
Proceedings of the Edinburgh Mathematical Society (2013) 56, 777–804
DOI:10.1017/S0013091513000369

COHOMOLOGICAL FINITENESS PROPERTIES OF THE
BRIN–THOMPSON–HIGMAN GROUPS 2V AND 3V

DESSISLAVA H. KOCHLOUKOVA1, CONCHITA MARTÍNEZ-PÉREZ2
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1. Introduction

In this paper, we study the cohomological finiteness conditions of certain generalizations
of Thompson’s group V , which is a simple, finitely presented group of homeomorphisms
of the Cantor set C. The finiteness conditions we consider are the homotopical finiteness
property F∞ for a group, which was first defined by Wall, and its homological version
FP∞, which was studied in detail in [3]. We say that a group G is of type F∞ if it admits
a K(G, 1) with finite k-skeleton in all dimensions k. A group is of type FP∞ if the trivial
ZG-module Z has a resolution with finitely generated projective ZG-modules. A group is
of type F∞ if and only if it is of type FP∞ and is finitely presented. There are, however,
examples of groups of type FP∞ that are not finitely presented [2].

In [7], Brown showed that Thompson’s groups F , T and V , as well as some general-
izations such as Higman’s groups Vn,r (see [11]), are of type F∞. Brown achieved this
by expressing these groups as groups of algebra-automorphisms, letting them act on a
poset determined by the algebra and then showing that the geometric realization of this
poset yields the required finiteness properties.
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In [5], Brin defined a group sV generalizing V for every natural number s � 2. Anal-
ogously to V , these groups are defined as subgroups of the homeomorphism group of a
finite Cartesian product of the Cantor set. For each s, the group sV is simple, finitely
presented and contains a copy of every finite group [6,10]. It was also shown in [4] that,
for s �= t, sV is not isomorphic to tV .

Our main result is the following.

Main Theorem. Brin’s groups 2V and 3V are of type F∞.

The proof of the main theorem is split into two parts: Theorems 4.17 and 5.6. We
partially follow the proof of [7], which states that V has type F∞. Our proof is more
intricate, as the fact that some particular complex KY is t-connected if Y is sufficiently
large requires more work than in Brown’s proof. As in [7], we view sV as a group of
algebra automorphisms and consider a poset A on which sV acts. This action has the
following properties.

(i) Vertex stabilizers are finite.

(ii) The complex |A| is contractible.

(iii) There is a filtration {|An|}n�1 of sV -subcomplexes of |A| such that each complex
|An| is finite modulo sV .

(iv) For s = 2 and s = 3 the connectivity of the pair of complexes (|An+1|, |An|) tends
to infinity as n → ∞.

We then apply Brown’s criterion [7, Corollary 3.3] to conclude that 2V and 3V are
finitely presented and of type F∞. The key result towards the proof of our main theorem
for s = 2 is Theorem 4.6. Finally, in the last section, we prove Theorem 5.3 as a variation
of Theorem 4.6 and show that the method above can be applied for s = 3.

2. Construction of the algebra and the group

In this section, we define the generalized Higman algebra, also called Cantor algebra, in
a general setting. We then define sV as a group of automorphisms of this algebra.

Consider a finite set {1, . . . , s}. We call its elements colours. Also, consider a finite set
of integers {n1, . . . , ns}, ni > 1. We call each ni the arity of the colour i. We begin by
defining an Ω-algebra U . For details, the reader is referred to [9] (see also [8]). We say
U is an Ω-algebra if, for each colour i, the following operations are defined in U .

(i) One ni-ary operation λi:
λi : Uni → U.

We call these operations ascending operations, or contractions.

(ii) ni 1-ary operations α1
i , . . . , α

ni
i :

αj
i : U → U.

We call these operations 1-ary descending operations.
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Throughout this paper all operations act on the right. By definition, Ω = {λi, α
j
i }i,j . In

what follows, it will be convenient to consider the following map, which we also call an
operation. For each colour i, and any v ∈ U , we define

vαi := (vα1
i , vα2

i , . . . , vαni
i ).

Therefore, αi is a map
αi : U → Uni .

We call these maps descending operations, or expansions. Unless otherwise stated, when-
ever we use the term ‘descending operation’, we refer to one of the αi.

For any subset Y of U , a simple expansion of colour i of Y consists of substituting some
element y ∈ Y by the ni elements of the tuple yαi. And a simple contraction of colour
i of Y is the set obtained by substituting a certain collection of ni distinct elements of
Y , say {a1, . . . , ani}, by (a1, . . . , ani

)λi. We also use ‘operation’ to refer to the effect of
a simple expansion (respectively, contraction) on a set.

A morphism between Ω-algebras is a map commuting with all operations in Ω. Let
B0 be a category of Ω-algebras. An object U0(X) ∈ B0 is a free object in B0, with X

as a free basis, if for any S ∈ B0 any mapping

θ : X → S

can be extended in a unique way to a morphism

U0(X) → S.

We also say that U0(X) is free on X in the category B0. Following [9, III.2], we construct
the free object on any set X in the category of all Ω-algebras as follows. Take the set
of finite sequences of elements of the disjoint union Ω ∪ X, with the Ω-algebra structure
defined by juxtaposition. Then, U0(X) is the sub Ω-algebra generated by X.

Definition 2.1. The free object constructed above is called the Ω-word algebra and is
denoted WΩ(X). An admissible subset is any Y ⊂ WΩ(X) that can be obtained from X

by a finite number of operations αi and λj , i.e. by a finite number of simple contractions
or expansions.

Now we consider the variety of Ω-algebras satisfying a certain set of identities.

Definition 2.2. Let Σ1 be the following set of laws in a countable (possibly finite)
alphabet X.

(i) For any u ∈ WΩ(X) and any colour i,

uαiλi = u.

(ii) For any colour i and any ni-tuple (u1, . . . , uni) ∈ WΩ(X)ni ,

(u1, . . . , uni)λiαi = (u1, . . . , uni).
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The variety V1 of Ω-algebras that satisfy the identities in Σ1 obviously contains non-
trivial algebras. Hence, it is a non-trivial variety. Therefore, by [9, IV 3.3], it contains
free algebras on any set X. Let U1(X) be the free Ω-algebra on X in V1. Moreover, by
the proof of [9, IV 3.1],

U1(X) = WΩ(X)/q1,

where q1 is the fully invariant congruence generated by Σ1, i.e. the smallest equivalence
set in WΩ(X)×WΩ(X) containing Σ1, which admits any endomorphism of WΩ(X) and
is Ω-closed (see [9, IV § 1]). In fact, there exists an epimorphism

θ1 : WΩ(X) → U1(X)

and q1 corresponds precisely to Ker(θ1).

Definition 2.3. Let U ∈ V1 and let Y be a subset of U . A set Z obtained from Y by
a finite number of simple expansions is called a descendant of Y . In this case, we define

Y � Z.

Conversely, Y is called an ascendant of Z and can be obtained after a finite number of
simple contractions.

In what follows, we will consider Ω-algebras satisfying some additional identities, as
described below.

Definition 2.4. Let Σ be the set of identities

Σ = Σ1 ∪ {rij | 1 � i < j � s},

where rij consists of certain identifications between sets of simple expansions of wαi and
wαj for any w ∈ WΩ(X) that do not depend on w.

Let X be a set and let U(X) = U1(X)/q, where q is the fully invariant congruence
generated by Σ. There exists an epimorphism

θ2 : U1(X) � U(X)

a1 �→ ā1.

Let θ : WΩ(X) → U(X) be the composition of θ1 with θ2. We say that a subset Y of
U1(X) or of U(X) is admissible if it is the image by θ1 or θ of an admissible subset of
WΩ(X). We call the set of identities Σ valid if the following condition holds: for any
admissible set Y ⊆ U1(X) we have that |Y | = |Ȳ |, i.e. θ2 is injective on admissible
subsets.

Let V be the variety of all Ω-algebras that satisfy the identities in a valid Σ. Note
that V contains non-trivial Ω-algebras, so it has free objects on every set X. In fact, the
algebra U(X) above is a free object on X.

Lemma 2.5. Any admissible subset is a free basis in W = U(X).
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Proof. This can be proven using the same argument as in [11]. Let X be a free basis
of W , let i ∈ {1, . . . , s} be any colour of arity ni and let

Y = (X \ {x}) ∪ {xαj
i | 1 � j � ni}.

We will show that Y is a free basis of W . Recall that V is the variety of Ω-algebras
satisfying the identities Σ. Then, given any S ∈ V and any mapping θ : Y → S, there is
a unique way to obtain a map θ∗ : X → S such that θ∗(x̃) = θ(x̃) for x̃ ∈ X \ {x} and
θ∗(x) = (θ(xα1

i ), . . . , θ(xαni
i ))λi. As there exists a unique θ̂ : W → S extending θ∗, the

same happens with the original θ.
Analogously, considering ni distinct elements x1, . . . , xni of X, one proves that the

admissible subset
Y = (X \ {x1, . . . , xni

}) ∪ {(x1, . . . , xni
)λi}

is a free basis of W . �

Definition 2.6. Consider the set of s colours {1, . . . , s}, all of which have arity 2,
together with the relations

Σ := Σ1 ∪ {αl
iα

t
j = αt

jα
l
i | 1 � i �= j � s; l, t = 1, 2}.

We call the Ω-algebra W = U({x0}), defined by the Σ above, the generalized Higman
algebra on s colours.

Remark 2.7 (geometric interpretation of the generalized Higman algebra).
Consider the unit cube C of Rs. Fix a bijection between the set of colours {1, . . . , s} and
the set of hyperplanes that are parallel to the faces of C. To each operation αi we associate
a halving using a hyperplane parallel to the hyperplane corresponding to i. In this case,
we say that we halve in direction i. Then, to each side of this halving we associate one
of the components of αi: α1

i and α2
i . This association will stay fixed. For a sequence of

1-ary descending operations u = αr1
i1

· · ·αrt
it

, with rj ∈ {1, 2}, we perform the following
operations in C. First, halve it in direction i1 and take the r1-half. Repeat the process
with the operation αr2

i2
for this half. At the end, we get a subset (subparallelepiped) of C.

For simplicity, we call the subparallelepipeds s-subcubes, or simply s-cubes. Note that,
at any stage, if i �= j, the effect of αri

i α
rj

j equals the effect of α
rj

j αri
i .

The family of s-subcubes of the s-cube C, which can be obtained in this way, corre-
sponds to the set x(D) of descendants of x in the generalized Higman algebra U({x0}),
where x is an element belonging to some admissible subset. Analogously, we may iden-
tify any admissible subset A with a collection of |A| s-cubes. In particular, the set of
descendants of A corresponds to the set of those subsets in the collection of |A| s-cubes
that are obtained in the prescribed way.

Remark 2.8. In Figure 2, we use two different types of carets to visualize the two
colours in the generalized Higman algebra on two colours, each of arity 2.

The first type of caret corresponds to vertical cutting and the second one to horizontal
cutting. We view an admissible set that is a descendant of an element x as the set of
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Figure 1. Subdividing the square.

1
1α 1

2α 2
1α 2

2α

Figure 2. A vertical and a horizontal cutting.

x

1 2 3 4

x

1 3 2 4

Figure 3. Two trees representing the same admissible set.

leaves of a rooted tree with root x. The rooted tree is constructed by gluing one of the two
types of carets when passing to descendants. The two rooted trees in Figure 3 represent
the same admissible set. In Figure 1 we present an example of successive subdivisions of
the square.

Considering the geometric interpretation of the generalized Higman algebra, both of
the rooted trees in Figure 3 represent the subdivision of the square in Figure 4.

Lemma 2.9. The generalized Higman algebra W = U({x0}) is valid.

Proof. To begin, we claim that for any pair of admissible subsets Y and Z ⊆ U1({x0}),
such that Z is obtained from Y after a simple expansion, we have that |Z̄| = |Ȳ | + 1.
Recall that Z̄ and Ȳ are the images of Z and Y in U({x0}). Any admissible set in
U1({x0}) is a descendant of an admissible set with only one element, say y. So for x = ȳ

we have that Z̄, Ȳ ∈ x(D), where x(D) is as defined in Remark 2.7. Using the geometric
interpretation of x(D) as a subdivision of an s-cube, we verify the claim.
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1 3

2 4

Figure 4. The subdivision of the square corresponding to the tree diagrams in Figure 3.

1 2

3
→g

1

3 2

Figure 5. An element of 2V .

2

1

3 →g

1

2

3

Figure 6. The same element given by subdivisions of the square.

Conversely, if Z is a simple contraction of Y , then Y is a simple expansion of Z. Thus,
|Ȳ | = |Z̄| + 1.

Finally, an induction on the number of simple contractions and expansions needed to
obtain an admissible subset Ȳ ⊆ U({x0}) from {x0} yields the result. �

Definition 2.10. The Brin–Thompson–Higman group on W0 = U(X), which we
denote G(W0), is the group of algebra automorphisms of W0 that are induced by a
bijection Z → Y for any two admissible sets Z and Y of the same cardinality. If W is
the generalized Higman algebra U({x0}), then G(W ) is the Brin group on s colours and
is denoted sV .

Figure 5 illustrates an element g of 2V sending each leaf to the leaf with the same
label.

Remark 2.11. Looking at the geometric interpretation of the generalized Higman
algebra, [5, § 2.3] implies that this is exactly the definition of Brin’s generalization 2V of
V as a group of self-homeomorphisms of C × C, where C denotes the Cantor set. The
element g in Figure 5 corresponds to Figure 6.

The equivalence of definitions for higher-dimensional sV follows from [5, § 4.1]. If there
exists only one colour, then V is exactly the Higman–Thompson group as defined in [7].
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3. The poset of admissible subsets

In this section, we consider the Brin–Higman algebra on s colours with basis {x}. We
write U for U({x}).

Definition 3.1. The set of admissible subsets is a poset with the order defined by
A < B if B is a descendant of A. We denote this poset by A, and by |A| its geometric
realization. Note that any descendant and any ascendant of an admissible subset is also
admissible.

Given admissible subsets Y and Z of U , we say that they have a unique least upper
bound T if Y � T and Z � T , and whenever Y � S and Z � S, then T � S. Analogously,
we define the notion of greatest lower bound.

Lemma 3.2. Let A, Y and Z be admissible subsets with A � Y and A � Z. Then,
there is a unique least upper bound of Y and Z.

Proof. Consider the geometric representation of the set of descendants of A as sub-
divisions of s-dimensional cubes (in fact s-dimensional parallelepipeds, but we call them
cubes for simplicity) labelled by the elements of A; see Remark 2.7. Then, the result of
performing both sets of subdivisions corresponding to Y and Z yields an upper bound
T . Clearly, for any other upper bound S of Y and Z we have T � S. �

Lemma 3.3. Let Y , Y1 and Z be admissible subsets, with

Y � Y1 � Z.

Then, there exists some admissible subset Z1, with

Y � Z1 � Z.

Proof. Observe that Y and Z are both descendants of Y1. Then, by Lemma 3.2 there
exists an upper bound Z1 of Y and Z. So we have Y � Z1 � Z. �

Proposition 3.4. Any two admissible subsets have some upper bound.

Proof. Let Y and Z be two admissible subsets. By definition, we can obtain Z from
Y by a finite number of expansions or contractions. Therefore, we may set

Y � Y1 � Y2 � Y3 � · · · � Yr � Z.

By Lemma 3.3 we get
Y � Z1 � Y2 � Y3 � · · · ,

and we may shorten the previous chain by omitting Y2 to get a chain

Y � Z1 � Y3 � · · · .

Thus, after finitely many steps we get

Y � T � Z or Y � T � Z

for some T . In the second case, we apply Lemma 3.3. �
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2

1

a

D1

1 3

b

D2

Figure 7. Simple contractions of the basis given in Figure 3.

Proposition 3.4 has the following consequence: for any admissible subset A, any element
g ∈ G(sV ) can be represented by its action in the set of descendants of A, i.e. there is
some A � Z with A � Zg. To see this, choose Z to be some upper bound of A and Ag−1.
Then, A � Z and Ag−1 � Z, so A � Zg.

Lemma 3.5. |A| is contractible.

Proof. It is a consequence of Proposition 3.4, as the poset A is directed. �

Remark 3.6. Observe that, as in the case of V considered in [7], the stabilizer of
any admissible set Y in sV is finite, as it consists precisely of the permutations of the
elements of Y .

We consider the filtration of |A| given by

An := {Y ∈ A | |Y | � n}.

Lemma 3.7. Each |An|/sV is finite.

Proof. For any Y and Z ∈ An, with |Y | = |Z|, we may consider the element g ∈ sV

given by yg = yσ, where σ : Y → Z is a fixed bijection. Thus, sV acts transitively on the
admissible sets of the same size. �

Contrary to what happens with upper bounds, it is, in general, not true that any two
admissible subsets have some lower bound, as the following example shows.

Example 3.8. Consider the case of the Brin–Higman algebra with two colours and
basis A = {x}. Let B be the basis represented in Figure 3. Using the same notation as
in the figure, we label the elements of B as follows: 1 := xα1

2α
1
1, 2 := xα2

2α
1
1, 3 := xα1

2α
2
1,

4 := xα2
2α

2
1. Consider the following bases:

D1 := {1, 2, a}, with a := (3, 4)λ2,

D2 := {1, 3, b}, with b := (2, 4)λ1,

D3 := {1, 4, c}, with c := (3, 2)λ2.

We have that D1, D2, D3 � B, and all are simple contractions. Furthermore, we may
represent D1 and D2, but not D3, as partitions of a square representing x, as in Figure 7.

As {x} � D1, D2, these two bases have a common lower bound. However, D1 and D3 do
not, following from basically the same argument as in [7, Lemma 4.18]. Compare this with
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the classical Higman algebra: the case of only one colour. In this case, [7, Lemma 4.18]
yields that two simple contractions of a given basis have a common lower bound if and
only if the contracted vertices are disjoint.

The existence of greatest lower bounds in some particular cases will be crucial in the
subsequent sections. To overcome this problem, we assume that our contractions are
descendants of the same A and consider greatest lower bounds above A. For simplicity
we use the following notation.

Definition 3.9. Let Λ be a finite set of admissible sets and let A1 and A2 be admissible
sets. We write that

A1 � Λ if for every B ∈ Λ we have A1 � B

and

Λ � A2 if for every B ∈ Λ we have B � A2.

Definition 3.10. Let A be an admissible set and let Ω = {Y0, . . . , Yt} be a finite set
of admissible sets, with A � Ω. Assume that there exists an admissible set M such that
A � M � Ω and for any other admissible set B, with A � B � Ω, we have B � M .
Then, we call M a greatest lower bound of Ω above A and define M = glbA(Ω).

Definition 3.11. Let A � Y be admissible sets and let r � 0 be an integer. We say
that A involves contractions of r elements of Y , or involves r elements of Y for short,
if |Y \ A| = r; we also say that Y \ A are the elements of Y contracted in A. Two
contractions A1, A2 � Y are said to be disjoint if the respective sets of elements of Y

contracted in A1 and A2 are disjoint.

In the particular case of disjoint contractions of a certain admissible Y , the existence
of greatest lower bounds follows easily.

Lemma 3.12. Let Ω = {M0, . . . , Mt} be a set of pairwise disjoint contractions of Y .
Then,

∅ �=
⋂
i

{L | L � Mi}

has a maximal element M , which we call a global greatest lower bound for Ω and denote
by gglb(Ω). In particular, for any A � Ω, M is a glbA(Ω). Moreover,

|elements of Y involved in M | =
∑

0�i�t

|elements of Y involved in Mi|.

Proof. We obtain M by successively performing the contractions Mi. �

Lemma 3.13. Let A be an admissible set and let Ω = {Y0, . . . , Yt} be a finite set
of admissible sets such that A � Ω. Then, for an admissible subset M we have that
M = glbA(Ω) if and only if A � M � Ω and there is no expansion N with M < N and
N � Ω.
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Proof. First, assume that M = glbA(Ω). If M < N � Ω, then A � N � Ω and,
therefore, N � M , which is a contradiction.

Conversely, we prove that if there is no N , as before, then M is a greatest lower bound
above A. Assume that there exists some admissible set B such that A � B � Ω. Recall
that by Lemma 3.2 there exists a unique smallest upper bound C of B and M above A.
Then,

A � {B, M} � C � Ω.

If M < C, we have a contradiction and, therefore, M = C, and thus B � M . �

Lemma 3.14. Let A be an admissible set and let Ω = {Y0, . . . , Yt} be a finite set of
admissible sets such that A � Ω. Then, there exists M = glbA(Ω).

Proof. Observe that the following set is finite and non-empty:

S = {N admissible | A � N � Ω}.

This means that we may choose an element M ∈ S maximal with respect to the ordering.
By Lemma 3.13, M = glbA(Ω). �

For use in subsequent sections, we now record the following obvious consequence of
the definition of greatest lower bounds and Lemma 3.13.

Lemma 3.15. Let A be an admissible set and let Ω = {Y0, . . . , Yt} be a finite set of
admissible sets such that A � Ω. Consider A � B and a subset Λ ⊆ Ω such that B � Λ.
Then,

glbA Ω � glbA Λ = glbB Λ.

4. Connectivity of |KY | and proof of the main result for s = 2

Let Y be any admissible subset of the Brin–Higman algebra on s colours. We set

KY := K<Y = {Z | Z is admissible with Z < Y }.

Note that KY is a poset. We also consider its geometric realization, which we denote
|KY |.

Our next objective is to prove that, in the case of two colours and |Y | big enough,
this complex |KY | is t-connected. To do this, we argue as follows. Firstly, we show that
the considered complex can be ‘pushed down’ in the sense that its t-connectedness is
equivalent to the connectedness of a certain subcomplex Σ4t, defined in § 4.1. Then, we
use an argument similar to Brown’s argument in [7] to prove that Σ4t is t-connected for
|Y | big enough and to deduce, in the last subsection, that 2V is of type F∞.

In the first subsection we begin with some general observations, valid for an arbitrary
number of colours s.

https://doi.org/10.1017/S0013091513000369 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000369


788 D. H. Kochloukova, C. Mart́ınez-Pérez and B. E. A. Nucinkis

a

b

c

A : Y : 1 2

3

4
5

6

Figure 8. Y is a descendant of the admissible set A.

4.1. Some general observations

Definition 4.1. Denote by Cr the following subposet of KY ,

Cr := {A ∈ KY | A < Y and A involves at most r elements of Y },

and denote by Σr the following subcomplex of |KY |,

Σr := {σ : At < At−1 < · · · < A1 < A0 | σ ∈ |KY |, At ∈ Cr}.

We denote by Σt
r the t-skeleton of Σr.

To construct the pushing procedure we need to control the number of elements involved
in the greatest lower bounds of certain sets of simple contractions of Y . To do that, we
use the notion of length, which we define next.

Definition 4.2. Consider A ∈ KY . For any i ∈ Y , there exists a unique m ∈ A such
that the s-cube labelled m contains the s-cube labelled i. Then, i is obtained by a certain
number of successive subdivisions of m. We call that number the length of i as descendant
of A and denote it by l(A, i). We say that two elements i, j ∈ Y are glueable in A if there
exists some simple contraction Z < Y (of any colour) contracting i, j exactly such that
A � Z. Note that, in that case, l(A, i) = l(A, j).

We also say that i ∈ Y is locally maximal with respect to A if for any other j ∈ Y

obtained from the same m ∈ A we have that l(A, i) � l(A, j). Clearly, in that case, any
other vertex that is glueable to i in A is also locally maximal.

For example, consider the admissible subset A (Figure 8) in the case of two colours
and its descendant Y . Here, we have that l(A, 5) = 2 and that 6 and 5 are glueable. So
are 1 and 2. Moreover, all the elements except 4 are locally maximal with respect to A.

Lemma 4.3. Let A � B < Y be admissible subsets. If i ∈ Y is locally maximal with
respect to A, then it is also locally maximal with respect to B.

Proof. Let mA ∈ A, mB ∈ B be the elements in the respective set from which i is
obtained. It suffices to note that any j ∈ Y obtained from mB is also obtained from
mA. �

If A � Y and we use the geometric description of Y as partitions of s-cubes, then the
length of i ∈ Y is related to the size of the subcube labelled i. If two vertices i, j are
glueable, then the cubes labelled i and j have exactly the same sizes and are neighbours.
This implies that, for fixed i, there are at most 2s vertices that are glueable to i. The
next result implies that this bound is in fact 2(s − 1).
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Lemma 4.4. Let A � {Y0, Y1} < Y , where Y1 and Y2 are different, not disjoint, simple
contractions of Y of colours a and b. Label with {1, 2} the vertices contracted in Y0 and
with {2, 3} those contracted in Y1. Then, the vertices labelled 1 and 3 are different, and
a �= b.

Proof. We use the geometric realization of sV . Assume that a = b. As Y0 �= Y1

this would mean that the s-cubes labelled 1 and 3 were situated at opposite sides of
the s-cube labelled 2. This, however, is impossible since α1

a and α2
a do not commute. In

particular, if one side of an s-cube can be deleted in a contraction, then the opposite side
cannot be deleted. Therefore, a �= b and the s-cubes labelled 1 and 3 are on the sides
of the s-cube labelled 2, corresponding to different directions. In particular, the s-cubes
labelled 1 and 3 are different. �

In the following definition, we consider a special graph ΓA, which will be quite useful
in the subsequent subsections.

Definition 4.5. Let A � Y be a contraction and consider the coloured graph ΓA,
whose vertices are the vertices of Y and with an edge of colour a between vertices i, j

if there exists a simple contraction Z, with A � Z < Y , that contracts i, j with colour
a. Note that whenever A � B � Y , then ΓB ⊆ ΓA and the graph ΓY consists of the
vertices of Y with no edges. Also, any family of simple contractions Ω = {Y0, . . . , Yt} of
Y such that A � Ω yields a subgraph of ΓA formed by the edges associated to the Yis.
We say that the family is connected if this subgraph is connected. Observe that if Ω is
connected, then all the contractions Yi ∈ Ω have the same length in A. In particular, if
the vertices involved in Yi are locally maximal with respect to A, then so are the vertices
involved in any other Yj .

4.2. Construction of the pushing procedure

From now on, we assume we have only two colours. Also, recall that both are of arity 2.
In this subsection, we prove the following result.

Theorem 4.6. There exists an order-reversing poset map

M : {poset of simplices of |KY |} → KY

such that for any t-simplex σ : At < At−1 < · · · < A0 we have that

At � M(σ) ∈ C4t.

In the next lemma, we describe certain connected components of the graph ΓA. Recall
that for M ∈ KY the vertices involved in contraction in M , or just involved in M for
short, are the elements of Y \ M .

Lemma 4.7. Let A � {Y0, Y1} < Y , where Y0 and Y1 are different, not disjoint,
simple contractions of Y such that the vertices involved in them are locally maximal
with respect to some B, with A � B � {Y0, Y1}. Then, the connected component of ΓA

containing them is a square and, for M = glbA({Y0, Y1}), the vertices involved in M are
precisely those in the square. In particular, M ∈ C4.
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Proof. Label with {1, 2} the vertices involved in Y0, and with {2, 3} those involved
in Y1. Note that B � M � Y0, Y1, so the vertices 1, 2, 3 are also locally maximal with
respect to M . Moreover, 1, 2, 3 are obtained from the same element m ∈ M . We show
that the only possibility is Figure 4, where m is the square subdivided into four small
squares.

Consider one of the possible chains of subdivisions of m yielding 1, 2, 3 and let αb be
the first subdivision of the chain. If 1, 2, 3 were all in the same half, i.e. all descendants
of the same mαr

b for a fixed r ∈ {1, 2}, then a geometric argument would also prove
that M1 = {mα1

b , mα2
b} ∪ (M \ m) � Y1, Y2, which is impossible by the definition of

greatest lower bounds. Hence, we may assume that 1, 2 are partitions of mα1
b and 3

is a partition of mα2
b . Moreover, by the commutativity relations, there are no more

subdivisions corresponding to colour b in the path of subdivisions needed to obtain 1, 2, 3
from m. The fact that M � Y1 implies that the first subdivision αb can be inverted, i.e. it
must be possible to perform the successive subdivisions in such a way that the second
step consists of subdividing both halves mα1

b and mα2
b in direction a. But, again, the

commutativity relations imply that we may assume that this second subdivision using
colour a (i.e. subdivision in direction a) yields precisely the line between the rectangles
1 and 2, and that the rectangles 1, 2, 3 correspond precisely to three of the rectangles
mαi

bα
j
a for i, j = 1, 2. It would be possible to subdivide the fourth rectangle, but the

hypothesis that the length l(M, 1) is maximal implies that this is not the case. So the
fourth is also a rectangle of the same size, which we label 4, and therefore the rooted
tree yielding 1, 2, 3 from m is any of the trees of Figure 3. Clearly, the associated graph
in ΓA is a square. �

Observe that the previous lemma implies that for the contractions Z0 of {3, 4} of
colour a and Z1 of {1, 4} of colour b we also have A � M � {Z0, Z1}. Moreover, M =
glbA(Y0, Y1, Z0) = glbA(Y0, Y1, Z0, Z1).

Example 4.8. If we have more than two colours, the obvious corresponding version
of Lemma 4.7, that two non-disjoint simple contractions are contained in a square in ΓA,
will be false. Consider the following example. Suppose we have three colours a, b, c, and
let A = {m} and Y = {1, 2, 3, 4, 5, 6, 7}, with

1 = mα2
bα

2
aα1

c , 2 = mα1
bα

2
aα1

c , 3 = mα1
bα

1
aα1

c , 4 = mα1
bα

1
aα2

c ,

5 = mα1
bα

2
aα2

c , 6 = mα2
bα

2
aα2

c , 7 = mα2
bα

1
a.

Consider the tree diagram in Figure 9, where dotted lines represent halving in direction
a, dashed lines halving in direction b and normal lines halving in direction c.

If we wanted all nodes of the same length, we would only have to subdivide 7 further,
for example into mα2

bα
1
aα1

a and mα2
bα

1
aα2

a. Let Y0 be the simple contraction of Y of colour
b involving {1, 2} and let Y1 be the simple contraction of Y of colour a involving {2, 3}.
Note that A � Y0, Y1 and any contraction of both Y0 and Y1 has to involve contraction
of either seven elements in the first case or eight elements in the second. One easily
checks that (in both cases) there is no square in ΓA containing Y0 and Y1. The maximal
connected component of the graph ΓA (in both cases) is what will be called an open book
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3 4 2 5 1 6

7

Figure 9. The tree diagram for Example 4.8.

3

2 1

7
4

5 6

Figure 10. Example 4.8 as subdivision of the cube.

3 3 ′ 4 4 ′ 2 2 ′ 5 5 ′

7

1 1′ 6 6 ′

Figure 11. Enlarging Example 4.8.

in § 5, where we consider the case of three colours in detail. We may also represent the
elements of Y as subdivisions of a cube labelled m; Figure 10 illustrates the case when
Y has seven elements.

Moreover, if we enlarge in a suitable way we can easily build examples in which the
common contraction of Y0, Y1 has to involve arbitrarily many elements of Y . For example,
by looking at the associated tree diagram, we could insert another subdivision in direction
c, as in Figure 11, to obtain a Y ′ with 13 vertices.

As before, let Y0 and Y1 be simple contractions involving {1, 2} (with colour b) and
{2, 3} (with colour a), respectively. Here, any contraction of both Y0 and Y1 would involve
13 elements. The effect of this in the representation of Figure 10 would be to halve each
of the cubes 1, 2, 3, 4, 5 and 6 (with a plane parallel to the plane between 3 and 4) to
yield the new cubes 1, 1′, etc.
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Proposition 4.9. Let A � Ω = {Y0, . . . , Yt}, where t � 1 and Yi are simple contrac-
tions of Y . Assume further that there exist admissible sets A � At � At−1 � · · · � A0

such that for each i we have Ai � Yi and the elements involved in Yi are locally maximal
with respect to Ai. Then, for M = glbA(Ω),

M ∈ C4t.

Proof. We may subdivide Ω into its connected components:

Ω =
r⋃

i=1

Ωi.

For any i ∈ {1, . . . , r} there exists ji ∈ {0, 1, . . . , t} such that Aji � Yli for any Yli ∈ Ωi,
with the elements of Y contracted in Yli locally maximal with respect to Aji (recall that
Ωi is connected). Set Mi = glbA(Ωi).

If Ωi contains at least two different contractions, Lemma 4.7 tells us that its connected
component in ΓA is a square. In particular, Ωi is contained in the set of four contractions
representing the four sides of the square. Moreover, by the observation after Lemma 4.7,
Mi ∈ C4.

On the other hand, if all the elements of Ωi are equal to some Z, then Mi = Z ∈ C2.
Clearly, all Mi are pairwise disjoint, so if we set M = glbA({M1, . . . , Mr}), then M =
glbA(Ω) and Lemma 3.12 implies for r � t that

|vertices contracted in M | �
r∑

i=1

|vertices contracted in Mi| � 4r � 4t.

If r = t + 1, then the elements of Ω are pairwise disjoint and, by Lemma 3.12, M ∈
C2t+2 ⊆ C4t. �

Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. Fix any map

M : KY → {simple contractions of Y }

such that, for any A ∈ KY , if i is any of the elements contracted in M(A), then i is
locally maximal with respect to A. We extend the above map M to a map

M : {poset of simplices of KY } → KY

by setting, for any t-simplex σ : At < At−1 < · · · < A0,

M(σ) := glbAt
(M(At), . . . , M(A1), M(A0)).

Proposition 4.9 and Lemma 3.15 imply that M is a well-defined order-reversing poset
map and that

At � M(σ) ∈ C4t.

�
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4.3. Construction of the null-homotopy

Remark 4.10. Denote by Xt the t-skeleton of a simplicial complex X. A simplicial
complex X is t-connected if it is 0-connected, i.e. path-connected, and its tth homotopy
group vanishes. As πt(X, x0) = [St, s0; X, x0], this means that every continuous pointed
map

µ : (St, s0)
ν→ (Xt, x0)

it→ (X, x0)

is null-homotopic, i.e. homotopic to the constant map in (X, x0). Note that if it is null-
homotopic, then the composition µ = it ◦ ν will also be null-homotopic. We aim to show
that it is null-homotopic for |Y | big enough and X = |KY |.

Due to the following general result, the poset map M constructed in Theorem 4.6 will
be useful.

Lemma 4.11. Let P be a poset and consider an order-reversing poset map

M : {poset of simplices of P} → P

such that, for any σ : At < · · · < A0, At � M(σ) in P. Then, M induces a map

ft : |P|t → |P|,

which is homotopy equivalent in |P| to the inclusion it : |P|t → |P|, and such that ft(σ)
is contained in the realization of the subposet of those B ∈ P such that M(σ) � B.

Proof. Consider the map

h : {poset of simplices of P} → P

such that h(σ) = At. Then, as h(σ) � M(σ) by a classical result in posets [1, 6.4.5],
we have that M 
 h. This means that |h| 
 |M |. Denote the inclusion by j : P →
{poset of simplices of P}; we then have h◦j = 1P. Therefore, |1P| 
 |M ◦j|. Considering
the composition

ft : |P|t it→ |P| |j|→ |{poset of simplices of P}| |M |→ |P|,

we deduce that ft = |M | ◦ |j| ◦ it 
 it. Finally, note that |j| takes any simplex σ to the
geometric realization of the poset of those simplices δ such that δ ⊆ σ. Thus, ft(σ) is
contained in the realization of the subposet of those B ∈ P such that M(σ) � B. �

As a corollary of Definition 4.1, Theorem 4.6 and Lemma 4.11 we obtain the following
result.

Proposition 4.12. For any t there exists a map

ft : |KY |t → |KY |

that is homotopy equivalent to the inclusion it : |KY |t → |KY |, and such that ft(σ) ⊆ Σt
4t.
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Lemma 4.13. For any fixed r, t there exists a function νr(t) such that, if |Y | � νr(t),
the inclusion of Σt

r in |KY | is null-homotopic.

Proof. We adapt Brown’s argument in [7, 4.20] to our context. For |Y | big enough
we will construct, by induction on t, a null-homotopy

Ft : Σt
r × I → |KY |

such that Ft(·, 0) is the identity map and Ft(·, 1) is the constant map sending everything
to the point a ∈ KY . More precisely, we do the following. We show that there exist func-
tions νr(t), µr(t) such that, for |Y | � νr(t), there exists a homotopy Ft, as before, such
that for any t-simplex σ ∈ Σt

r, Ft(σ ×I) ⊆ Σ̂µr(t), where Σ̂s is the set of subcomplexes T

of Σs such that the union of all elements of Y that are contracted in the vertex of some
simplex of T has at most s elements.

The case t = 0

We choose any simple contraction a of Y . Hence, it involves two vertices, i.e. elements
of Y . Let A be a point of Σ0

r , i.e. A is a contraction of Y involving at most r vertices. Now,
if |Y | � r + 4, we may choose a set of two vertices disjoint to both those contracted in A

and those contracted in a. Let b0 be a simple contraction of any colour of Y corresponding
to these two vertices. Then,

A � gglb(A, b0) � b0 � gglb(b0, a) � a

is a path linking A with a in Σ̂0
r+4. Therefore, we verify the claim, with

νr(0) = r + 4,

µr(0) = r + 4.

Induction step

We assume that there exists a null-homotopy Ft−1 : Σt−1
r × I → KY . We want to

extend Ft−1 to Ft. Let σ : At < At−1 < · · · < A0 be a t-simplex in Σt
r. For any face τ of

σ of dimension t − 1 we have that Ft−1(τ × I) ⊆ Σ̂µr(t−1). This means that if we define

δσ =
t+1⋃
i=1

τi,

then

∆ := Ft−1(δσ × I) =
⋃

Ft−1(τi × I) ⊆ Σ̂(t+1)µr(t−1).

Now, if |Y | � 2+ (t+1)µr(t− 1), there are at least two vertices of Y not involved in any
contraction in Ft−1(δσ × I). Let b be a simple contraction of any colour of Y contracting
these two vertices.
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b

gglb (  ,b)σ

σ

Figure 12. The cylinder and cone of item (1).

We claim that the homotopy Ft−1 can be extended to Ft : σ × I → |KY |, with

Ft(σ × I) ⊆ Σ̂2+(t+1)µr(t−1).

As b is a contraction of Y disjoint to all contractions A of Y such that A ∈ Ft−1(δσ × I),
we may consider the global greatest lower bound of b and A, which we denote gglb(A, b).
Note that this is just the result of contracting in A those elements that are contracted
in b. Analogously, we denote by gglb(∆, b) the subcomplex given by gglb(A, b) for all
A ∈ ∆. The same notation is also used for simplices in ∆. Also, note that, for all A ∈ ∆,
gglb(A, b) � b and we can always form the cone with base gglb(∆, b) and vertex b.

We claim that the homotopy Ft(σ × I) can be built up by gluing:

(i) the cylinder given by ∆ and gglb(∆, b),

(ii) the cone formed by gglb(∆, b) and b.

Note that for any l-simplex τ : Al < Al−1 < · · · < A0 lying in ∆ the l + 1-simplices

gglb(Al, b) < gglb(Al−1, b) < · · · < gglb(Ai, b) < Ai < Ai−1 < · · · < A0

for i = l, . . . , 0 fill up the cylinder formed by τ and gglb(τ, b) (recall that gglb(τ, b) is
given by gglb(Al, b) < gglb(Al−1, b) < · · · < gglb(A0, b)).

Furthermore, the cone formed by gglb(τ, b) and b is also filled up via the t + 1-simplex

gglb(Al, b) < gglb(Al−1, b) < · · · < gglb(A0, b) < b.

We now explain how the above constructions yield the extension of the homotopy.

(1) Consider the cylinder with base the simplex σ and top the simplex gglb(σ, b) and
glue to the cylinder the cone with base gglb(σ, b) and apex b.

Let σ∪Σ̃ be the boundary of Figure 12. Then, σ is homotopic to Σ̃ via a homotopy,
see Figure 12, fixing ∂σ.
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a.
∆

Figure 13. ∆σ squeezes to a.

b

a.

.
gglb (∆,b)

gglb (a,b)

∆

Figure 14. The cylinder and the cone of item (3).

(2) Figure 13 illustrates the homotopy Ft−1 squeezing ∂σ to the point a.

(3) Consider the cylinder with bottom ∆ and top gglb(∆, b) and glue to it the cone
with bottom gglb(∆, b) and vertex b.

Note that ∆∪Σ̃ is the boundary of Figure 14. Thus, Σ̃ and ∆ are homotopy equivalent
via a homotopy (see Figure 14), fixing ∂∆ = ∂σ. Set µr(t) = 2 + (t + 1)µr(t − 1). Then,
by (1) and (3), σ and ∆ are homotopy equivalent via a homotopy, inside Σ̂µr(t), which
fixes ∂σ. This completes the proof of the fact that Ft−1 is extendable to a homotopy Ft

(inside Σ̂µr(t)) that contracts σ to the point a. Therefore, the inductive step is proved
for

νr(t) = µr(t) = 2 + (t + 1)µr(t − 1).

�

Theorem 4.14. There exists a function α(t) such that, if |Y | � α(t), the inclusion of
|KY |t in |KY | is null-homotopic.

Proof. Consider the homotopy equivalent maps it, ft : |KY |t → |KY | given in Propo-
sition 4.12. Since the image of ft is contained in Σt

4t, ft factors through the inclusion of
Σt

4t in KY . But, we have just proven that this last inclusion is null-homotopic whenever
|Y | � ν4t(t), and therefore, in that case, ft and it are also null-homotopic. Therefore, it
suffices to set α(t) := ν4t(t). �

Corollary 4.15. There exists a function α(t) such that if |Y | � α(t), KY is
t-connected.
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4.4. Finiteness properties of 2V

Now we are ready to prove that the group 2V is of type FP∞. To do that, we will
verify the conditions of [7, Corollary 3.3] with respect to the complex |A| defined in
Definition 3.1. As before, consider the filtration of |A| given by

An := {Y ∈ A | |Y | � n}.

Lemmas 3.5 and 3.7 and Remark 3.6 imply that all that remains is to prove the following
theorem.

Theorem 4.16. The connectivity of the pair of complexes (|An+1|, |An|) tends to
infinity as n → ∞.

Proof. We use the same argument as in [7, 4.17], i.e. note that |An+1| is obtained from
|An| by gluing cones with base KY and top Y for every Y ∈ An+1\An. By Corollary 4.15,
if n + 1 � α(t), we have that KY is t-connected; hence, (|An+1|, |An|) is t-connected. �

Theorem 4.17. The Brin group on two colours, each of arity 2, i.e. 2V , is of type F∞.

Proof. By Lemmas 3.5 and 3.7, Remark 3.6 and Theorem 4.16 we may apply [7,
Corollary 3.3]. �

Remark 4.18. As a by-product, we get by [7, Corollary 3.3] a new proof of the
fact that 2V is finitely presented. This was first proved in [6], where an explicit finite
presentation was constructed.

5. The case s = 3

In this section, we consider Brin’s group sV for s = 3. Our objective is to show that 3V
is of type F∞ by adapting the construction of the function M of Lemma 4.11 to the case
s = 3. In particular, we show that Theorem 4.6 holds with M ∈ C8t. This immediately
leads to a modification of Proposition 4.12: that ft(σ) ∈ Σt

8t. The rest of the proof will
be analogous to the previous case.

As before, we fix a Y and prove that KY is t-connected if |Y | is sufficiently large.
For A < Y we consider the coloured graph ΓA as in Definition 4.5. This time, the
graph is embedded in three-dimensional real space and the three possible colours {a, b, c}
correspond to the axes of the standard coordinate system of R3. For any subgraph ∆ ⊆ ΓA

we set

glbA(∆) := glbA{simple contractions associated with the edges of ∆}.

Consider a connected component ∆ of ΓA. The vertices of ∆ correspond, via the
geometric realization of 3V , to subparallelepipeds of the unit cube I, all of the same
shape and size. For simplicity, we draw them as cubes and call them subcubes. Let i be
an element (i.e. a vertex) of ∆. By some abuse of notation we also label by i the subcube
corresponding to the element i of ∆.
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Figure 15. A stack of eight cubes.

a a a

b

b

a

b

c
a

b

c

(a) (b) (c) (d )

Figure 16. The possible ∗ -connected components of ΓA.

We claim that the vertices of ∆ are inside a stack of eight subcubes; see Figure 15.
Obviously, one of these subcubes corresponds to i. Observe that we do not claim that all
the subcubes in the stack correspond to elements of Y , only that ∆ is a set consisting
of some of the subcubes in the stack. To see that the claim holds, let i be [α1, α2] ×
[β1, β2] × [γ1, γ2]. The interval A0 = [α1, α2] comes from a set of binary subdivisions of
[0, 1]. The left descendant of an interval [x, y] is [x, (x + y)/2], and the right descendant
of [x, y] is [(x + y)/2, y]. Then, A0 is a descendant of some interval JA that is subdivided
into A0 and A1 in the binary subdivision. Recall (see, for example, Lemma 4.4) that each
cube in a connected set can only have one neighbour of each colour/direction. Define B1

and C1 analogously. Then, the cubes in the stack containing ∆ are precisely the cubes
Ai × Bj × Ck, where i, j, k ∈ {0, 1}.

For a connected component ∆ of ΓA we define the enveloping stack of ∆ to be the
smallest set U(∆) of some subcubes from the eight-cube stack, defined above, such that
U(∆) contains all i ∈ ∆, and the union of the elements of U(∆) is a cube.

Note that if one of the vertices of ∆ is locally maximal with respect to some C < Y

such that A � C, then every vertex of ∆ is locally maximal with respect to C. This leads
to the following definition.

Definition 5.1. A connected component ∆ of ΓA is called ∗-connected if there exists
some admissible set C such that A � C < Y and every vertex of ∆ is locally maximal
with respect to C.

Figure 16 exhibits possible ∗-connected components of the graph ΓA for A < Y . Note
that parallel edges are labelled by the same colour.
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We call the graphs in Figure 16 an edge, a square, an open book and a cube, respec-
tively.

Lemma 5.2. Let ∆ be a ∗-connected component of ΓA. Then, up to changing the
colours, ∆ is one of the graphs in Figure 16. Moreover, if ∆ is not an open book, then
for M = glbA(∆) the vertices involved in M lie inside ∆. In particular, M ∈ C8.

Proof. We argue as in Lemma 4.7. We consider the element m ∈ M that yields
∆, i.e. the vertices of ∆ are obtained from m by the halving operations. Observe that
M = {m} ∪ (M ∩ Y ). Consider the geometric realization of M . Then, m is a subcube
of the unitary cube and the enveloping stack U(∆) lies inside m. Since M < Y we
may choose some simple expansion M < M1 � Y of colour a, say. The expansion
M < M1 corresponds to halving the cube m by a hyperplane of direction (i.e. colour)
a. Furthermore, this halving also yields a halving of the enveloping stack U(∆). In other
words, not all the vertices of ∆ are in the same half of m, as that would mean that
M = M1. Moreover, as ∆ is connected, this halving can be inverted, by using the
commutativity relations, to give a simple contraction of Y of direction a. If M1 = Y ,
then ∆ is an edge and M ∈ C2.

Note that, since the halving operation of m in direction a halves U(∆), we have an
edge e in ∆ with label a and vertices i, j. In particular, the elements i and j represent
neighbouring cubes in U(∆), one contained in mα1

a and the other in mα2
a. Since e ∈ ΓA

there is a contraction of Y contracting precisely i and j. This implies that in the process
of obtaining Y from M via halving operations on m, there is another chain of halving
operations starting with halving in a direction different from a, say b. Hence, by the
commutativity relations, there exists M2 with M1 < M2 � Y such that M2 consists of
halving both mα1

a and mα2
a in direction b. Clearly, this allows inversion and, therefore, the

above procedure for a can also be applied to b. After performing these two subdivisions
we get a stack S of four cubes. Moreover, we may assume that there exist vertices of
∆ lying in at least three of those four cubes. Otherwise ∆ would be either disconnected
or M �= glbA(∆). Also, note that, to obtain ∆, only halving of those four cubes in a
direction c different from directions a and b is possible. So it remains to consider the
three possibilities below. Recall that we are assuming that ∆ is ∗-connected.

(1) If none of the cubes is halved, then M2 = Y , ∆ is a square and M ∈ C4.

(2) Suppose all four cubes are halved at least once. Then, the rooted tree representing
the way that ∆ is obtained from m starts as the first tree in Figure 17. In this
case, we may use the commutativity relations to get a rooted tree with halving in
direction c at the beginning. Therefore, the assumptions that ∆ is connected and
that M = glbA(∆) imply that, in fact, there is only one halving in direction c.
In particular, the rooted tree is precisely the first tree in Figure 17. Thus, ∆ is a
cube, m yields the whole stack of eight cubes, M ∈ C8 and M involves precisely
the vertices of ∆.

(3) Finally, assume that only three of the four cubes are halved at least once in direction
c. Then, we may assume that the rooted tree representing the halving operations
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Figure 17. The three-coloured trees of items (2) and (3).

done on m begins exactly as the second tree in Figure 17. Note that at this point,
and as a consequence of the geometric interpretation, we know that ∆ is a subgraph
of the open book B containing the three edges labelled c. Also, B lies inside the
eight-cube stack associated with ∆. Furthermore, the elements of B correspond to
elements of Y . We show that ∆ is exactly the open book B. Since ∆ is connected,
it suffices to show that any two neighbouring cubes in the open book B can be
contracted in Y . Consider the admissible set Ma, obtained as follows. First, halve
m in direction a and assume that the second half of m, i.e. mα2

a, contains the only
one of the cubes not cut in direction c. Then, perform in mα2

a all halvings needed
to reach those elements of Y that are descendants of mα2

a. The first half of m, mα1
a,

is not cut anymore. Then, M � Ma, where Ma = {mα1
a} ∪ (Ma ∩ Y ).

Observe that, in the first half of m, there are only two colours in the path needed to
obtain the elements of ∆ ∩ ΓMa

from Ma. As ∆ ∩ ΓMa is ∗-connected in ΓMa , we may
apply Lemma 4.7 and deduce that the square of the open book B, with edges labelled by
b and c, is in ∆. The same argument with b substituted by a implies that the square of
the open book B, with edges labelled by c and a, is in ∆. Thus, ∆ is the open book B.

�

We are now ready to prove the analogue to Theorem 4.6 with M ∈ C8t.

Theorem 5.3. Let s = 3. There exists an order-reversing poset map

M : {poset of simplices of |KY |} → KY

such that for any t-simplex σ : At < At−1 < · · · < A0 we have that

At � M(σ) ∈ C8t.

Proof. We split the proof into three steps. Fix a linear ordering on the colours a, b, c.

Step 1 (the definition of M on vertices of KY ). For each admissible A < Y we
define a designated edge M(A) as follows.

Consider the graph ΓA. We define M(A) as an edge of ΓA such that if ΓA = ΓB

for some B < Y , then M(A) = M(B). If there exists some open book between the
∗-connected components of ΓA, we define M(A) to be the middle edge of the open
book with middle edge of smallest possible colour amongst those open books that are
∗-connected components of ΓA (see Figure 18).
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c cM(A)

a b

a b

Figure 18. The open book extended.

If ΓA does not have an open book as a ∗-connected component, but contains a
∗-connected component, which is a separate edge e, i.e. Figure 16 (a), we define M(A) = e.
Again, there might be more than one such edge e and we choose e of the smallest possible
colour.

If ΓA does not contain ∗-connected components, which are open books or separate
edges, we choose M(A) to be an edge of the smallest possible colour of a ∗-connected
component of ΓA.

From now on, we write ∆A for the ∗-connected component of ΓA such that M(A) ∈ ∆A.
We can further assume that if ∆A = ∆B , then M(A) = M(B).

Step 2. Let A = Ar < Ar−1 < · · · < A0 be contractions of Y such that all
M(Ai) belong to ∆A. Recall that each M(Ai) is a simple contraction of Y . Let
Ω = {M(Ar), . . . , M(A0)} and set N = glbA(Ω). We aim to show that N ∈ C8 and
that the vertices of Y involved in N are inside ∆A.

Observe that ∆A is ∗-connected. So, it must be one of the graphs of Figure 16. If it is
an edge, a square or a cube, then our claim that N ∈ C8 follows from Lemma 5.2. So,
we may assume that ∆A is an open book. We have that

∆A = ∆A ∩ ΓAr ⊇ · · · ⊇ ∆A ∩ ΓA0 .

The definition of M yields that if ∆A = ∆A ∩ ΓAr = · · · = ∆A ∩ ΓA0 , then M(Ar) =
· · · = M(A0). In this case, N = M(Ar) ∈ C2. So, we may assume that there exists some
0 � i < r such that

∆A = ∆A ∩ ΓAr = · · · = ∆A ∩ ΓAi+1 � ∆A ∩ ΓAi
.

Define B = Ai. We have that

∆B ⊆ ∆A ∩ ΓB � ∆A.

Moreover, by the definition of M , M(A) = M(Ar) = · · · = M(Ai+1) is the middle edge
of the open book ∆A.

We claim that ∆A ∩ ΓB is a subgraph of one of the two graphs in Figure 19.
Observe that ∆A ∩ ΓB is not connected. Indeed, in the process of obtaining B from

A there was a cutting of a cube containing U(∆A), which halved U(∆A). The structure
of ∆A as an open book with three parallel edges c implies that such a halving cannot
be in direction c. The case when the direction of this halving is a corresponds to Γ1

(see Figure 19), i.e. ∆A ∩ ΓB ⊆ Γ1, and the case when the direction is b corresponds
to Γ2, i.e. ∆A ∩ ΓB ⊆ Γ2. Alternatively, consider the second tree in Figure 17. The
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Figure 19. Possible graphs.

commutativity relations do not allow us to move c to the top, whereas having a or b

at the top yields a disconnected graph. A similar argument shows that there exists an
expansion Ai+1 < B̃ such that ∆A ∩ ΓB̃ = Γk, where we have fixed one k ∈ {1, 2} such
that ∆A ∩ ΓB ⊆ Γk.

For any 0 � j � i we also have that M(Aj) ∈ ∆Aj ⊆ ∆A ∩ΓB . Then, since ∆A ∩ΓB ⊆
Γk, we have that Ω ⊂ (∆A ∩ ΓB) ∪ {M(A)} ⊆ Γk = ∆A ∩ ΓB̃ ⊆ ΓB̃ . Hence, A < B̃ � Ω,
and so

glbB̃(Γk) � glbB̃(Ω) = N.

Now, split Γk = D1 ∪ D2 into its connected components, where D1 is the edge and D2 is
the square. Note that D1 and D2 are ∗-connected components of ΓB̃ ; hence, Lemma 5.2
implies that glbB̃(Di) involves (i.e. contracts) 2i vertices (i.e. elements) of Y . Then, by
Lemma 3.12 glbB̃(D1 ∪ D2) contracts 2 + 4 = 6 vertices of Y . Hence, N ∈ C6 ⊆ C8.

Step 3 (the definition of M on a simplex of KY ). Let σ : At < At−1 < · · · < A0

be a simplex of KY and let t � 1. Thus, ΓA0 � · · · � ΓAt−1 � ΓAt
and we have already

defined M(Ai) as an edge of ΓAi for all i. Let Ω = {M(At), M(At−1), . . . , M(A0)}, which
is a set of edges of ΓAt .

Consider the following partition of Ω.
Set α1 = t and

Ω1 = Ω ∩ ∆Aα1
.

Assume that Ωr−1 is defined. If
r−1⋃
i=1

Ωi �= Ω,

choose the largest j ∈ {0, . . . , t} such that

M(Aj) ∈ Ω \
( r−1⋃

i=1

Ωi

)
.

Rename Aj as Aαr and set Ωr = Ω ∩ ∆Aαr
. Hence, at each step we have a subchain

(i.e. subsimplex) of σ satisfying the conditions of Step 2.
At some point, we will have that

Ω =
k⋃

i=1

Ωi.

https://doi.org/10.1017/S0013091513000369 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000369


Finiteness properties of 2V and 3V 803

Let

Ni := glbAαi
(Ωi).

By Step 2, Ni ∈ C8 and the vertices of Y involved in Ni are contained in ∆Aαi
. Now,

we claim that these Ni are pairwise disjoint contractions of Y . To see this, let i �= j.
We may assume that Aαi

� Aαj
and, therefore, ΓAαi

⊇ ΓAαj
. As ∆Aαi

is a ∗-connected
component in ΓAαi

, we deduce that either ∆Aαi
and ∆Aαj

are disjoint (and in this case
Ni and Nj are also disjoint) or ∆Aαj

⊆ ∆Aαi
. But the second case is impossible by the

construction of the partition above.
Next we define

M(σ) = glbA(Ω).

Clearly,

M(σ) = glbA({N1, . . . , Nk})

and, if k � t, then

M(σ) ∈ C8k ⊆ C8t.

Finally, if k = t + 1, then all Ωi contain precisely one edge, so for all i we have that
Ni = M(Ai), and so M(σ) ∈ C2(t+1) ⊆ C8t. �

As a corollary, we get the following modified version of Proposition 4.12.

Corollary 5.4. For any t there exists a map

ft : |KY |t → |KY |,

which is homotopy equivalent to the inclusion it : |KY |t → |KY | such that ft(σ) ⊆ Σt
8t.

From now on, we can proceed analogously to the case s = 2. As a first step, we have
a three-dimensional analogue to Theorem 4.14.

Corollary 5.5. Let s = 3. There exists a function α(t) such that if |Y | � α(t), the
inclusion of |KY |t in |KY | is null-homotopic.

Proof. Follow the proofs of Theorem 4.14 and Lemma 4.13, substituting Proposi-
tion 4.12 with Corollary 5.4. �

Theorem 5.6. The Brin group 3V on three colours of arity 2 is of type F∞.

Proof. The proof follows the proof of Theorem 4.17. The main point is the construc-
tion of the poset map M of Theorem 5.3. Applying Corollary 5.5, the rest follows as
before. �
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