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Abstract

Targeted sprayers use artificial intelligence to enable on-the-go weed detection and herbicide
application, reducing the need to spray entire fields with foliar herbicides. A targeted sprayer
was evaluated for treating weeds in corn (Zea mays L.) and soybean [Glycine max (L.) Merr.]
cropping systems in the midwestern United States. Using a ONE SMART SPRAY sprayer, our
objectives were to (1) evaluate the efficacy of different herbicide application programs:
two-passes, spot-spray (SS) only, or simultaneous broadcast residual and SS foliar herbicides;
(2) determine whether weed detection thresholds influence weed control; and (3) determine the
cost for each herbicide program compared with a traditional broadcast application. Field
experiments were conducted in 2022 and 2023 nearManhattan, KS, and in 2023 in Seymour, IL.
Both green-on-brown (GOB; burndown applications) and green-on-green (GOG; in-crop
applications) were applied. Main plot treatments consisted of four herbicide programs, and the
split-plot consisted of four weed detection thresholds: herbicide Efficacy, Balanced, Savings, and
a Broadcast application. The percentage of area infested with weeds within each plot was
estimated visually 42 d after the GOG application. An “as-applied map” was constructed using
raw sprayer data to show when nozzles were turned on or off within a subplot and used to
determine herbicide program costs based on the percentage of each plot area sprayed. Results
indicated that herbicide programs with simultaneous broadcast and SS components in many
cases resulted in a similar area infested with weeds compared with broadcast applications with
the same herbicide products. As expected, herbicide costs were lower in SS applications than in
broadcast applications. The ONE SMART SPRAY sprayer demonstrated potential to reduce
herbicide input costs without compromising weed control.

Introduction

Weeds often grow in distinct patches rather than uniformly across an entire agricultural field
(Maxwell and Luschei 2005). Despite this reality, herbicides are traditionally applied broadcast
instead of only where the weeds occur (Huang et al. 2018). To address this, site-specific weed
management (SSWM) has been proposed, which is defined as the process of adapting weed
management strategies within a field to match the location of the weed infestations (Fernández-
Quintanilla et al. 2018; Wiles 2009). Opportunities for farmers to reduce total herbicide applied,
reduce input costs, and minimize environmental contamination while maintaining weed
control are possible with SSWM (Barroso et al. 2004; Bongiovanni and Lowenberg-DeBoer
2004). In terms of chemical weed control, this would result in herbicides being sprayed only
where they are needed (Rozenberg et al. 2021). However, a major challenge to SSWM is
developing a reliable and accurate method of weed detection that is robust to a multitude of field
conditions (Gao et al. 2020).

In the last decade, artificial intelligence (AI) has become a major part of modern-day life and
is defined as the science behind producing and creating intelligent machines (McCarthy 2007).
First described by Alan Turing in a 1950 paper entitled “Computing Machinery and
Intelligence” (Turing 1950), AI has evolved from a simple series of “if-then” statements to
complicated algorithms that make decisions as the human brain does (Kaul et al. 2020). A subset
of AI known as deep learning is most often used for SSWM; more specifically, convolutional
neural networks (CNNs) are used because they can analyze and extract features within imagery
that cannot be seen with the human eye (Albawi et al. 2017; Sapkota et al. 2020). With advances
in graphics processing units and computer processors, weed detection using CNNs has become
more feasible. AI algorithms have been used to detect weeds in many crops, including corn (Zea
mays L.), soybean [Glycine max (L.) Merr.] (Ahmad et al. 2021), rice (Oryza sativa L.) (Yang
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et al. 2021), bermudagrass [Cynodon dactylon (L.) Pers.] turf (Xie
et al. 2021), sugar beet (Beta vulgaris L.) (Gao et al. 2020), lettuce
(Lactuca sativa L.) (Osorio et al. 2020), and wheat (Triticum
aestivum L.) (Jabir and Falih 2022).

Even though AI can be used to detect weeds, the challenge is to
accomplish this in real time and simultaneously deliver effective
weed control. Two common types of real-time weed detection
platforms are self-propelled weeding robots and field sprayers
(Gerhards et al. 2022). Machines such as the Tertill® weeding robot
(Tertill®, North Billerica,MA, USA) can locate weeds and use either
herbicides or a mechanical string trimmer to treat them. Research
has shown that the Tertill® led to an 18% to 41% improvement in
weed control when compared with standard cultivation (Sanchez
and Gallandt 2020). Additionally, Ruigrok et al. (2020) trained the
AI object detection algorithm You Only Look Once (YOLOv3)
(Redmon and Farhadi 2018) to detect volunteer potatoes (Solanum
tuberosum L.) in sugar beet crops and uploaded the trained model
to an autonomous spraying robot. The authors reported that 96%
of the volunteer potatoes were effectively controlled, while only 3%
of the sugar beets were incorrectly sprayed.

Amajor drawback of current robotic weed control technology is
that several robots working together are required to cover large-
acreage fields in a reasonable time frame (Gerhards et al. 2022). For
this reason, many have turned to AI-powered field sprayers to
increase efficiency and speed of weed control applications. Hussain
et al. (2020) designed a sprayer to detect common lambsquarters
(Chenopodium album L.) for herbicide applications and detect
diseased potato plants for fungicide applications. The authors
reported that chemical savings were 42% for herbicide and 43% for
fungicide applications. Jin et al. (2023) constructed an intelligent
sprayer to control weeds in bermudagrass turf and reported no
differences in control of broadleaf weed species between plots
receiving conventional broadcast and plots receiving precision
spot-spray (SS) applications. In addition to these prototype
sprayers developed by academic research groups, commercial
intelligent sprayers are becoming available on the market.
Examples of such sprayer systems, both available and soon to be
available in the United States, include the John Deere® See &
SprayTM Ultimate (John Deere, Moline, IL, USA), Greeneye
TechnologyTM (Greeneye Technology, Tel Aviv-Yafo, Israel), and
ONE SMART SPRAY (Bosch BASF Smart Farming, Cologne,
Germany).

Intelligent sprayers are equipped with AI weed detection
algorithms that allow for different settings known as confidence
levels or thresholds when detecting objects within imagery
(Barnhart et al., 2022). When objects are correctly detected, they
are known as true positives, whereas incorrectly detected objects or
a misplaced detection are known as false positives (Ralašić 2021).
Thresholds regulate the number of false positives in the final
detection pass (Wenkel et al. 2021) and are expressed as confidence
levels between 0 and 1. Based on how the algorithm was trained,
object detection algorithms assign a series of confidence levels to
objects within each image/video frame when deployed. When a
detection threshold is specified by users, algorithms will detect all
objects with confidence levels equal to and greater than the
specified threshold. Lower thresholds result in more false positives,
ensuring that almost all weeds are detected. Conversely, higher
thresholds would result in fewer false positives, so that some weeds
are not being detected, as the object has a confidence level less than
the specified detection threshold (Barnhart et al. 2022). In terms of
targeted spraying, these confidence levels can be set to achieve
greater efficacy (more herbicide applied; lower detection

threshold) or achieve more savings (less herbicide applied; higher
detection threshold).

Many of these AI-enabled commercial sprayers are equipped
with a dual tank and multiple nozzles or dual boom spray systems
and are able to simultaneously broadcast soil-residual herbicides
and also SS foliar herbicides whenever weeds are detected
(Greeneye Technology 2023; John Deere 2023). Additionally,
different sprayer systems trigger single or multiple nozzles on the
SS boom upon weed detection. Such technologies open new
opportunities to determine how they can be used to optimize
control of weeds in agronomic cropping systems. Therefore, the
objectives of this study were to (1) evaluate the weed control
efficacy of different herbicide application programs adapted for the
ONE SMART SPRAY system: two passes, SS-only treatments, and
simultaneous broadcast residual and SS foliar herbicides compared
with traditional broadcast applications; (2) determine whether
weed detection threshold settings influence weed control; and (3)
determine the cost for each herbicide application program as
compared with a traditional broadcast application.

Materials and Methods

Description of Field Sites

Field experiments were established in 2022 and 2023 in Kansas and
in 2023 in Illinois. The Kansas experiments were in rainfed corn/
soybean no-till production fields at the Kansas State University,
Department of Agronomy Research Farm near Manhattan, KS. In
2022, two locations were initiated and will be referred to as MAN 1
(39.125°N, 96.648°W) and MAN 2 (39.130°N, 96.644°W). MAN 1
and MAN 2 were planted with corn and soybean in 2022,
respectively, and were rotated to the subsequent crop in 2023. In
2023, additional corn and soybean field experiments were
established south of the BASF Midwest Research Farm near
Seymour, IL (40.039°N, 88.403°W) (SEY Corn and SEY Soy for
corn and soybean experiments, respectively). Locations in IL were
conventionally tilled and rainfed. For all locations, crops were
planted in rows spaced 76 cm apart (Table 1).

Both MAN 1 and MAN 2 were located on a Smolan silty clay
loam (fine, smectic, mesic Pachic Arguistolls) with 3% to 7% slope
(USDA-NRCS 2023). The SEY Corn and SEY Soy experiments
were established in a field with Drummer silty clay loam (fine-silty,
mixed, superactive, mesic, Typic Endoaquolls) with 0% to 2% slope
(USDA-NRCS 2023). Due to drought early in the season, weed
infestations in Illinois were much less than in the Kansas fields
(data not shown).

Field Sprayer

A ONE SMART SPRAY research sprayer was used for this study.
The sprayer was equipped with the same external hardware as a
commercial ONE SMART SPRAY sprayer but was custom-built
for small-plot research. The spray apparatus consisted of an
aluminum frame mounted to the front of a John Deere® 6125RTM

tractor. The sprayer was equipped with two booms: the front boom
was reserved for SS with nozzles spaced 25.4 cm apart, while the
rear boom was used for broadcast applications with nozzles spaced
50.8 cm apart. Applied spray swath was 3.05-m wide for both
booms. Spray pressure was provided with CO2-pressurized tanks
mounted at the rear of the spray apparatus, and pressure was
manually adjusted before spraying. Within each meter of boom, a
camera was mounted between two light-emitting diode (LED)
lights to provide consistent lighting across diverse field conditions

2 Barnhart et al.: Targeted sprayer evaluation

https://doi.org/10.1017/wsc.2025.10058
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 14 Oct 2025 at 17:59:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/wsc.2025.10058
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


(Spaeth et al. 2024). The camera uses an RGB imager equipped
with a red/near-infrared filter, allowing the sprayer to distinguish
between plants and other objects. Both the cameras and LED lights
weremounted at a 25° forward angle relative to the ground, and the
system detected weeds as small as 36 mm2 in area.

The ONE SMART SPRAY system was capable of two types of
applications: green-on-brown (GOB) and green-on-green (GOG)
(Quigley 2023). GOB refers to burndown/preemergence applica-
tions where no crops are present; the system does not use AI for
these applications, because green vegetation can be easily detected
with IR and NIR light (Nguyen et al. 2012). The GOG applications
are made in-crop and therefore use AI to recognize crop row bands
and spray green vegetation detected between the crop rows (Spaeth
et al. 2024). The SS boom will turn on a minimum of one nozzle up
to full boom depending on the amount of green area detected.

Field Experiments

At each location, experiments were set up in a split-plot
arrangement of treatments in a randomized complete block
design with five replications. The main plot factor was four
herbicide application program treatments (Table 2), and the split-
plot factor was four weed detection thresholds. For the MAN 1,
SEY Corn, and SEY Soy locations, subplot dimensions were 3-m

(4 crop rows) wide by 30.5-m long, whereas subplot dimensions for
theMAN 2 location were 3-m wide by 35.1-m long as the field area
available was larger.

The four main plot treatments were herbicide application
programs where GOB applications were preemergence at crop
planting, while GOG applications were postemergence and
approximately 21 to 28 d after planting. Program 1 was as a
two-pass “Residual-at-plant” approach with a GOB application
including simultaneous broadcast soil-residual and SS foliar
herbicides followed by a GOG application with SS foliar herbicides
only. Program 2 was a two-pass “Overlapping-residual” approach
with a split application of soil-residual herbicides for both GOB
and GOG together with SS foliar herbicides at each timing.
Program 3 introduced a novel concept known as a “Spike”
approach in which a base recommended rate of foliar herbicide was
broadcast at both GOB and at GOG with the goal to control small,
undetected weeds, and superimposed with an SS spike application
to increase the rate of the same herbicides when weeds were
detected and to increase likelihood of control. Finally, Program 4
was a two-pass “Spot-spray-only” approach that consisted of SS
GOB and SS GOG applications of foliar herbicides, with no
broadcast soil-residual herbicides applied.

The split-plot treatments were four weed detection thresholds
including one traditional broadcast application and three SS

Table 1. Planting information for corn and soybean experiments evaluating ONE SMART SPRAY herbicide programs and weed detection thresholds.

Year Location Planting information Corn Soybean

2022 Manhattan KS Field MAN 1 MAN 2
Date May 16 May 17
Seeding rate (no. ha−1) 59,300 331,000
Hybrid or varietyb Pioneer P1089AM Pioneer P39T61SE

2023 Manhattan KS Field MAN 2 MAN 1
Date May 19 May 19
Seeding rate (no. ha−1) 59,300 331,000
Hybrid or varietyb Pioneer P0995AM Pioneer P42A84E

2023 Seymour ILa Field SEY Corn SEY Soy
Date July 3 July 3
Seeding rate (no. ha−1) 88,900 346,000
Hybrid or variety Wyfflesc 7878RIB Xitaviod 3651E

aIllinois trials were planted later than usual due to drought conditions and limited space at the research farm.
bPioneer Hi-Bred, Corteva Agriscience, 974 Center Road, Wilmington, DE, USA.
cWyffles Hybrids, 13344 US Highway 6, Geneseo, IL, USA.
dXitavio Soybean Seed, BASF Corporation, 2 TW Alexander Drive, Durham, NC, USA.

Table 2. Main treatment herbicide application programs, products, and rates for corn field experiments in Kansas and Illinois.a

GOB GOG

Program Broadcast Spot-spray Broadcast Spot-spray

—————————————————————— g ai or ae ha−1 ——————————————————————

Residual-at-plant Dimethenamid-Pb: 841
Atrazinec: 2,244

Glyphosated: 840
Topramezonee: 12.3

— Glyphosated: 840
Topramezonee: 12.3

Overlapping-residual Dimethenamid-Pb: 841
Atrazine c: 1,122

Glyphosated: 840
Topramezonee: 12.3

Dimethenamid-Pb: 420
Atrazine c: 1,122

Glyphosated: 840
Topramezonee: 12.3

Spike Glyphosated: 578
Topramezonee: 12.3

Glyphosated: 578 Glyphosated: 578
Topramezonee: 12.3

Glyphosated: 578

Spot-spray-only — Glyphosated: 840
Topramezonee: 12.3

— Glyphosated: 840
Topramezonee: 12.3

aGreen-on-brown (GOB) applications were sprayed preemergence immediately after crop planting, and green-on-green (GOG) applications were sprayed postemergence at 21 to 28 d after
planting.
bOutlookTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, NC, USA.
cAtrazine 4LTM, Makhteshim Agan of North America (ADAMA), 3120 Highwoods Boulevard, Suite 100, Raleigh, NC, USA. Treatments containing atrazine were applied with 10 ml of crop oil
concentrate L−1 solution.
dRoundup PowerMax 3TM, Bayer Crop Science, 800 N Lindbergh Boulevard, St Louis, MO, USA. Treatments containing glyphosate were applied with 120 g of dry ammonium sulfate L−1 solution.
eArmezonTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, NC, USA. Treatments containing topramezone were applied with 2.5 ml of crop oil concentrate L−1 solution.
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thresholds randomized within each main plot treatment. Exact
settings for the confidence levels of each weed detection threshold
are proprietary and based on manufacturer recommendations. In
general, the most-sensitive (low-value) threshold was labeled
“Efficacy” and corresponds to an AI algorithm that ensures all
detected plants are sprayed, potentially including crop plants
classified as weeds, known as false-positive detections. In the end, it
would be expected that more herbicide would be applied but few if
any weeds would be missed. Naming this as an Efficacy threshold
was based on the goal that all weeds were detected and sprayed, not
to be confused with “efficacy” used to describe the effectiveness of a
given herbicide. The least-sensitive (higher-value) threshold tested
was labeled as “Savings” and would correctly detect most weeds but
miss some, known as false-negative detections. As a result, it would
be expected that less herbicide would be sprayed and most of the
weeds would be treated. An intermediate level of sensitivity was
included, labeled as “Balanced,” and a fourth treatment level was
a traditional broadcast application, used to compare performance
relative to the other SS weed detection thresholds. In 2022,
different threshold capabilities were available at the GOB versus
GOG application timings, such that only the Efficacy detection
threshold was available for GOB applications, but all were
available for GOG. By 2023, all threshold settings were available
for both GOB and GOG applications. However, to be consistent
between years, only the Efficacy threshold was used for GOB
in 2023.

In general, for each herbicide application program, a standard
broadcast application was used as a control to compare to all other
main and subplot treatments. Herbicides, adjuvants, and appli-
cation rates were unique for corn (Table 2) and soybean programs
(Table 3). For all locations, broadcast applications were sprayed at
a carrier volume of 93.5 L ha−1 and SS applications were sprayed at
a carrier volume of 140.3 L ha−1. Sprayer speed was 8 km h−1 in

2022, and due to software upgrades, speed was increased to 9.7 km
h−1 in 2023. In 2022, broadcast applications were made with TTI
11002 flat-spray nozzles and SS applications with TP6502E even
flat-spray nozzles (TeeJet® Spraying Systems, Wheaton, IL, USA),
pressurized at 195 and 117 kPa, respectively. With the software
upgrades and speed changes made in 2023, the same nozzles were
used, but broadcast and SS boom pressures were increased to 276
and 159 kPa, respectively. All application dates and crop stages for
GOG applications are in Table 4.

Data Collection

The percentage of area infested with weeds was determined visually
for the area between the middle two crop rows of each plot,
ignoring the first and last 1.5 m, using a scale of 0% to 100%, with 0
indicating no weeds and 100 indicating the entire plot area was
infested with weeds. Visual estimates were made at 42 d after the
GOG application (DAGT) in 2022 and 2023. Overall weed
infestation across all species was collected rather than by individual
species, because the ONE SMART SPRAY system was not yet able
to differentiate among weed species.

End-of-season weed biomass and final grain yields were
determined at harvest at the MAN 1 and MAN 2 locations in both
2022 and 2023, but not for SEY locations. In Kansas, end-of-season
weed biomass combined across weed species was sampled just
before crop harvest from two randomly placed 0.5 m by 1 m
quadrats within each plot. Samples were oven-dried at 58 C until
constant mass was achieved. Grain was harvested from the middle
two rows of each plot with a small-plot combine at physiological
maturity, and grain yield was determined at 15.5% moisture for
corn and 13% for soybean. The MAN 1 location was not harvested
in 2023 due to combine mechanical issues. Drought and
availability of field space delayed planting of crops at SEY Corn

Table 3. Main treatment herbicide application programs, products, and rates for soybean field experiments in Kansas and Illinois.a

GOB GOG

Program Broadcast Spot-spray Broadcast Spot-spray

————————————————————— g ai or ae ha−1 —————————————————————

Residual-at-plant Pyroxasulfoneb: 109 2,4-Dc: 1,067
Glyphosated: 840

— 2,4-Dc: 1,067
Glyphosated: 840

Overlapping-residual Pyroxasulfoneb: 55 2,4-Dc: 1,067
Glyphosated: 840

Pyroxasulfoneb: 55 2,4-Dc: 1,067
Glyphosated: 840

Spike 2,4-Dc: 799
Glyphosated: 578

2,4-Dc: 266
Glyphosated: 578

2,4-Dc: 799
Glyphosated: 578

2,4-Dc: 266
Glyphosated: 578

Spot-spray-only — 2,4-Dc: 1,067
Glyphosated: 840

— 2,4-Dc: 1,067
Glyphosated: 840

aGreen-on-brown (GOB) applications were sprayed preemergence immediately after crop planting, and green-on-green (GOG) applications were sprayed postemergence at 21 to 28 d after
planting.
bZidua SCTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, NC, USA.
cEnlist OneTM, Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, IN, USA.
dRoundup PowerMax 3TM, Bayer Crop Science, 800 N Lindbergh Boulevard, St Louis, MO, USA. Treatments containing glyphosate were applied with 120 g of dry ammonium sulfate L−1 solution.

Table 4. Dates for green-on-brown (GOB) and green-on-green (GOG) applications and crop stage for GOG at each location, field and year.

Year Location Field Crop GOB GOG Crop stage at GOG

2022 Manhattan KS MAN 1 Corn May 19 June 17 V5
MAN 2 Soybean May 20 June 17 V2

2023 Manhattan KS MAN 2 Corn May 23 June 13 V5
MAN 1 Soybean May 23 June 20 V4

2023 Seymour IL SEY Corn Corn July 5 July 27 V5
SEY Soy Soybean July 7 July 31 V2

4 Barnhart et al.: Targeted sprayer evaluation
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and SEY Soy, and therefore the crops did not mature for harvest.
No end-of-seasonweed biomass or grain was harvested at Seymour
IL in 2023.

As-Applied Map Generation

An “as-applied map” was developed to show when nozzles were
turned on and off for a given subplot to determine the percentage
of each subplot that was actually sprayed. Maps were generated by
converting spray nozzle point data into continuous as-applied
maps. The ONE SMART SPRAY system collected geospatial data
points for each nozzle on the SS boom and automatically labeled
each point as “TRUE” when a nozzle was spraying or “FALSE”
when not spraying. These data points were collected at a density of
approximately 10 points m−2 and geotagged with GPS coordinates
and stored as a CSV file within themachine. After each application,
raw data files were imported into Jupyter Lab (Kluvyer et al. 2016),
and as-applied spray maps were generated using the Python 3.9
(Python 2023) packages Geopandas (Jordahl et al. 2020), Shapely
(Gillies et al. 2023), and SciPy (Virtanen et al. 2020). A grid of 0.2m
by 0.2 m cells was overlaid across each experimental location to
ensure high resolution within the resulting map. A nearest-
neighbor interpolation method (SciPy docs 2023) was used to
generate the as-applied map. A nearest-neighbor interpolation
assigns the value nearest to a corresponding grid cell to be the
estimated value (Varella et al. 2015), with the goal of producing a
binary map of 0 and 1 indicating when each nozzle was not
spraying or spraying, respectively. With the high density of data
points collected by the machine, a nearest-neighbor interpolation
method required considerably less computational power than
alternative methods such as kriging (van Stein et al. 2020). Maps
were exported to QGIS 3.22.7 (QGIS 2023), where the percentage
of sprayed area within each subplot was computed. To calculate the
herbicide savings ($US ha−1) of each treatment (herbicide
application program and detection threshold level), the percentage
of area actually sprayed within each subplot was multiplied by the
cost of a broadcast application for each herbicide tank mixture;
different herbicides and rates were accounted for in these
calculations depending on the overall herbicide program.
Product costs were taken from the 2023 Kansas State University
Chemical Weed Control Guide (Lancaster et al. 2023).

Statistical Analysis

All statistical analyses were done using R v. 4.3.1 (R Core Team
2023). Corn and soybean experiments were analyzed separately by
year. Linear mixed-effects models were used to analyze all data.
The studies were analyzed as a split-plot design to analyze
herbicide application program and detection threshold levels. The
response variables were percentage of area that was weedy at 42
DAGT, end-of-season weed biomass measurements, and grain
yields. The fixed effects were location, herbicide program,
thresholds, and their interactions, while the random effects were
replication, replication by herbicide program, and replication by
threshold. Data were analyzed using a beta distribution with the
GLMMTMB (Brooks et al. 2017) package in R. Data were logit
transformed and automatically back-transformed by the package
for ease of interpretation. Model residuals were checked for
normality and homogeneity of variance using the DHARMA

(Hartig 2022) package. The ANOVA models were conducted with
type III Wald chi-square tests (Miranda et al. 2022), which was the
test used by the GLMMTMB package. For significant models,
Tukey’s honest significant difference post hoc test was used to

determine differences among main effect means, and a confidence
level of α< 0.05 was used. Post hoc tests were conducted with the
EMMEANS (Lenth 2023) package.

Each location had different levels of weed infestation and was
analyzed separately. Full-season herbicide costs (based on the
percentage of each subplot sprayed) were limited to 2023 data,
because the 2022 GOB application data were lost due to a machine
data decoder error. Fixed and random effects for the herbicide cost
data were the same as previously described for program and
threshold analyses. We did not consider the operating costs of the
sprayer or any subscription costs, as these were not yet described,
but only input costs for herbicides and adjuvants.

Results and Discussion

GOG Weed Infestations

By 42 DAGT, herbicide programs resulted in significantly different
amounts of weedy area in both soybean and corn experiments. For
soybean in Manhattan 2022, the interaction between herbicide
program and detection threshold for percentage of area infested
with weeds was significant (P = 0.02) (Table 5). Weed infestations
in soybean were least in the Spike program for Efficacy and Savings
thresholds, but not different from any of the herbicide programs
treated with the traditional Broadcast application. The greatest
weed infestation was observed with the Residual-at-plant program
for the Savings threshold but was not different from Spot-spray-
only or Overlapping-residual programs also applied with the
Savings threshold. Overall, the Broadcast threshold within each
program consistently had 4.30% to 14.25% area infested with
weeds across the four herbicide programs, Efficacy ranged from
1.14% to 22.57%, and Balanced from 8.12% to 23.33%. For soybean
in Manhattan 2023, there was no interaction between herbicide
program and detection threshold for percentage weed infestation
(P= 0.99) but main effects were significant (P< 0.0001 and
P= 0.0009 for herbicide program and threshold, respectively)
(Figure 1A and 1B). The Spot-spray-only program consistently was
the weediest, and this was not surprising, because this was the only
program that did not have a broadcast component to it. The main
effect of detection threshold resulted in weed infestations in
soybean that were not different between the Broadcast (1.75% ±
0.48) and Efficacy (3.36% ± 0.77) thresholds but had slightly less
weed infestations than the Balanced (5.47% ± 1.08) and Savings
(4.43% ± 0.92) thresholds. In general, this field (MAN 1) had less
weed occurrence (data not shown). No interaction or main effect
differences were observed for the soybean in Seymour 2023. In
general, percentage area infested with weeds was more at Seymour
compared with Manhattan in 2023 (data not shown). Differences
were likely due to rainfall patterns: in 2023, the Manhattan fields
received rainfall early in the season (89 mm between planting and
GOG application; Kansas Mesonet 2024), and weeds were present
for the GOG application, while the SEY Soy field was very dry at
planting time (35 mm between June 1 and planting; CoCoRaHS
2024) but did receive rain later in the season (111 mm between
GOG application and August 31, 2023; CoCoRaHS 2024), allowing
weeds to emerge and grow after the GOG applications, and thus
later emerging weeds were not treated.

In corn, an interaction between herbicide program and
detection threshold (P = 0.04) for percentage weed infestation at
42 DAGT was observed at Manhattan 2022 (Table 5). Compared
with soybean, fewer differences were observed, but notably the
Spot-spray-only treatment was the weediest, with the Savings
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threshold at 22% ± 5.31% infestation. Additionally, Spot-spray-
only had more variation than any of the other herbicide programs,
with the least and greatest weed infestations ranging from 3.64% ±
1.68% to 22% ± 5.31%. For corn in Manhattan 2023, the main
effect of herbicide programwas significant (P < 0.0001) but not the
detection threshold, while neithermain effect of herbicide program
or detection threshold was significant at Seymour 2023 (data not
shown). In Manhattan 2023, the percentage weed infestation with
the Overlapping-residual (5.45% ± 1.05%) and Spike (7.32% ±
1.26%) programs were not different and were less than the Spot-
spray-only (15.1% ±1.61%) program (Figure 1C). The percentage
weed infestation of the Residual-at-plant (10.81% ±1.61%)
program was not different from the Spot-spray-only or Spike
programs.

If a farmer were interested in a complete Spot-spray-only
program, with both GOB and GOG applications, our results
indicate that this program would not provide acceptable weed
control, such as better than 95% (and results in amuch higher weed
infestation) compared with other programs that include broadcast
residual herbicide applications. The GOG targeted spray technol-
ogy does not eliminate the importance and benefit of residual
herbicides, because they continue to be an important part of
SSWM (Owen et al. 2015). We recommend that soil-residual
herbicides be included in application programs for intelligent
sprayers.

The Spike program was used to test the effectiveness of
broadcasting a base foliar herbicide rate and increasing the rate
applied when weeds were detected using the SS boom. This could
be a program used with a one-boom, one-tank system. For
soybean, this approach resulted in the least area infested with
weeds at all locations; in corn, this approach resulted in no
differences from the program with the least area infested with
weeds. It was likely that some weeds were not detected but were
sprayed with at least the minimum labeled rate of herbicide that
was broadcast applied. For more difficult to control weed species
and those that were detected, applications with the maximum
labeled rate of the herbicide (Spike amount) provided increased
control and less weedy area. In most cases in this study,
simultaneous broadcast applications of residual herbicides and
SS applications of foliar herbicides provided better weed control
(measured as less weedy area) compared with programs using no
residual herbicides or Spot-spray-only components.

Overall, it was expected that the traditional Broadcast
applications (both program and threshold) would result in the
least weedy area. When differences were observed, however, the
Efficacy threshold was not different (with the exception of the
Manhattan 2022 corn study, Spot-spray-only program).
Improvements and updates in the proprietary software that
implemented the thresholds were installed between the 2022 and
2023 growing seasons, resulting in fewer differences observed in

Table 5. Percent of area infested with weeds (±SE) for each herbicide application program and four detection threshold levels at 42 d after green-on-green (GOG)
application for soybean and corn in Manhattan, KS, 2022a

Crop:
Herbicide program

Detection threshold level

Broadcast Efficacy Balanced Savings

—————————————————— % area infested with weeds ———————————————————

Soybean:
Residual-at-plant 8.19 (3.37) a-e 13.17 (4.76) a-e 19.37 (6.15) cde 28.57 (7.70) e
Overlapping-residual 4.30 (2.28) abcd 17.46 (6.42) b-e 16.22 (6.09) b-e 20.80 (7.21) cde
Spike 2.93 (1.48) abc 1.14 (3.40) ab 8.12 (3.45) a-e 1.80 (0.94) a
Spot-spray-only 14.25 (4.87) b-e 22.57 (6.71) de 23.33 (7.23) de 25.80 (7.62) de
Corn:
Residual-at-plant 4.07 (1.74) abc 4.50 (1.89) abc 7.89 (2.97) abc 3.91 (1.85) abc
Overlapping-residual 7.39 (2.72) abc 9.32 (3.22) abc 9.06 (3.15) abc 9.86 (3.36) abc
Spike 6.53 (2.49) abc 6.53 (2.49) abc 3.73 (1.66) ab 6.53 (2.49) abc
Spot-spray-only 3.64 (1.68) a 16.87 (4.57) bc 20.00 (5.52) bc 22.00 (5.31) c

aMeans followed by different letters indicate results of Tukey’s honest significant difference test at α= 0.05.

Figure 1. Percent area infested with weeds (% ±SE) at 42 d after the green-on-green application at Manhattan 2023 for (A) soybean herbicide application programs in MAN 1 field,
(B) soybean weed detection thresholds in MAN 1 field, and (C) corn herbicide application programs in MAN 2 field. Herbicide application programs for corn and soybean are
provided in Tables 2 and 3, respectively. Within a panel, different letters above each bar indicate significance at α = 0.05.
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2023 between Broadcast and Efficacy thresholds. These changes
improved the ability to detect and spray with the SS foliar
applications.

End-of-Season Weed Dry Biomass and Grain Yield

End-of-season weed biomass had different results depending on
the crop. For corn studies in both Manhattan 2022 and 2023, no
interaction between herbicide program and detection threshold
was observed. However, main effect of herbicide program was
significant for the Manhattan 2022 study (P = 0.03), and
detection threshold was significant for the Manhattan 2023
study (P = 0.04) (Figure 2). In 2022, the Spot-spray-only
program had the greatest weed biomass, while the Spike
program had the least weed biomass. For the soybean study,
only the herbicide program had a significant effect and only in
Manhattan 2022 (P = 0.004) (Figure 3). Compared with the corn
study on the MAN 1 field of that same year, overall weed
biomass was greater in soybean, because the MAN 2 field had

overall greater weed occurrence. However, the Spike program
had less weed biomass than the Overlapping residual, Residual-
at-plant, and Spot-spray-only programs. This also corresponds
to the greater percentage of area infested with weeds observed
for Spot-spray-only program as compared with the Spike
program (Figure 1). The Spike program consistently resulted in
the least weed biomass for both the Manhattan 2022 corn and
soybean fields. No end-of-season weed biomass data were
collected from the Seymour studies.

Yield data were collected from soybean in Manhattan 2022 and
from corn in Manhattan 2022 and 2023, but no differences were
detected in yield for interactions or main effects of herbicide
program or detection threshold (data not shown). Averaged across
all plots, the Manhattan 2022 soybean plots yielded more (2.934
Mg ha−1) than the 2022 average soybean yield for Riley County, KS
(2.370 Mg ha−1; USDA-NASS 2023b). Corn grain yield did not
differ across herbicide programs or detection thresholds for both
Manhattan years. Overall, Manhattan 2023 had greater yield
(7.020 ± 0.3 Mg ha−1) thanManhattan 2022 (6.370 ± 0.3 Mg ha−1),
but was below the 2022 average corn yield for Riley County, KS
(9.360 Mg ha−1; USDA-NASS 2023a). The field conditions of the
two locations differed in that MAN 1 was on a hilltop and more
eroded, with less topsoil thickness, and rainfall would easily run off,
while MAN 2 was situated at the bottom of a slope and would
retain rainfall more easily. Overall, 2022 was a wetter year, with a
total rainfall of 829 mm, compared with 2023, which had a total
rainfall of only 624 mm (Kansas Mesonet 2024). Rainfall amounts
in both years were less than the 30-yr average of 848 mm (Kansas
State University 2024).

In general, based on results of weed infestation and biomass, the
Efficacy threshold should be selected when using intelligent
sprayers such as the ONE SMART SPRAY. This would decrease
the likelihood that weeds are missed but could increase the
likelihood of false-positive detections (i.e. detecting crop plants as
weeds). However, in herbicide-tolerant cropping systems, this
would not affect crop safety, provided all product labels are
followed correctly (Barnhart et al. 2022). In addition, residual
herbicides should be included with application programs for
intelligent sprayers, as such products have clearly shown reduced
weed densities for GOG applications (Bell et al. 2015; Nunes et al.
2018; Nurse et al. 2006).

Figure 2. End-of-season weed biomass (g m−2 ±SE) in corn for (A) herbicide application programs in MAN 1 field in Manhattan 2022 and (B) weed detection thresholds in MAN 2
field in Manhattan 2023. Herbicide application programs for corn are provided in Table Table 2. For each panel, different letters above each bar indicate significance at α= 0.05.

Figure 3. End-of-season weed biomass (g m−2 ±SE) in soybean for the herbicide
application programs in MAN 2 field in Manhattan KS 2022. Herbicide programs for
soybean are provided in Table 3. Different letters above each bar indicate significance
at α = 0.05.
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Cost of Herbicide Programs and Detection Threshold

There is an opportunity for economic savings if less herbicide is
applied across different herbicide program approaches and
detection thresholds when using intelligent sprayers. Differences
in total herbicide cost are presented for all four crop sites in 2023.
Unfortunately, the 2022 data were lost to the ONE SMART
SPRAY raw data decoder. Costs were determined solely based
on as-applied herbicide geospatial data that were collected by
the sprayer, and data were not validated by ground-truth
measurements.

For both soybean and corn at Manhattan 2023, all detection
thresholds resulted in lower costs than the corresponding
Broadcast application across all herbicide programs. The Spot-
spray-only program with all three SS detection thresholds cost
less than the Residual-at-plant, Overlapping-residual (because
of broadcast soil-residual herbicides), and Spike (because of
broadcast foliar herbicides) programs. Soybean costs were
similar for Seymour 2023 and for Manhattan, with all detection
thresholds costing less than their respective Broadcast applica-
tions. The average savings across detection thresholds (i.e.,
difference between average detection threshold cost and
Broadcast application cost) was US$123 ha−1 for soybean but
only US$43 ha−1 for corn. The difference in savings between
soybean and corn studies at Manhattan in 2023 can be attributed
to level of weed occurrence and crop growth stage. First, greater
weed occurrence in corn in the MAN 2 field compared with
soybean in the MAN 1 field in 2023 resulted in more detections
and required the sprayer to apply herbicide more often. Second,
the GOG application occurred on taller corn plants that were at
the V5 growth stage. As a result, corn leaves created a broader
canopy, making less of the space between rows visible, and the
ONE SMART SPRAY sprayer defaulted to a broadcast
application (vs. detection thresholds) when interrow space
could not be clearly observed. Total herbicide cost for corn at
Seymour 2023 was different by main effect of weed detection
thresholds, such that the cost of Broadcast (US$188 ha−1) was
greater than the cost of Efficacy (US$129 ha−1), Balanced (US
$158 ha−1), and Savings (US$128 ha−1) thresholds. Costs of the
Overlapping-residual (US$181 ha−1), Residual-at-plant (US
$172 ha−1), and Spike (US$161 ha−1) herbicide programs were
not different from one another, while the Spot-spray-only

program cost less (US$90 ha−1) than any of the other programs.
Despite cost being less for Spot-spray-only programs, it was
clear that the weed-free area was less than desired.

Herbicide cost reductions are possible using ONE SMART
SPRAY sprayer with weed detection thresholds compared with
traditional broadcast applications. The cost of the Efficacy
threshold (could spray more due to false-positive detections)
was never different from the cost of the Balanced or Savings
thresholds (Table 6). An advantage of the ONE SMART SPRAY
sprayer is the two-boom, two-tank system, in which simulta-
neously broadcasting a soil-residual herbicide and SS foliar
herbicides can still result in herbicide cost savings. This supports
our recommendation of using herbicide Efficacy thresholds for
GOG SS applications along with foundational use of residual
herbicides in intelligent sprayer applications.

This research demonstrated that significant herbicide use
reductions are possible with intelligent sprayers compared with
broadcast applications. Residual herbicides and multiple passes are
still important when using this technology. Growers would benefit
from the use of two-boom, two-tank intelligent sprayers for these
simultaneous applications as they become available on the market.
However, some of the herbicide programs evaluated would work
well with a traditional one-boom, one-tank system, either with two
passes across the field (residual at plant followed by SS, or with the
Spike program. Incorporating integrated weed management
principles with this technology, which includes crop rotations,
use of residual herbicides, ensuringmultiple effective sites of action
for the dominant weed species, and two-pass programs, is still very
important.
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Table 6. Herbicide program costs (US$ ha−1 ± SE) for soybean (Manhattan, KS, 2023 and Seymour, IL, 2023) and corn (Manhattan, KS, 2023)

Location–year–crop Herbicide program costa

Herbicide program Broadcast Efficacy Balanced Savings

Manhattan, KS–2023–Soybean ———————————————————— US$ ha−1 ————————————————————

Residual at-plant 217 (0) a 72 (7) d 68 (7) d 63 (6) d
Overlapping residual 217 (0) a 74 (8) d 76 (8) d 73 (7) d
Spike 211 (0) a 134 (7) bc 134 (7) bc 127 (7) c
Spot-spray-only 168 (0) b 44 (6) de 50 (6) de 32 (5) e
Seymour, IL–2023–Soybean
Residual at-plant 217 (0) a 64 (7) cde 80 (8) c 71 (7) c
Overlapping residual 217 (0) a 72 (7) c 67 (7) cd 75 (7) c
Spike 209 (0) a 135 (9) b 145 (9) b 133 (9) b
Spot-spray-only 168 (0) b 35 (6) de 56 (8) cde 34 (5) e
Manhattan, KS–2023–Corn
Residual at-plant 212 (0) a 172 (3) bc 157 (3) cd 157 (3) c
Overlapping residual 214 (0) a 170 (4) bcd 157 (4) c 157 (4) c
Spike 210 (0) a 176 (4) bc 181 (3) b 178 (4) b
Spot-spray-only 137 (0) e 107 (4) f 105 (4) f 93 (4) f

aHerbicide costs were computed using the as-applied map from the ONE SMART SPRAY system. Means within a location, year, and crop, followed by different letters, indicate results of Tukey’s
honest significant difference test at α= 0.05.

8 Barnhart et al.: Targeted sprayer evaluation

https://doi.org/10.1017/wsc.2025.10058
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 14 Oct 2025 at 17:59:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/wsc.2025.10058
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


References

Ahmad A, Saraswat D, Aggarwal V, Etienne A, Hancock B (2021) Performance
of deep learning models for classifying and detecting common weeds in corn
and soybean production systems. Comput Electron Agric 184:106081

Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional
neural network. Pages 1–6 in Proceedings of the 2017 International
Conference on Engineering & Technology. Antalya, Turkey: Institute of
Electrical and Electronics Engineers

Barnhart IH, Lancaster S, Goodin D, Spotanski J, Dille JA (2022) Use of open-
source object detection algorithms to detect Palmer amaranth (Amaranthus
palmeri) in soybean. Weed Sci 70:648–662

Barroso J, Fernandez-Quintanilla C, Maxwell BD, Rew LJ (2004) Simulating the
effects of weed spatial pattern and resolution of mapping and spraying on
economics of site-specific management. Weed Res 44:460–468

Bell HD, Norsworthy JK, Scott RC (2015) Effect of drill-seeded soybean density
and residual herbicide on Palmer amaranth (Amaranthus palmeri)
emergence. Weed Technol 29:697–706

Bongiovanni R, Lowenberg-DeBoer J (2004) Precision agriculture and
sustainability. Precis Agric 5:359–387

BrooksME, Kristensen K, van BenthemKJ, Magnusson A, Berg CW, Nielsen A,
Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and
flexibility among packages for zero-inflated generalized linear mixed
modeling. R J 9:378–400

CoCoRaHS (2024) CoCoRaHS Historical Data for Station IL-CP-62:
Champaign 2.5 S. https://dex.cocorahs.org/stations/IL-CP-62/precip-su
mmary?from=2023-07-27&to=2023-08-31. Accessed: January 14, 2024

Fernández-Quintanilla C, Peña JM, Andújar D, Dorado J, Ribeiro A, López-
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