1) + e−2ζ (Rn−t2)

)1/2
. If θ̂12/θ12 vanishes as n → ∞, then

dζ (u1, u2) = 2Rn − (t1 + t2) + 2

ζ
log sin

(
θ12

2

)
+ O

⎛
⎝( θ̂12

θ12

)2
⎞
⎠ , n → ∞,

uniformly for all u1, u2, with t1 + t2 ≤ Rn − ωn, where ωn = log log Rn.

Proof. Fix a great circle of B(0, Rn) spanned by
−→
Ou1 and

−→
Ou2. Then the hyperbolic law of

cosines yields

cosh
(
ζdζ (u1, u2)

)= cosh ζ (Rn − t1) cosh ζ (Rn − t2) − sinh ζ (Rn − t1) sinh ζ (Rn − t2) cos (θ12).
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Since this great circle is a two-dimensional subspace of B(0, Rn), the rest of the argument is
exactly the same as that for Lemma 2.3 in [19]. �
Lemma 4. In terms of the hyperbolic polar coordinates, let X1 = (t1, �1), X2 = (t2, �2), where
�1, �2 are i.i.d. random vectors on Cd with density π , and t1, t2 are deterministic, representing
the hyperbolic distance from the boundary. With the setup in Lemma 3,

P
(

dζ (X1, X2) ≤ Rn
)∼ 2d−1

(d − 1)κd−2
e−ζ (d−1)(Rn−t1−t2)/2, n → ∞,

uniformly on
{
(t1, t2) : t1 + t2 ≤ Rn − ωn

}
, where κd−2 = ∫ π

0 sind−2 θ dθ and ωn = log log Rn.

Proof. We again denote the relative angle between �1 and �2 by �12. Recall that �12
d=

�12|�1. From the hyperbolic law of cosines, we know that the distance between X1 and X2 is
determined by t1, t2 and their relative angle �12. Since t1, t2 are fixed, by (28) we can write

P
(

dζ (X1, X2) ≤ Rn
)=

∫
C2

d

1
{

dζ (u1, u2) ≤ Rn
}

π (θ1)π (θ2) dθ1dθ2

= 1

κd−2

∫ π

0
1
{

dζ (u1, u2) ≤ Rn
}

sind−2 θ12dθ12,

where we write ui = (ti, θi), i = 1, 2, and θ12 is the relative angle between u1 and u2. Now, we
shall approximate the above integral. Let A12 = eζ (Rn−t1−t2)/2. Claim 2.5 in [19] proves that
A−1

12 /(ωnθ̂12) → ∞ as n → ∞. By virtue of Lemma 3, along with A−1
12 → 0 as n → ∞, we

have, on the set {(t1, t2):t1 + t2 ≤ Rn − ωn},∫ π

A−1
12 /ωn

1
{

dζ (u1, u2) ≤ Rn
}

sind−2 θ12 dθ12 ∼
∫ π

A−1
12 /ωn

1
{

sin
(θ12

2

)
≤ A−1

12

}
sind−2 θ12 dθ12

∼
∫ π

A−1
12 /ωn

1
{
θ12 ≤ 2A−1

12

}
(θ12)d−2 dθ12 ∼ (2A−1

12 )d−1

d − 1
.

Therefore,∫ π

0
1
{

dζ (u1, u2) ≤ Rn
}

sind−2 θ12 dθ12

= o
(
A−(d−1)

12

)+
∫ π

A−1
12 /ωn

1
{

dζ (u1, u2) ≤ Rn
}

sind−2 θ12 dθ12 ∼
(

2A−1
12

)
sd−1

d − 1
, n → ∞,

as required. �

3.2. Proofs of the expectation and variance results

In what follows, we calculate the moments of S(γ )
n . We first introduce some notation to save

space. For ui ∈ B(0, Rn), i = 1, . . . , k, we write

gn,γ (u1, . . . , uk) := 1
{

0 < dζ (ui, uj) ≤ Rn, (i, j) ∈ E, ti ≤ γ Rn, i = 1, . . . , k
}

(30)

and

hn,γ (u1, . . . , uk) := 1
{

0 < dζ (ui, uj) ≤ Rn, (i, j) ∈ E, ti > γ Rn for some i = 1, . . . , k
}
, (31)
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where ti = Rn − dζ (0, ui). Note that gn,γ represents the product of multiple indicator functions

in the right-hand side of (10), while hn,γ is a similar indicator for Sn − S(γ )
n .

Proof of Theorem 1. Let X1, . . . , Xk be i.i.d. random points with density ρn,α ⊗ π , and set
Ti = Rn − dζ (0, Xi) as before. By an application of the multivariate Mecke formula for Poisson
processes (see, e.g., [33, Chapter 4]),

E
(
S(γ )

n

)= nk
E
(
gn,γ (X1, . . . , Xk)

)
= nk

E
[
gn,γ (X1, . . . , Xk)

∏
(i,j)∈E

1{Ti + Tj ≤ Rn − ωn}
]

+ nk
E
[
gn,γ (X1, . . . , Xk)1

{∪(i,j)∈E{Ti + Tj > Rn − ωn}
}]

=: An + Bn, (32)

where ωn = log log Rn. From now on, the argument aims to show that An coincides asymptoti-
cally with the right-hand side of (11). It follows from the conditioning on the radial distances
of X1, . . . , Xk from the boundary and Lemma 2 that

An = nk
E

[
1
{
Ti + Tj ≤ Rn − ωn, (i, j) ∈ E, Ti ≤ γ Rn, i = 1, . . . , k

} ∏
(i,j)∈E

× P
(

dζ (Xi, Xj) ≤ Rn | T
)]

,

where T = (T1, . . . , Tk). Setting t = (t1, . . . , tk), we may write

An = nk
∫ γ Rn

0
dt1 · · ·

∫ γ Rn

0
dtk 1

{
ti + tj ≤ Rn − ωn, (i, j) ∈ E

}
×

∏
(i,j)∈E

P
(
dζ (Xi, Xj) ≤ Rn | t

)
ρ̄n,α(t), (33)

where ρ̄n,α(t) denotes the product of densities in (7):

ρ̄n,α(t) :=
k∏

i=1

ρ̄n,α(ti).

Applying Lemma 4 on the set
{
ti + tj ≤ Rn − ωn, (i, j) ∈ E

}
, we have, as n → ∞,

∏
(i,j)∈E

P(dζ (Xi, Xj) ≤ Rn | t) ∼
∏

(i,j)∈E

2d−1

(d − 1)κd−2
e−ζ (d−1)(Rn−ti−tj)/2

=
(

2d−1

(d − 1)κd−2

)k−1

e−[(k−1)Rn−∑k
i=1 diti]ζ (d−1)/2.

Furthermore, it follows from Lemma 1(ii) that

ρ̄n,α(t) ∼ αk(d − 1)ke−α(d−1)
∑k

i=1 ti , n → ∞,
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uniformly for ti ≤ γ Rn, i = 1, . . . , k. Substituting these results into (33), we obtain

An ∼
(

2d−1

κd−2

)k−1

αk(d − 1) nke−ζ (d−1)(k−1)Rn/2
k∏

i=1

a(γ )
n (di). (34)

We now show that Bn = o(An) as n → ∞, unless γ = 1/2. We check only the case in which
there is an edge joining X1 and X2 such that T1 + T2 > Rn − ωn, while all the other edges satisfy
Ti + Tj ≤ Rn − ωn. However, the argument below can be applied in an obvious way even when
multiple edges satisfy Ti + Tj > Rn − ωn. Specifically, we shall verify

Cn := nk
P
(
dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E, Ti ≤ γ Rn, i = 1, . . . , k,

T1 + T2 > Rn − ωn, Ti + Tj ≤ Rn − ωn, (i, j) ∈ E \ {(1, 2)})= o(An). (35)

Proceeding in the same way as in the computation for An, while applying the obvious bound

1
{
dζ (X1, X2) ≤ Rn

}≤ 1,

we see that

Cn ≤ C∗nke−ζ (d−1)(k−2)Rn/2
n∏

i=3

a(γ )
n (di)

×
∫ γ Rn

0

∫ γ Rn

0
e2−1ζ (d−1)

∑2
i=1 (di−1−2α/ζ )ti 1

{
t1 + t2 > Rn − ωn

}
dt1dt2.

By comparing this upper bound with the right-hand side of (11), we see that it suffices to show
that

Dn := eζ (d−1)Rn/2
∫ γ Rn

0

∫ γ Rn

0
e2−1ζ (d−1)

∑2
i=1 (di−1−2α/ζ )ti 1

{
t1 + t2 > Rn − ωn

}
dt1dt2

= o
(
a(γ )

n (d1)a(γ )
n (d2)

)
, n → ∞. (36)

If 0 < γ < 1/2, then Dn is identically 0; hence, we may restrict ourselves to the case 1/2 <

γ < 1. Without loss of generality, we may assume that d1 ≥ d2 and rewrite Dn as

Dn = eζ (d−1)Rn/2
∫ γ Rn

(1−γ )Rn−ωn

eζ (d−1)(d1−1−2α/ζ )t1/2
∫ γ Rn

Rn−t1−ωn

eζ (d−1)(d2−1−2α/ζ )t2/2dt2dt1.

If 0 < 2α/ζ < d2 − 1, then

Dn ≤ C∗eζ (d−1)[Rn+∑2
i=1 (di−1−2α/ζ )γ Rn]/2

= e(1/2−γ )ζ (d−1)Rn O
(
a(γ )

n (d1)a(γ )
n (d2)

)= o
(
a(γ )

n (d1)a(γ )
n (d2)

)
.

On the other hand, let 2α/ζ > d2 − 1. Then

Dn ≤ C∗eζ (d−1)[(d2−2α/ζ )Rn+(d1−d2)γ Rn]/2 = o
(
a(γ )

n (d1)a(γ )
n (d2)

)
.
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The same result can also be obtained in the boundary case 2α/ζ = d2 − 1, and thus we have
proven (36). Finally, if γ = 1/2, the above calculations imply

Dn = O
(

a(γ )
n (d1)a(γ )

n (d2)
)
, n → ∞,

and thus (12) follows.
We now proceed to proving (13). For 0 < γ < 1, define U(γ )

n = Sn − S(γ )
n . Suppose 2α/ζ >

d(k). Appealing to (11), we obtain

E
(
S(γ )

n

)∼
(

2d−1

(d − 1)κd−2

)k−1

αk
k∏

i=1

(
α − ζdi/2

)−1
nke−ζ (d−1)(k−1)Rn/2,

because, for every i = 1, . . . , k, a(γ )
n (di) converges to (d − 1)−1

(
α − ζdi/2

)−1. Therefore, to
complete our proof, it suffices to verify that

E(U(γ )
n ) = o

(
nke−ζ (d−1)(k−1)Rn/2). (37)

Recalling the notation (31), we apply the Mecke formula to obtain that

E

(
U(γ )

n

)
= nk

E
(
hn,γ (X1, . . . , Xk)

)
= nk

E
[
hn,γ (X1, . . . , Xk)

∏
(i,j)∈E

1{Ti + Tj ≤ Rn − ωn}
]

+ nk
E
[
hn,γ (X1, . . . , Xk)1

{∪(i,j)∈E{Ti + Tj > Rn − ωn}
}]=: A′

n + B′
n.

We can calculate A′
n in almost the same manner as An; the only difference is that when handling

ρ̄n,α(t), we apply the inequality in Lemma 1(i) instead of Lemma 1(ii). We then obtain

A′
n ≤ C∗nke−ζ (d−1)(k−1)Rn/2

∫ Rn

0
dt1 · · ·

∫ Rn

0
dtk

× 1{ ti > γ Rn for some i = 1, . . . , k } e2−1ζ (d−1)
∑k

i=1 (di−2α/ζ )ti

= o
(
nke−ζ (d−1)(k−1)Rn/2).

Here, the second equality follows from the assumption that di − 2α/ζ < 0 for all i = 1, . . . , k.
Furthermore, we can show that B′

n = o
(
nke−ζ (d−1)(k−1)Rn/2

)
; the proof of this is similar to that

of the corresponding result for the derivation of (35) and (36), so we omit it. Thus, we have
(37) as needed to complete the proof of the theorem. �

Proof of Corollary 1. Define S(γ )
n as the sub-tree counts relating to a k-star with d(k) = k − 1,

d(k−1) = · · · = d(1) = 1:

S(γ )
n =

∑
(X1,...,Xk)∈Pk

n, �=

1
{
0 < dζ (X1, Xi) ≤ Rn, i = 2, . . . , k, Ti ≤ γ Rn, i = 1, . . . , k

}
.

We also define U(γ )
n = Sn − S(γ )

n . First, (15) is a direct consequence of (13), so we shall prove
only (ii) and (iii).
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For the proof of (ii), we start by deriving a suitable upper bound for E
(
U(γ )

n
)
. By the Mecke

formula and Lemma 1(i),

E(U(γ )
n ) = nk

P
(
dζ (X1, Xi) ≤ Rn, i = 2, . . . , k, Ti > γ Rn for some i = 1, . . . , k

)
≤ nkk P(T1 > γ Rn ) ≤ C∗nke−α(d−1)γ Rn Rn.

Taking the logarithm on both sides, we get

lim sup
n→∞

log E
(
U(γ )

n
)

Rn ∨ log n
≤ k(c ∨ 1)−1 − α(d − 1)γ

(
1 ∨ c−1)−1.

On the other hand, it follows from Theorem 1 that

E
(
S(γ )

n

)∼ C∗nke−ζ (d−1)(k−1)Rn/2a(γ )
n (k − 1) ∼ C∗nke−α(d−1)γ Rn−ζ (d−1)(k−1)(1−γ )Rn/2,

which implies that, as n → ∞,

log E(S(γ )
n )

Rn ∨ log n
→ k

(
c ∨ 1

)−1 − α(d − 1)γ (1 ∨ c−1)−1 − ζ (d − 1)(k − 1)(1 − γ )
(
1 ∨ c−1)−1

/2.

Moreover, if lim supn→∞ E

(
U(γ )

n

)
/E

(
S(γ )

n

)
< ∞,

lim sup
n→∞

log E(Sn)

Rn ∨ log n
= lim sup

n→∞

log E
(

S(γ )
n

)
Rn ∨ log n

,

and if lim supn→∞ E

(
U(γ )

n

)
/E

(
S(γ )

n

)
= ∞,

lim sup
n→∞

log E(Sn)

Rn ∨ log n
= lim sup

n→∞

log E
(

U(γ )
n

)
Rn ∨ log n

.

Therefore, using the obvious inequalities

lim inf
n→∞

log E

(
S(γ )

n

)
Rn ∨ log n

≤ lim inf
n→∞

log E(Sn)

Rn ∨ log n
≤ lim sup

n→∞
log E(Sn)

Rn ∨ log n

≤ lim sup
n→∞

log E

(
S(γ )

n

)
Rn ∨ log n

∨ lim sup
n→∞

log E

(
U(γ )

n

)
Rn ∨ log n

,

and letting γ ↗ 1, we obtain

log E(Sn)

Rn ∨ log n
→ k(c ∨ 1)−1 − α(d − 1)(1 ∨ c−1)−1, as n → ∞.

The proof of (iii) is very similar to that of (ii), so we omit it. �
Proof of Theorem 2. We start by writing

E
[
(S(γ )

n )2]=
k∑

�=0

E

[ ∑
(X1,...,X2k−�)∈P2k−�

n, �=

gn,γ (X1, . . . , Xk)

× gn,γ (X1, . . . , X�, Xk+1, . . . , X2k−�)

]
=:

k∑
�=0

E(I�),
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5
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a
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a

b

(d)

a

b

FIGURE 4. (a) Let k = 5, i = 1, and j = 3. Take two copies of 
5. (b) Identify vertex 1 in one copy and
vertex 3 in the other copy, and glue them together. The vertex ‘a’ denotes the glued vertex. The degree
sequence of 


(1,3)
9 is {5, 2, 3, 1, 1, 1, 1, 1, 1}. (c) Consider the same 
5 as in (a) and set � = 2. Glue

vertex 2 in one copy of 
5 to vertex 2 in the other copy. Do the same for vertex 3 for the two copies
of 
5; this yields the subgraph H shown here. (d) Removing an edge (a, b) from H, we get one of the
corresponding spanning trees.

where gn,γ is defined at (30). For � = 0, the Mecke formula yields

E(I0) = n2k
[
E
(
gn,γ (X )

)]2 = [
E
(
S(γ )

n

)]2.

Let 

(i,j)
2k−1 be a tree on [2k − 1] (meaning |E| = 2k − 2) formed by taking two copies of 
k

and identifying the vertex of degree di in one copy with the vertex of degree dj in the other

copy. In other words, the degree sequence of 

(i,j)
2k−1 is di + dj, di, dj and a pair of d�’s for

� ∈ [k] \ {i, j} ; see Figure 4(a)–(b).

We first note that I1 =∑k
i,j=1 C

(



(i,j)
2k−1, HG(γ )

n (Rn; α, ζ )
)

, and so, from the identity for E(I0)

above, we have that

Var(S(γ )
n ) =

k∑
�=1

E(I�) ≥E(I1) ≥ E
[
C(
(i′,j′)

2k−1, HG(γ )
n (Rn; α, ζ )

)]
, (38)

where i′ = j′ = (k), that is, di′ = dj′ = d(k). Therefore, applying Theorem 1 to (38), we derive
that

Var(S(γ )
n ) = �

(
n2k−1e−ζ (d−1)(k−1)Rn a(γ )

n (2d(k))
k−1∏
i=1

a(γ )
n (d(i))

2

)
. (39)

Note that owing to (32) and (34), the assumption γ �= 1/2 is not required for the lower bound.
Similarly, by using the bound Ik ≥ C(
k, HG(γ )

n (Rn; α, ζ )
)

and Theorem 1, we get

Var(S(γ )
n ) ≥E(Ik) ≥E

[
C(
k, HG(γ )

n (Rn; α, ζ )
)]= O

(
nke−ζ (d−1)(k−1)Rn/2

k∏
i=1

a(γ )
n (di)

)
.

(40)
Finally, combining (39) and (40) establishes (16).

We now proceed to showing (17). Assume that α/ζ > d(k), and for 0 < γ < 1, write

Var(S(γ )
n ) =∑k

�=1 E(I�) as in (38). To derive exact asymptotics for Var(S(γ )
n ), we need to

derive exact asymptotics for E(I1) and E(Ik) and also show that E(I�) = o
(
E(I1) ∨E(Ik)

)
for

2 ≤ � ≤ k − 1.
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From the representation of I1 before (38) and Theorem 1, we have that

E(I1) =
k∑

i,j=1

E

[
C(
(i,j)

2k−1, HG(γ )
n (Rn; α, ζ )

)]

∼ C∗n2k−1e−ζ (d−1)(k−1)Rn

k∑
i,j=1

k∏
�=1, � �=i,j

a(γ )
n (d�)2a(γ )

n (di + dj)a
(γ )
n (di)a

(γ )
n (dj).

However, because of the constraint α/ζ > d(k), we see that

k∏
�=1, � �=i,j

a(γ )
n (d�)2a(γ )

n (di + dj)a
(γ )
n (di)a

(γ )
n (dj)

tends to a positive constant for all i, j = 1, . . . , k. Thus, we conclude that

E(I1) ∼ C∗n2k−1e−ζ (d−1)(k−1)Rn , as n → ∞.

Similarly, we can verify that E(Ik) ∼ C∗nke−ζ (d−1)(k−1)Rn/2 as n → ∞.
Next we investigate the rate of E(I�) for � = 2, . . . , k − 1. Similarly to I1, we can express

I� as a sum of C(H, HG(γ )
n (Rn; α, ζ )

)
over subgraphs H on [2k − �] formed by identifying �

vertices on two copies of 
k. Choosing a spanning tree 
H of H, and using the monotonicity of
C, we get C(H, HG(γ )

n (Rn; α, ζ )
)≤ C(
H, HG(γ )

n (Rn; α, ζ )
)
; see Figure 4(c)–(d). By the choice

of H and 
H , the vertex degrees are necessarily smaller than α/ζ . Thus, from Theorem 1, we
get that for every 
H ,

E

[
C(
H, HG(γ )

n (Rn; α, ζ )
)]∼ C∗n2k−�e−ζ (d−1)(2k−�−1)Rn/2.

Now, we derive that

E(I�) = O
(
n2k−�e−ζ (d−1)(2k−�−1)Rn/2), � = 2, . . . , k − 1.

Note that for every n ≥ 1, g(m) = nme−ζ (d−1)(m−1)Rn/2 is monotonic in m ∈N+, so either E(I1)
or E(Ik) determines the actual growth rate of Var(S(γ )

n ). Thus, we have that E(I�) = o
(
E(I1) ∨

E(Ik)
)

for all 2 ≤ � ≤ k − 1, and we can conclude that

Var(S(γ )
n ) ∼ C∗[n2k−1e−ζ (d−1)(k−1)Rn ∨ nke−ζ (d−1)(k−1)Rn/2

]
, n → ∞.

Next, let U(γ )
n = Sn − S(γ )

n for 0 < γ < 1. We can finish the proof provided that

Var(U(γ )
n ) = o

(
n2k−1e−ζ (d−1)(k−1)Rn ∨ nke−ζ (d−1)(k−1)Rn/2). (41)

As in the proof for Var(S(γ )
n ), we write

Var(U(γ )
n ) =

k∑
�=1

E

[ ∑
(X1,...,X2k−�)∈P2k−�

n, �=

hn,γ (X1, . . . , Xk)

× hn,γ (X1, . . . , X�, Xk+1, . . . , X2k−�)

]
=:

k∑
�=1

E(J�).
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Repeating the same argument as in the proof of (37) in Theorem 1, we obtain that for all
� = 1, . . . , k,

E(J�) = o
(
n2k−�e−ζ (d−1)(2k−�−1)Rn/2).

Thus, (41) follows. Moreover, by the Cauchy–Schwarz inequality,∣∣Cov(S(γ )
n , U(γ )

n )
∣∣≤√

Var(S(γ )
n )Var(U(γ )

n ) = o
(
n2k−1e−ζ (d−1)(k−1)Rn ∨ nke−ζ (d−1)(k−1)Rn/2),

from which we have

Var(Sn) =Var(S(γ )
n ) +Var(U(γ )

n ) + 2Cov(S(γ )
n , U(γ )

n )

∼ C∗[n2k−1e−ζ (d−1)(k−1)Rn ∨ nke−ζ (d−1)(k−1)Rn/2
]
, n → ∞. �

3.3. Proof of the central limit theorem

The proof relies on the normal approximation bound derived from the Malliavin–Stein
method in [32] (see Theorem 4 below). The Malliavin–Stein method has emerged as a crucial
tool for the approximation of Gaussian, Poisson, and Rademacher functionals. An important
aspect of the method is to express the terms in Stein’s equation in terms of the Malliavin oper-
ators and derive suitable estimates for the latter. The bound in [32] reduces estimates involving
the Malliavin operators to those expressed in terms of more tractable difference operators.
For a more detailed introduction to this subject, see [33, 37]. In our proof, we use only the
first- and second-order difference operators. Our sub-tree counts are U-statistics, and one may
express these difference operators in terms of gn,γ as defined in (30). The bulk of our work
(see Lemmas 5–7) will be in deducing good estimates for these difference operators. By substi-
tuting the obtained estimates and the already derived variance estimates into the second-order
Poincaré inequality, we obtain the required normal approximation.

This section is organized as follows. In Section 3.3.1 we introduce the normal approxima-
tion bound, as well as simplifications for our case. Next, in Section 3.3.2 we derive necessary
estimates for difference operators, which we use in Section 3.3.3 to complete the proof of the
CLT.

3.3.1. Malliavin–Stein bound for Poisson functionals. Let P be a Poisson point process on a
finite measure space X with intensity measure λ( · ). For a functional F of Radon counting
measures (i.e., locally finite collection of points), define the Malliavin difference operators
as follows. For x ∈ X, the first-order difference operator is DxF := F(P ∪ {x}) − F(P). The
higher-order difference operators are defined inductively as D�

x1,...,x�
F := Dx�

(D�−1
x1,...,x�−1

F).
We require only the first- and second-order difference operators. The latter is easily seen
to be

D2
x,yF = F(P ∪ {x, y}) − F(P ∪ {y}) − F(P ∪ {x}) + F(P),

for x, y ∈ X. We say that F ∈ dom D if

E
(
F(P)2)< ∞, E

[ ∫
X

(DxF(P))2λ(dx)
]
< ∞.

The normal approximation bounds in [32, Theorems 1.1 and 1.2] are given in a compact form
but involve the second moments of the product of second-order difference operators. A sim-
plified version of [32, Theorems 1.1 and 1.2] is given in [32, Proposition 1.4], but it does
not suffice for our purposes. Therefore, the bounds we shall use below are those obtained by
combining [32, Theorems 1.1 and 1.2] and [32, Theorem 6.1].
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Theorem 4. ([32, Theorems 1.1, 1.2, and 6.1]) Let F ∈ dom D and let N be a standard normal
random variable. Define

c1 := sup
x∈X

E
(|DxF|5), c2 := sup

x,y∈X
E
(|D2

x,yF|5),
where these supremums are essential supremums with respect to λ and λ2, respectively. Then

dW

(
F −E(F)√
Var(F)

, N

)
≤W1 + W2 + W3,

dK

(
F −E(F)√
Var(F)

, N

)
≤W1 + W2 + W3 + W4 + W5 + W6,

where W1, . . . , W6 are defined as follows:

W1 = 2(c1c2)1/5

Var(F)

[∫
X3

[
P

(
D2

x1,x3
F �= 0

)
P

(
D2

x2,x3
F �= 0

)]1/20
λ3(d(x1, x2, x3)

)]1/2

,

W2 = c2/5
2

Var(F)

[∫
X3

[
P

(
D2

x1,x3
F �= 0

)
P

(
D2

x2,x3
F �= 0

)]1/10
λ3(d(x1, x2, x3)

)]1/2

,

W3 = 1

Var(F)3/2

∫
X
E
(|DxF|3)λ(dx),

W4 = c3/5
1 λ(X)

Var(F)3/2
+ c4/5

1 λ(X)5/4 + 2c4/5
1 λ(X)3/2

Var(F)2
,

W5 = c2/5
1 λ(X)1/2

Var(F)
,

W6 =
√

6(c1c2)1/5 + √
3c2/5

2

Var(F)

[∫
X2

P(D2
x1,x2

F �= 0)]1/10λ2(d(x1, x2)
)]1/2

.

For a self-contained proof, we state [32, Theorems 1.1 and 1.2] in the appendix, explaining
how the above theorem can be deduced using the proof strategy of [32, Theorem 6.1].

In order to apply Theorem 4 to our setup, we take

F = S(γ )
n , λ(dx) = nρ̄n,α(t)π (θ )1{t ≤ γ Rn} dtdθ,

where x is represented by its hyperbolic polar coordinates (t, θ ).
In what follows, we write g = gn,γ (see (30)). Observe that S(γ )

n is a U-statistic and its

Malliavin derivatives have a neat form as follows: for two distinct points x, y ∈ B(ζ )
d ,

DxS(γ )
n =

k∑
�=1

∑
(X1,...,Xk−1)∈Pk−1

n, �=

g(X1, . . . , x, . . . , Xk−1
�

), (42)

D2
x,yS(γ )

n =
∑

1≤�1<�2≤k

∑
(X1,...,Xk−2)∈Pk−2

n, �=

g(X1, . . . , x, . . . , y, . . . , Xk−2
�1 �2

) (43)

+
∑

1≤�2<�1≤k

∑
(X1,...,Xk−2)∈Pk−2

n, �=

g(X1, . . . , y, . . . , x, . . . , Xk−2
�2 �1

),
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where � and the �i denote the positions of the corresponding coordinates. In particular, (42)
represents the number of injective homomorphisms from 
k to HG(γ )

n (Rn; α, ζ ), with one of
its vertices fixed at x and the remaining k − 1 points taken from Pn. Similarly, (43) represents
the number of injective homomorphisms, but here, two of the vertices are fixed at x and y,
respectively.

From (42) and (43), the constants c1, c2 in Theorem 4 have become

c1,n := sup
x∈Dγ (Rn)

E
[|DxS(γ )

n |5], c2,n := sup
x,y∈Dγ (Rn)

E
[|D2

x,yS(γ )
n |5].

For notational convenience later on, we also define

c3,n :=
∫ γ Rn

0

∫
Cd

E
[|DxS(γ )

n |3]ρ̄n,α(t)π (θ )dθdt,

where x is again represented by its hyperbolic polar coordinates (t, θ ). With this notation
and the preliminary facts now available, we can rephrase Wi, i = 1, . . . , 6, in Theorem 4 as
follows:

W1 = 2n3/2(c1,nc2,n)1/5

Var(S(γ )
n )

×
[ ∫

[0,γ Rn]3×C3
d

[P(D2
x1,x3

S(γ )
n �= 0)P(D2

x2,x3
S(γ )

n �= 0)]1/20
3∏

i=1

ρ̄n,α(ti)π (θi)dtidθi

]1/2

,

W2 = n3/2(c2,n)2/5

Var(S(γ )
n )

×
[ ∫

[0,γ Rn]3×C3
d

[P(D2
x1,x3

S(γ )
n �= 0)P(D2

x2,x3
S(γ )

n �= 0)]1/10
3∏

i=1

ρ̄n,α(ti)π (θi)dtidθi

]1/2

,

W3 = nc3,n

Var(S(γ )
n )3/2

,

W4 = n(c1,n)3/5

Var(S(γ )
n )3/2

+ n5/4(c1,n)4/5 + 2n3/2(c1,n)4/5

Var(S(γ )
n )2

,

W5 = n1/2(c1,n)2/5

Var(S(γ )
n )

,

W6 = n
{√

6(c1,nc2,n)1/5 + √
3(c2,n)2/5

}
Var(S(γ )

n )

×
[ ∫

[0,γ Rn]2×C2
d

[P(D2
x1,x2

S(γ )
n �= 0)]1/10

2∏
i=1

ρ̄n,α(ti)π (θi)dtidθi

]1/2

, (44)

where we identify the terms xi with their hyperbolic polar coordinates (ti, θi).

3.3.2. Some auxiliary lemmas for the proof of the central limit theorem. Having already derived
variance bounds in Theorem 2, we now deduce necessary estimates for the Wi terms in (44).
More specifically, Lemmas 5 and 6 below are used to estimate c1,n, c2,n, and c3,n, while Lemma
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7 calculates the rate of the remaining integral terms. These estimates are then substituted into
the Wi terms in (44). Recall that C∗ is a positive generic constant, which is independent of n.

Lemma 5. Let the assumptions of Theorem 3 hold, and let γ ∈ (0, 1/2). Set
ρn := ne−ζ (d−1)Rn/2. For p ≥ 1, define G(1)

p and G(2)
p respectively to be the set of all trees on

{0} ∪ [p] and {−1, 0} ∪ [p]. For a tree T ∈ G(1)
p , let d′

0, d′
1, . . . , d′

p be the degree sequence, and

similarly, for a tree T ∈ G(2)
p , let d′−1, d′

0, . . . , d′
p be the degree sequence. Then we have

c1,n = O
(
ρ5(k−1)

n c′
1,n

)
, (45)

c2,n = O
(
ρ5(k−2)

n c′
2,n

)
, (46)

where

c′
1,n := max

p=k−1,...,5(k−1),

T∈G(1)
p

eζ (d−1)d′
0γ Rn/2

p∏
i=1

a(γ )
n (d′

i),

c′
2,n := max

p=k−2,...,5(k−2),
T∈G(2)

p

eζ (d−1)(d′−1+d′
0)γ Rn/2

p∏
i=1

a(γ )
n (d′

i).

Lemma 6. In the notation of Lemma 5, for 0 < γ < 1/2,

c3,n = O
(
ρ3(k−1)

n c′
3,n

)
,

where

c′
3,n := max

p=k−1,...,3(k−1),
T∈G(1)

p

p∏
i=0

a(γ )
n (d′

i).

Lemma 7. For 0 < γ < 1/2 and 0 < a < 1, we have∫
[0,γ Rn]3×C3

d

[
P(D2

x1,x3
S(γ )

n �= 0)P
(

D2
x2,x3

S(γ )
n �= 0

)]a

×
3∏

i=1

ρ̄n,α(ti)π (θi)dtidθi = O
(
e−ζ (d−1)(1−2γ )Rn

)
,

∫
[0,γ Rn]2×C2

d

[P(D2
x1,x2

S(γ )
n �= 0)]a

2∏
i=1

ρ̄n,α(ti)π (θi)dtidθi = O
(
e−ζ (d−1)(1−2γ )Rn/2).

Remark 3.

(i) One can make the growth rate of the c′
i,n as slow as one likes by choosing γ small

enough. To make this a little more clear, assume, for simplicity, that 2α/ζ is not an
integer. Then, as n → ∞,

c′
1,n ∼ max

p=k−1,...,5(k−1),
T∈G(1)

p

p∏
j=1

∣∣∣ (d − 1)(α − ζd′
j/2)

∣∣∣−1
eζ (d−1)

[
d′

0+
∑p

i=1

(
d′

i−2α/ζ
)

+
]
γ Rn/2.

https://doi.org/10.1017/apr.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.1


1060 T. OWADA AND D. YOGESHWARAN

Note also that ρn → c ∈ (0, ∞] implies Rn = O( log n). Therefore, for any ε > 0, there
exists γ0 > 0 such that for all 0 < γ < γ0, we have that c′

1,n = o(nε). The same claim
holds for c′

2,n, c′
3,n as well.

(ii) The separation of each ci,n into c′
i,n and ρn terms is because c′

i,n depends on γ , whereas
ρn does not.

(iii) In many applications to Euclidean stochastic geometric functionals (see [32, Section 7]),
c1,n, c2.n are shown to be bounded in n, whereas in our case, c1,n, c2.n are unbounded in
n. This is why it is challenging to obtain optimal Berry–Esseen bounds in our normal
approximation result.

Proof of Lemma 5. Fix x ∈ B(ζ )
d . For p = k − 1, . . . , 5(k − 1), let �5(k−1),p denote the set

of all surjective maps from [5(k − 1)] to [p]. From (42), we have that

∣∣DxS(γ )
n

∣∣5 ≤ C∗
k∑

�=1

( ∑
(X1,...,Xk−1)∈Pk−1

n, �=

g(X1, . . . , x, . . . , Xk−1
�

)

)5

= C∗
k∑

�=1

5(k−1)∑
p=k−1

1

p!
∑

σ∈�5(k−1),p

∑
(X1,...,Xp)∈Pp

n, �=

×
5∏

i=1

g
(
Xσ ((i−1)(k−1)+1), . . . , x, . . . , Xσ (i(k−1))

�

)
.

It is possible that under some surjections σ , the coordinates in
(
σ ((i − 1)(k − 1) +

1), . . . , σ (i(k − 1))
)

may repeat for some i, but in such cases, g = 0 by definition; thus,
�5(k−1),p in the last expression can be replaced with

�∗
5(k−1),p = {

σ ∈ �5(k−1),p:σ ((i − 1)(k − 1) + 1), . . . , σ (i(k − 1))

are distinct for all i = 1, . . . , 5
}
.

Now, let us fix � = 1, without loss of generality, and p ∈ {k − 1, . . . , 5(k − 1)}, σ ∈ �∗
5(k−1),p;

then we shall bound

An,p,σ :=E

[ ∑
(X1,...,Xp)∈Pp

n, �=

5∏
i=1

g
(
x, Xσ ((i−1)(k−1)+1), . . . , Xσ (i(k−1))

)]
. (47)

Let Gσ be a simple graph on {0} ∪ [p] with the edge set defined as follows: for every
i = 1, . . . , 5, define

(
σ ((i − 1)(k − 1) + j1), σ ((i − 1)(k − 1) + j2)

) ∈ Eσ if (j1 + 1, j2 + 1) is
an edge in 
k. Similarly we say that

(
0, σ ((i − 1)(k − 1) + j)

) ∈ Eσ if (1, j + 1) is an edge in

k. Then, setting X0 = x, we have that Gσ is the graph counted by the summand in (47), i.e.,

5∏
i=1

g
(
x, Xσ ((i−1)(k−1)+1), . . . , Xσ (i(k−1))

)=
∏

(i,j)∈Gσ

1
{
dζ (Xi, Xj) ≤ Rn

}
. (48)

Now, the surjectivity of σ implies that Gσ is connected, and thus we can always find a
spanning tree G′

σ of Gσ on {0} ∪ [p]. Let d′
0, . . . , d′

p be the degree sequence of G′
σ , and let E′

σ
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be the edge set of G′
σ . By the definitions of An,p,σ , Gσ , G′

σ , together with the monotonicity of
C and the above identity, we have that

An,p,σ =E

[
C(Gσ , HG(γ )

n (Rn; α, ζ )
)]≤E

[
C(G′

σ , HG(γ )
n (Rn; α, ζ )

)]
= np

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E′
σ , Ti ≤ γ Rn, i = 1, . . . , p, t0 ≤ γ Rn

)
, (49)

where t0 = Rn − dζ (0, x) is deterministic, and the Mecke formula is applied at the last equality.
Note that |E′

σ | = p.
Proceeding as in the derivation of (34) and noting that Ti + Tj ≤ Rn − ωn with ωn =

log log Rn always holds as we are taking γ < 1/2, we derive that

An,p,σ ≤ np
∫ γ Rn

0
dt1 · · ·

∫ γ Rn

0
dtp 1{t0 ≤ γ Rn}

∏
(i,j)∈E′

σ

P
(
dζ (Xi, Xj) ≤ Rn | t

)
ρ̄n,α(t)

∼
(2d−1

κd−2

)p
αpnpe−ζ (d−1)pRn/2eζ (d−1)d′

0t0/21{t0 ≤ γ Rn}
p∏

i=1

a(γ )
n (d′

i)

= O
(
ρp

n eζ (d−1)d′
0γ Rn/2

p∏
i=1

a(γ )
n (d′

i)
)
. (50)

Now, let us take the maximum of An,p,σ over all p ∈ {k − 1, . . . , 5(k − 1)}, σ ∈ �∗
5(k−1),p,

and the corresponding spanning tree G′
σ of a degree sequence d′

0, d′
1, . . . , d′

p. Equivalently, we

take the maximum of An,p,σ over all p ∈ {k − 1, . . . , 5(k − 1)} and T ∈ G(1)
p , to conclude that

c1,n = O

(
max

p=k−1,...,5(k−1),
T∈G(1)

p

ρp
n eζ (d−1)d′

0γ Rn/2
p∏

i=1

a(γ )
n (d′

i)

)
. (51)

If ρn → ∞, then clearly ρ
p
n = O(ρ5(k−1)

n ) for all k − 1 ≤ p ≤ 5(k − 1), and hence the bound (45)
holds trivially. Otherwise, ρn → c ∈ (0, ∞), but we can still easily get (45).

Now we shall derive the bound for c2,n in (46). For p ∈ {k − 2, . . . , 5(k − 2)}, let

�∗
5(k−2),p = {

σ ∈ �5(k−2),p:σ ((i − 1)(k − 2) + 1), . . . , σ (i(k − 2)) are distinct for all

i = 1, . . . , 5
}
.

Then, arguing as in the derivation of the bounds for c1,n, we find that the task of bounding

E
[∣∣Dx,yS(γ )

n
∣∣5] is again reduced to that of bounding

Bn,p,σ :=E

[ ∑
(X1,...,Xp)∈Pp

n, �=

5∏
i=1

g
(
x, y, Xσ ((i−1)(k−2)+1), . . . , Xσ (i(k−2))

)]

for all p ∈ {k − 2, . . . , 5(k − 2)} and σ ∈ �∗
5(k−2),p.

Setting X−1 = x, X0 = y respectively, we can define a simple graph Gσ on {−1, 0} ∪ [p] as
in (48) such that

5∏
i=1

g
(
x, y, Xσ ((i−1)(k−2)+1), . . . , Xσ (i(k−2))

)=
∏

(i,j)∈Gσ

1
{
dζ (Xi, Xj) ≤ Rn

}
.
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Let G′
σ be a spanning tree of Gσ , which exists as Gσ is connected by the surjectivity of σ .

Let d′−1, d′
0, . . . , d′

p be the respective degrees of vertices {−1, 0} ∪ [p] in G′
σ , and let E′

σ be its
edge set. Note that |E′

σ | = p + 1.
Then, setting t−1 = Rn − dζ (0, x) and t0 = Rn − dζ (0, y) (which are deterministic), we again

derive that

Bn,p,σ ≤E

[
C(G′

σ , HG(γ )
n (Rn; α, ζ )

)]
= np

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E′
σ , Ti ≤ γ Rn, i = 1, . . . , p, t−1, t0 ≤ γ Rn

)
. (52)

We basically proceed again as in the derivation of (34) by conditioning on the Ti, but here, we
need to account for one extra complication, i.e., whether (− 1, 0) ∈ E′

σ or not. If (− 1, 0) ∈ E′
σ ,

then whether X−1 = x and X0 = y are connected is purely deterministic and the randomness
arises only in the remaining p edges. In that case, the rightmost term in (52) is bounded by

np
∫ γ Rn

0
dt1 · · ·

∫ γ Rn

0
dtp 1{t−1, t0 ≤ γ Rn}

∏
(i,j)∈E′

σ \{(−1,0)}
P
(
dζ (Xi, Xj) ≤ Rn | t

)
ρ̄n,α(t)

∼ C∗npe−ζ (d−1)pRn/2+2−1ζ (d−1)[(d′−1−1)t−1+(d′
0−1)t0]1{t−1, t0 ≤ γ Rn}

p∏
i=1

a(γ )
n (d′

i)

= O

(
ρp

neζ (d−1)(d′−1+d′
0)γ Rn/2−ζ (d−1)γ Rn

p∏
i=1

a(γ )
n (d′

i)

)
. (53)

On the other hand, if (− 1, 0) /∈ E′
σ , the randomness arises in all p + 1 edges of E′

σ . Then the
rightmost term in (52) is bounded by

np
∫ γ Rn

0
dt1 · · ·

∫ γ Rn

0
dtp 1{t−1, t0 ≤ γ Rn}

∏
(i,j)∈E′

σ

P
(
dζ (Xi, Xj) ≤ Rn | t

)
ρ̄n,α(t)

∼ C∗npe−ζ (d−1)(p+1)Rn/2+2−1ζ (d−1)(d′−1t−1+d′
0t0)1{t−1, t0 ≤ γ Rn}

p∏
i=1

a(γ )
n (d′

i)

= O

(
ρp

n e−ζ (d−1)Rn/2+ζ (d−1)(d′−1+d′
0)γ Rn/2

p∏
i=1

a(γ )
n (d′

i)

)
. (54)

Combining (53) and (54), we conclude that

Bn,p,σ = O
(
ρp

n eζ (d−1)(d′−1+d′
0)γ Rn/2

p∏
i=1

a(γ )
n (d′

i)
)
.

Now, proceeding as in the derivation of (45) (see below (51)), we get (46). �
Proof of Lemma 6. From the same reasoning as in Lemma 5, it suffices to bound

Cn,p,σ :=
∫ γ Rn

0

∫
Cd

E

[ ∑
(X1,...,Xp)∈Pp

n, �=

3∏
i=1

g
(
x, Xσ ((i−1)(k−1)+1), . . . , Xσ (i(k−1))

)]
ρ̄n,α(t)π (θ )dθdt

for every p ∈ {k − 1, . . . , 3(k − 1)} and σ ∈ �∗
3(k−1),p.
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Let Gσ be the same simple graph on {0} ∪ [p] as that constructed in the proof of
Lemma 5(i) (see (48)), for which x is identified as a vertex ‘0’. Once again, let G′

σ be a span-
ning tree of Gσ , with d′

0, . . . , d′
p the degree sequence and E′

σ the edge set of G′
σ . It follows

from the monotonicity of C and the Mecke formula that

Cn,p,σ ≤E

[
C(G′

σ , HG(γ )
n (Rn; α, ζ )

)]
= np

P
(

dζ (Xi, Xj) ≤ Rn, (i, j) ∈ E′
σ , Ti ≤ γ Rn, i = 0, . . . , p

)
. (55)

For further calculations, we note that X0 in (55) is random, whereas X0 = x in (49) was purely
deterministic. Taking into consideration this difference and using Theorem 1 with k = p + 1,
we have

Cn,p,σ ≤ C∗ρp
n

p∏
i=0

a(γ )
n (d′

i) = O
(
ρ3(k−1)

n

p∏
i=0

a(γ )
n (d′

i)
)

.

Finally, taking the maximum completes the proof. �
Proof of Lemma 7. We first need the following fact. For 0 < γ < 1/2, let HG(X ) be a hyper-

bolic geometric graph on a point set X ⊂ Dγ (Rn), connecting any two points within a distance
Rn. Suppose that y1, y2 ∈X are connected by a path of length � ≥ 1 in HG(X ), and their hyper-
bolic distances from the boundary, given by ti = Rn − dζ (0, yi), i = 1, 2, satisfy t1, t2 ≤ γ Rn.
For the relative angle θ12 between y1 and y2, we claim that

θ12 ≤ (
1 + o(1)

)
2�e−ζ (1−2γ )Rn/2, n → ∞, (56)

uniformly for t1, t2 ≤ γ Rn.
The proof of (56) can be done inductively. For � = 1, set θ̂12 = (

e−2ζ (Rn−t1) +
e−2ζ (Rn−t2)

)1/2 as in Lemma 3. Since t1 + t2 ≤ 2γ Rn < Rn − ωn, we get

θ̂12 = o
(
e−ζ (Rn−t1−t2)/2)→ 0, n → ∞, (57)

as in the proof of Lemma 4.
If θ12 ≤ θ̂12, then θ12 ≤ (

1 + o(1)
)
e−ζ (1−2γ )Rn/2 by (57) with t1, t2 ≤ γ Rn, and so (56) holds

for � = 1. If θ12 � θ̂12, Lemma 3 yields the following: uniformly for ti ≤ γ Rn, i = 1, 2, we
have that

Rn ≥ dζ (y1, y2) = 2Rn − (t1 + t2) + 2

ζ
log sin

(θ12

2

)
+ o(1)

≥ 2(1 − γ )Rn + 2

ζ
log sin

(θ12

2

)
+ o(1), n → ∞.

Equivalently, we get that sin
(
θ12/2

)≤ (
1 + o(1)

)
e−ζ (1−2γ )Rn/2. As the right-hand side tends

to 0 as n → ∞, we have, uniformly for ti ≤ γ Rn, i = 1, 2,

θ12 ≤ (
1 + o(1)

)
2e−ζ (1−2γ )Rn/2, n → ∞.

Hence, in either case, the claim for � = 1 follows.
Now, suppose that the claim holds for � − 1. Then, if y1, y2 have a path of length �, there

exists a y0 such that y1 and y0 have a path of length � − 1, and y0 and y2 have a path of length 1.
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Denoting the corresponding relative angles by θ10 and θ02, we see that θ12 ≤ θ10 + θ02; hence,
the proof of (56) can be completed by the induction hypothesis.

Fix x1, x2, x3 such that ti ≤ γ Rn for i = 1, 2, 3. From (43), D2
x1,x3

S(γ )
n �= 0 implies that there

is a path of length at most diam(
k) (i.e., the diameter of the graph) from x1 to x3 in the
hyperbolic random geometric graph on

(Pn ∩ Dγ (Rn)
)∪ {x1, x3} with radius of connectivity

Rn. Thus, from (56) and diam(
k) ≤ k, we have that

θ13 ≤ (
1 + o(1)

)
2ke−ζ (1−2γ )Rn/2, n → ∞.

Therefore,

∫
[0,γ Rn]3×C3

d

[
P(D2

x1,x3
S(γ )

n �= 0)P
(
D2

x2,x3
S(γ )

n �= 0
)]a

3∏
i=1

ρ̄n,α(ti)π (θi)dtidθi

≤ C∗
∫

[0,γ Rn]3×C3
d

1
{
θj3 ≤ 2ke−ζ (1−2γ )Rn/2, j = 1, 2

} 3∏
i=1

ρ̄n,α(ti)π (θi)dtidθi

= C∗
P
(
�j3 ≤ 2ke−ζ (1−2γ )Rn/2, j = 1, 2, Ti ≤ γ Rn, i = 1, 2, 3

)
,

where �j3 denotes the relative angle between Xj and X3, j = 1, 2, and Ti = Rn − dζ (0, Xi) for
i = 1, 2, 3.

Now, the probability of the last term equals

∫
[0,γ Rn]3

2∏
j=1

P
(
�j3 ≤ 2ke−ζ (1−2γ )Rn/2 | t1, t2, t3

) 3∏
i=1

ρ̄n,α(ti) dti. (58)

Using the density (28) of a relative angle, it is easy to see that

2∏
j=1

P
(
�j3 ≤ 2ke−ζ (1−2γ )Rn/2 | t1, t2, t3

)∼
(

(2k)d−1

(d − 1)κd−2

)2

e−ζ (d−1)(1−2γ )Rn, n → ∞,

uniformly for ti ≤ γ Rn, i = 1, 2, 3. It now follows from Lemma 1(ii) that (58) is asymptotically
equal to

C∗e−ζ (d−1)(1−2γ )Rn

(∫ γ Rn

0
e−α(d−1)tdt

)3

= O
(
e−ζ (d−1)(1−2γ )Rn

)
.

This proves the first statement in the lemma. By exactly the same argument, we obtain the
second statement in the lemma. �
3.3.3. Proof of the central limit theorem in Theorem 3. We now put together all the bounds and
prove our main CLT.

Proof of Theorem 3. From (16), we have

Var(S(γ )
n ) = �

(
nρ2(k−1)

n a(γ )
n (2d(k))

k−1∏
i=1

a(γ )
n (d(i))

2
)

.
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Substituting the lower bound for variance above and the bounds in Lemmas 5–7 into (44), and
using the definition of ρn, we obtain

W1 ≤ C∗n−1/2
(c′

1,nc′
2,n)1/5eγ ζ (d−1)Rn

a(γ )
n (2d(k))

∏k−1
i=1 a(γ )

n (d(i))2
,

W2 ≤ C∗n−1/2ρ−1
n

(c′
2,n)2/5eγ ζ (d−1)Rn

a(γ )
n (2d(k))

∏k−1
i=1 a(γ )

n (d(i))2
,

W3 ≤ C∗n−1/2
c′

3,n

a(γ )
n (2d(k))3/2

∏k−1
i=1 a(γ )

n (d(i))3
.

From Theorem 4, we know that

dW

⎛
⎝S(γ )

n −E

(
S(γ )

n

)
√
Var(S(γ )

n )
, N

⎞
⎠≤ W1 + W2 + W3.

By the definition of a(γ )
n , one can see that

c′
1,n ≤ C∗ max

p=k−1,...,5(k−1),
T∈G(1)

p

e2−1ζ (d−1)
[

d′
0+
∑p

i=1

(
d′

i−2α/ζ
)

+
]
γ Rn ,

c′
2,n ≤ C∗ max

p=k−2,...,5(k−2),
T∈G(2)

p

e2−1ζ (d−1)
[

d′−1+d′
0+
∑p

i=1

(
d′

i−2α/ζ
)

+
]
γ Rn,

c′
3,n ≤ C∗ max

p=k−1,...,3(k−1),
T∈G(1)

p

e2−1ζ (d−1)
∑p

i=0

(
d′

i−2α/ζ
)

+γ Rn ,

a(γ )
n (2d(k))

k−1∏
i=1

a(γ )
n (d(i))

2 ≥ C∗e2−1ζ (d−1)
[

2
(

d(k)−α/ζ
)

++∑k−1
i=1

(
d(i)−2α/ζ

)
+
]
γ Rn .

Note also that (18) ensures Rn ≤ C∗ log n. Substituting all of these bounds back into W1, W2,
and W3 above, we find that

W1 ≤ C∗n−1/2+c1γ , W2 ≤ C∗n−1/2+c2γ ρ−1
n , W3 ≤ C∗n−1/2+c3γ ,

for some positive constants ci, i = 1, 2, 3. Hence, for any a < 1/2, we can choose γ0 so
small that W1 + W2 + W3 = O(n−a) as n → ∞, for all 0 < γ < γ0. This proves the Wasserstein
bound in (19).

To prove the Kolmogorov bound in (19), again using the bounds in Theorem 4, along with
Lemmas 5, 6, and 7 and the variance lower bound above, we derive using (44) that

W4 ≤ C∗n−1/2
[ (c′

1,n)3/5

a(γ )
n (2d(k))3/2

∏k−1
i=1 a(γ )

n (d(i))3
+ (c′

1,n)4/5

a(γ )
n (2d(k))2

∏k−1
i=1 a(γ )

n (d(i))4

]
,

W5 ≤ C∗n−1/2
(c′

1,n)2/5

a(γ )
n (2d(k))

∏k−1
i=1 a(γ )

n (d(i))2
,

W6 ≤ C∗(nρn)−1/2 eγ ζ (d−1)Rn/2

a(γ )
n (2d(k))

∏k−1
i=1 a(γ )

n (d(i))2

(
(c′

1,nc′
2,n)1/5 + ρ−1

n (c′
2,n)2/5).
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From Theorem 4, we have

dK

⎛
⎝S(γ )

n −E(S(γ )
n )√

Var(S(γ )
n )

, N

⎞
⎠≤ W1 + W2 + W3 + W4 + W5 + W6.

Substituting the bounds for c′
1,n, c′

2,n, and c′
3,n into W4, W5, and W6, as well as Rn ≤ C∗ log n,

one can see that

W4 ≤ C∗n−1/2+c4γ ; W5 ≤ C∗n−1/2+c5γ ; W6 ≤ C∗n−1/2+c6γ ρ−1/2
n ,

for some ci > 0, i = 4, 5, 6. Now, for any a < 1/2, we can choose γ0 small enough so that the
Kolmogorov bound in (19) holds for all 0 < γ < γ0.

In order to show (20), let us assume α/ζ > d(k). First, choose 0 < γ < 1/2 such that

dW

⎛
⎜⎜⎝S(γ )

n −E

(
S(γ )

n

)
√
Var

(
S(γ )

n

) , N

⎞
⎟⎟⎠→ 0, as n → ∞.

Setting U(γ )
n = Sn − S(γ )

n , we write

Sn −E(Sn)√
Var(Sn)

=

√√√√Var
(

S(γ )
n

)
Var(Sn)

×
S(γ )

n −E

(
S(γ )

n

)
√
Var

(
S(γ )

n

) +
U(γ )

n −E

(
U(γ )

n

)
√
Var(Sn)

.

From (17), we have that Var
(

S(γ )
n

)
∼Var(Sn) as n → ∞. Since the CLT holds for S(γ )

n ,

the first term converges in distribution to N as n → ∞. Now, from (41), we know that

Var
(

U(γ )
n

)
/Var(Sn) → 0 as n → ∞, and hence, by Chebyshev’s inequality, the second term

converges to 0 in probability. Thus, applying Slutsky’s theorem, we obtain the CLT for Sn as
required. �
Remark 4. If 2α/ζ > 5d(k), one can deduce more precise estimates for Wi, i = 1, . . . , 6. In

fact, by the choice of the di, we have that each a(γ )
n (d′

i) converges to a constant, and so we
derive that c′

i,n ≤ C∗(n/ρn)5(k−1)γ for i = 1, 2. Thus we have that

W1 ≤ C∗n−1/2+2kγ ρ−2kγ
n , W2 ≤ C∗n−1/2+2kγ ρ−1−2kγ

n ,

W3 ≤ C∗n−1/2, W4 ≤ C∗n−1/2+4(k−1)γ ρ−4(k−1)γ
n ,

W5 ≤ C∗n−1/2+2(k−1)γ ρ−2(k−1)γ
n , W6 ≤ C∗n−1/2+(2k−1)γ ρ−1/2−(2k−1)γ

n .

In particular, the above inequalities imply that Wi → 0 for i = 1, . . . , 6, whenever
γ < 1/8(k − 1).
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Appendix A

In this appendix, we state the main normal approximation result in [32] and explain how
Theorem 4 can be deduced from the same. Recall the notation from Section 3.3.1.

Theorem 5. ([32, Theorems 1.1 and 1.2]) Let F be as in Theorem 4. Then

dW

(
F −E(F)√
Var(F)

, N

)
≤γ1(F) + γ2(F) + γ3(F),

dK

(
F −E(F)√
Var(F)

, N

)
≤γ1(F) + γ2(F) + γ3(F) + γ4(F) + γ5(F) + γ6(F),

where γi(F), i = 1, . . . , 6, are given by

γ1(F) := 2

Var(F)

[∫
X3

(
E([Dx1F]2[Dx2F]2)E([D2

x1,x3
F]2[D2

x2,x3
F]2)

)1/2
λ3(d(x1, x2, x3))

]1/2

,

γ2(F) := 1

Var(F)

[∫
X3

E([D2
x1,x3

F]2[D2
x2,x3

F]2)λ3(d(x1, x2, x3))

]1/2

,

γ3(F) := 1

Var(F)3/2

∫
X
E(|DxF|3)λ(dx),

γ4(F) := 1

2Var(F)2

[
E([F −E(F)]4)

]1/4
∫

X

[
E([DxF]4)

]3/4
λ(dx),

γ5(F) := 1

Var(F)

[∫
X
E([DxF]4)λ(dx)

]1/2

,

γ6(F) := 1

Var(F)

[∫
X2

6
(
E([Dx1F]4)E([D2

x1,x2
F]4)

)1/2 + 3E([D2
x1,x2

F]4)λ2(d(x1, x2))

]1/2

.

Proof of Theorem 4. We aim to deduce the bounds for γi(F) above via the proof strategy
for [32, Theorem 6.1]. Using the definitions of c1, c2, as well as Hölder’s inequality, we have
that

E([DxF]4) ≤ c4/5
1 ; E(|DxF|3) ≤ c3/5

1 ; E([D2
x1,x2

F]4) ≤ c4/5
2 P(D2

x1,x2
F �= 0)1/5. (59)

Applying these bounds, together with further applications of Hölder’s inequality, gives
that γ1(F) ≤ W1 and γ2(F) ≤ W2. Note that γ3(F) = W3. This completes the proof for the
Wasserstein bound in Theorem 4.

Subsequently, the bounds in (59) also yield that γ5(F) ≤ W5 and γ6(F) ≤ W6. Using the
equation at the end of the proof of [32, Theorem 6.1], we obtain that

γ4(F) ≤ c3/5
1 
F

Var(F)3/2
+ c4/5

1 

5/4
F + 2c4/5

1 

3/2
F

Var(F)2
,

where


F :=
∫

X
P(DxF �= 0)1/10λ(dx).

Using the trivial inequality P(DxF �= 0) ≤ 1, we get that γ4(F) ≤ W4. Now the Kolmogorov
bound in Theorem 4 has been obtained. �
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