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Counting Multiple Cyclic Choices Without
Adjacencies

Alice McLeod and William Moser

Abstract. 'We give a particularly elementary solution to the following well-known problem. What is
the number of k-subsets X C I, = {1,2,3,...,n} satisfying “no two elements of X are adjacent in
the circular display of I,,”? Then we investigate a new generalization (multiple cyclic choices without
adjacencies) and apply it to enumerating a class of 3-line latin rectangles.

1 Introduction

Forn > 1letl, = {1,2,3,...,n} and let circ I, denote the display of I, in a circle,
rising order clockwise. When n > 2 it is clear what is meant by “x is adjacent to y
in circ I,” When n = 1 we have a seemingly peculiar situation: when you look from
1 in either direction (clockwise or counterclockwise) in circ I;, the first element you
see is 1 itself, so let us agree that “1 is adjacent to 1 in circ I

Let (n|k),n > 1,k > 0, denote the number of sets X C I, such that |X| = k and
no elements in X are adjacent in circ I,,. Clearly, when n > 1, (n]|0) = 1 (the set &
is counted); when n > 2, (n]|1) = n (the 1-element subsets of I, are counted); and
(1]1) = 0 (because 1 is adjacent to 1 in circ I;).

The numbers (n]k) can be generalized as follows. For given integers 2 < n; <
ny < - <y, t > 1,dk > 0, we define the number of multiple cyclic k-choices

(m,m,omlk) o= Y (m]i)(ma]i) .. (neie).

i1yt i =k
i1,02,000,11 20

These count the number of subsets of size k of the set
{1,2,...,m+m+--+n}

satisfying: no integers in a subset are adjacent in the display of these numbers in the ¢

disjoint circles (of sizes ny, ny, ..., 1)
1,2,...,m in a circle
m+l,n+2,...,n+n in a circle
m+ny+---+m g+ o+ 40 in a circle
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In §2 we determine the well-known numbers (n|k) in a particularly elementary
way and then obtain a new identity which expresses (1, n,, ..., n|k) as a sum of
numbers (m|i). In §3 we look at some special cases of this identity.

The Probleme des Ménages asks for the (ménage) number u,,, n > 2, of permuta-

tions (x1, 2, ...,%,) of (1,2,3,...,n) such that the 3 x n array
1 2 3 -+ n-1 n
n 1 2 -+ n—2 n-—1
X1 X2 X3 o Xp—1 Xn

is a latin rectangle, i.e., in every column the three integers are distinct.

Consider a permutation (ay, g, . . ., a,) which has # > 1 cycles whose lengths are
g, ..y, 21, 2<m<np<---<mn, nmt+m+---+n=n
The number of permutations (xi, x2, . . ., X,,) such that the array
1 2 3 -+ n—1 n
a4y a as -+ dp—1  4n
X1 X2 Xz o Xyl Xy

is a latin rectangle is the same for all permutations that have the same cycle structure
as (ah az,... 7an)- Let Uy, ,....n, d€NOLE TNIS NUMDET. 1N 33 WE eXPIess Uy, », ..,
sum of ménage numbers u,,,.

2 (ny,ny,...,n/|k) Is a Sum of Numbers (m|i)

For convenience we take (Z) =n!/kl(n—k)! if0 < k < 1, and 0 otherwise. It is
well known [5, problem2, p. 222] that whenn > 1 and k > 0

(n]k) = {ﬁ(nkk) 7k

0 ifn =k
Here is a particularly elementary proof of this for 0 < k < 5,7 > 1. A choice of k
integers from {1,2, ..., n} corresponds to a sequence of k I’s and n — k 0’s in a row,
or in a circle with one entry capped. We want to count the number of such circular
displays of k 1’s and n — k 0’s in a circle, one entry capped, with every 1 followed
(clockwise) by at least one 0. We build and count these displays as follows. Place
n — k 0’s in a circle, creating n — k boxes (the spaces between the 0’s) and color one
of the boxes (say blue). The boxes are now distinguishable. Choose k of these boxes
((”;k) choices), place a single 1 into each of the chosen boxes, “cap” one of the n
entries (n ways to do this), erase the color and the n(";k) displays fall into sets each
containing n — k congruent displays. Choose one display from each set and we have

pria (";k) displays, precisely those we want.
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By taking (0|0) = 2 and (0|k) = 0 if k > 1, (these have no combinatorial mean-
ing) the numbers (n|k), k > 0, n > 0 satisfy and are determined by the recurrence
" (nky=m—-1k)+(n—=2lk—-1), n>2,k>1,

1
(0]0) =2,(n|0) =1forn>1, (nlk)=0forn=0,1,k>1.

They are exhibited in Table 1. The initial conditions in boldface.

Kkn 01 2 3 45 6 7 8 9
0 21111111 1 1
1 00 2 3 45 6 7 8 9
2 0 0 0 0 2 5 9 14 20 27
3 00 0 0 O 0 2 7 16 30

Table 1. (n|k)

The recurrence (1) leads to the generating function

2—x 1 1
> (nlkx"d = = + => (a"+ 8",
l-x—x*2 1l—ax 1-px
n,k>0 n>0
where «, 3 are power series in z satisfying a+ 3 = 1, a5 = —z. Equating coefficients

of x" we have

Yl =a"+8", n>0, a+B=1, af=-z

k>0

(o + 3" is a polynomial in z).

Theorem1 Lett > 1,0 < n < m < --- <n, k>01 = {1,2,...,t}
A =T, — Awhen A C I, s(A) = Y., i if A # 3,5(2) = 0,

m(A) = min (s(A),s(A%)), M(A) = max (s(A),s(A%)) .
Then

(m, . omlk) = Y (=)™ (M(D) — m(D)|k — m(D)) .
1eDCI,

Proof The generating function

Z(nl, Ny, nt|k)zk = Z Z (m |1'1)zi‘(nz\i2)zi2 . (n,|it)zi”
k

k>0 k>0 iy+eeetip=
iy >0
= > (m]i)Z" (m]i)2? - (ni)Z"
i1,02,0058r >0
= (Y mlinz) (Y tmlinz) - (Snlinz)
i1>0 >0 >0

= (@ +4") (" 4 §%) - (0" + )
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(remember, a+ 5 = 1, a8 = —z).
This product has a complete expansion in 2‘ terms, one term corresponding to
each subset A C I, = {1,2,...,t}, namely o*™ 349 ; hence

(2) Z(nlv Ny My ‘k)zk = Z O[(;(A)/gS(AE)'

k>0 ACI
The 2’ terms of this sum come in 2/~! pairs: for each D C I, with 1 € D
o’ BS(D Vs paired with ) BS(D )
and now

Z aS(A)ﬂS(A[) — Z (QS(D)ﬁs(Df) + aS(D[)ﬁS(D)) )

ACI, 1€DC,

We can simplify this sum. For any D C [, with 1 € D,
(3) aS(D)QS(D) + o' )55(D) — (aﬁ)m(D) (OLM(DFM(D) + ﬂM(D)*m(D))

= (=2)"”> " (M(D) — m(D)|k) Z*

k>0
= (=" " (M(D) — m(D)| k) 2" ®
k>0
= (=)"® N " (M(D) — m(D)|k — m(D)) 2".
k>0

Now, from (2) and (3),

Y mom, b =Y (=)™ (M(D) — m(D)|k — m(D)) 2*

k>0 1eDcl, k>0
=3 (X 0P (M) — m(D)[k— m(D)) ) .
k>0 1eDC,
Equate coefficients of z* and we have completed the proof of Theorem 1. ]

3 Special Cases of Theorem 1
In the case t = 2 of Theorem 1,0 < n; < np,k > 0,1, = {1,2},

(m,mlk) = Y (=" (M(D) — m(D)|k — m(D)) .

1eDCh
The table below shows all the information we need to simplify this:

D D¢ s(D) s(D°) m(D) M(D)
{1,2} @ m+m 0 0 n +n,
{1} {2} n 1y m 1,
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and we have
(4) (n1,malk) = (m +mp k) + (=1)" (np, —m |k —ny), 0<m <n,.

This identity was established by Moser and Pollack [3].
When n; = n, = m > 0, the Moser-Pollack identity (4) simplifies to

(m,m|k) = 2ml|k) + (—=1)"(0|k —m), m >0,

so that
(m,m|k) = 2m|k), m>0,k+# m,

4 if0 < miseven,

=(2 —“D"2=2+(-D)"2=
(m,m|m) = (2m|m) + (—1) +(=1) {0 if 1 < misodd.

4 Ménage Identities

Using [i, j] to denote the property “the integer i is in the jth place”, u, is the number
of permutations possessing none of the properties

[171] [1,2] [272] [2"3]"'[”_17”_ 1] [T’l—l,n] [nan] [nal] .

Since two of these properties are consistent if and only if they are not adjacent when
the 2n properties are arranged in a circle (so that [1, 1] follows [, 1]), the Principle
of Inclusion and Exclusion yields

un= Y _ (=Df@nlk)(n -k, n>2.
0<k<n

This is of course well known [1, p. 14].
Now let 1y, ,, (0 < m < n) denote the number of permutations of {1,2,...,
m + n} discordant with the two permutations

1 2 3 ... m m+1 m+2 --- m+n
m 1 2 -+ m—1 m+n m+1 --- m+n—1.

Clearly the number of such permutations is

tmn = Y _(=1)F@m, 2n[k)(m+n — k)!

k>0

= Z(—l)k(Zm +2nlk)(m +n — k)!

k>0

+ > (=D @2n = 2m[k — 2m)(n+m — k)!

k>2m

= Upin + Z(—l)j(Zn —2ml|j)(n—m— j)!
>0

= Umn t Un—m.

The generalization is contained in the following theorem.
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Theorem2 Fort>22<mn <mn <---<n,andn +ny+---+n =n,

Unyng,.omy = Z UM(D)—m(D) = Z Un—m(D)s

1eDCI, 1€DCI,

where
M(D) = max(s(D),s(D")), m(D) = min(s(D), s(D)),

s(D) = ZZni, s(D°) = Z 2n;.

i€D ieDe

Proof By the Principle of Inclusion and Exclusion

Ung s,y = (=1 2n1, 2my, ., 2m ) (n — K)!

k>0

= > (=D > (=1)"PM(D) — m(D) |k — m(D))(n — k)!
k>m(D) 1eDCI,

= D )" > (=DHMD) — m(D) |k — m(D))(n — k)!
1€DCI; k>m(D)

= ) D (=DIMD) — m(D)] j)(n — m(D) — j)!
1€DCI, j>0

= > D (=1/@n—mD))]j)n—mD) - j
1€DCI, j>0

I
=
)

|
32
S

This identity, in the form

Un ng,ony = § Un tny4-+n,s

where the sum is over the 2'~! possible assignments of + and — signs, with the un-
derstanding that uy = 2, 4; = —1 and u_, = u,,, was known to Touchard [6]. It was
proved by “symbolic operator” methods (see [2]) and used by Riordan [4] to give a
remarkably attractive formula for the number of 3 x # latin rectangles.
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