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Hook length inequalities for t-regular par-
titions in the t-aspect
Gurinder Singh and Rupam Barman

Abstract. Let t ≥ 2 and k ≥ 1 be integers. A t-regular partition of a positive integer n is a partition
of n such that none of its parts is divisible by t . Let bt ,k (n) denote the number of hooks of length
k in all the t-regular partitions of n. In this article, we prove some inequalities for bt ,k (n) for fixed
values of k . We prove that for any t ≥ 2, bt+1,1(n) ≥ bt ,1(n), for all n ≥ 0. We also prove that
b3,2(n) ≥ b2,2(n) for all n > 3, and b3,3(n) ≥ b2,3(n) for all n ≥ 0. Finally, we state some problems
for future works.

1 Introduction and statement of results

A partition of a positive integer n is a finite sequence of non-increasing positive integers
λ = (λ1, λ2, . . . , λr ) such that λ1 + λ2 + · · · + λr = n. A Young diagram of a partition
(λ1, λ2, . . . , λr ) is a left-justified array of boxeswith the i-th row (from the top) having λi
boxes. For example, the Young diagram of the partition (5,4,3,2,1) is shown in Figure 1
(left). The hook length of a box in a Young diagram is the sum of the number of the boxes
directly right to it, the number of boxes directly below it and 1 (for the box itself). For
example, see Figure 1 (right) for the hook lengths of each box in the Young diagram of
the partition (5,4,3,2,1).

9 7 5 3 1
7 5 3 1
5 3 1
3 1
1

Figure 1: The Young diagram of the partition (5,4,3,2,1) and its hook lengths

Hook lengths of partitions have important connectionswith representation theory of
the symmetric groups Sn and GLn(C). Hook lengths also appear in the Seiberg-Witten
theory of random partitions, which gives the Nekrasov-Okounkov formula for arbi-
trary powers of Euler’s infinite product in terms of hook numbers. For more details, see
e.g. [4, 7, 9, 10, 13]. Other than the ordinary partition function, hook lengths have also
been studied for several restricted partition functions, for example, partitions into odd
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2 G. Singh and R. Barman

parts, partitions into distinct parts, partitions into odd and distinct parts, self conjugate
partitions and doubled distinct partitions, see e.g. [1, 2, 3, 5, 6, 11, 12].

Let t ≥ 2 be a fixed positive integer. A t-regular partition of a positive integer n is
a partition of n such that none of its parts is divisible by t. A t-distinct partition of a
positive integer n is a partition of n such that any of its parts can occur at most t − 1
times. For integers t ≥ 2 and k ≥ 1, let bt ,k(n) denote the number of hooks of length
k in all the t-regular partitions of n and dt ,k(n) denote the number of hooks of length
k in all the t-distinct partitions of n. In [2], Ballantine et al. studied hook lengths in 2-
regular partitions and 2-distinct partitions. The authors, in [2], proved that d2,1(n) ≥
b2,1(n), for all n ≥ 0. They conjectured [2, Conjecture 1.7] that for every k ≥ 2, there
exists an integer Nk such that b2,k(n) ≥ d2,k(n), for all n ≥ Nk . Ballantine et al. [2,
Theorem 1.8] proved the conjecture for k = 2,3 and very recently Craig et al. [3] proved
it for all k . This type of partition inequalities between the number of hook lengths are
also called hook length biases. In [12], we studied the hook length biases for 2- and 3-
regular partitions for different hook lengths. We established two hook length biases for
2-regular partitions, namely, b2,2(n) ≥ b2,1(n), for all n > 4 and b2,2(n) ≥ b2,3(n), for
all n ≥ 0.We also proposed two conjectures on biases among 2- and 3-regular partitions,
see [12, Conjectures 1.6 and 6.1].

In this article, we study biases among bt ,k(n) for fixed k . Our first result proves that
the number of hooks of length 1 in (t + 1)-regular partitions of any nonnegative integer
n is greater than or equal to the number of hooks of length 1 in t-regular partitions of
n. More precisely, we have the following theorem.

Theorem 1.1 Let t ≥ 2 be an integer. We have bt+1,1(n) ≥ bt ,1(n), for all n ≥ 0.

For the number of hooks of length 2, we expect the same trend in t-regular partitions
of any positive integer n. Our second result confirms the bias for the number of hooks
of length 2 between 2- and 3-regular partitions.

Theorem 1.2 For all integers n > 3, we have b3,2(n) ≥ b2,2(n).

We observe similar inequality for hooks of length 3. In particular, we have the
following theorem.

Theorem 1.3 For all nonnegative integers n, we have b3,3(n) ≥ b2,3(n).

2 Proof of Theorem 1.1

We introduce some notations. Let `(λ) denote the number of distinct parts in a partition
λ. Let hk(λ) denote the number of hooks of length k in the Young diagram of a partition
λ. We recall another form of representation of a partition λ given by

λ = (λm1
1 , λm2

2 , . . . , λmr
r ),

where mi is the multiplicity of the part λi and λ1 > λ2 > · · · > λr . With this notation,
for any partition λ, we consider λ`(λ)+1 = 0.
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Hook length inequalities for t-regular partitions in the t-aspect 3

Table 1:Φt ,n for t = 3 and n = 12

τ ∈ B3(12) Φ3,12(τ) ∈ B4(12) τ ∈ B3(12) Φ3,12(τ) ∈ B4(12)
(8,4) (6,3,2,1) (8,22) (6,23)
(8,2,12) (6,22,12) (8,14) (6,2,14)
(7,4,1) (7,3,12) (5,4,2,1) (5,3,2,12)
(5,4,13) (5,3,14) (43) (33,13)
(42,22) (32,22,12) (42,2,12) (32,2,14)
(42,14) (32,16) (4,24) (3,24,1)
(4,23,12) (3,23,13) (4,22,14) (3,22,15)
(4,2,16) (3,2,17) (4,18) (3,19)

To prove Theorem 1.1 we first prove the following lemma. Let bt (n) denote the
number of t-regular partitions of a positive integer n.

Lemma 2.1 Let t ≥ 2 be an integer. We have bt+1(n) ≥ bt (n), for all n ≥ 0.

Proof LetBt (n) denote the set of all t-regular partitions of n. For fixed t and n, define
amapΦt ,n : Bt (n) → Bt+1(n). For any τ ∈ Bt (n),Φt ,n(τ) is a partition inBt+1(n)with
parts from τ which are multiple of t+1 changed in such a way that they are not multiple
of t+1 and other parts remain same. A part of τwhich is amultiple of t+1, is of the form
(t + 1)(t` + r) = t(t + 1)` + r(t + 1), for some nonnegative integer ` and 1 ≤ r ≤ t − 1
(r , 0, since τ ∈ Bt (n)). Under themapΦt ,n the part of part size t(t+1)`+r(t+1) of τ is
changed to (t(t+1)`+rt, r), whichmeans that t(t+1)`+rt and r are considered as two
parts inΦt ,n(τ). For example, Table 1 shows themapping of 3-regular partitions of 12 to
4-regular partitions of 12 under themapΦ3,12. The 3-regular partitions of 12 which are
not listed in Table 1 are also 4-regular partitions of 12 and hence mapped to themselves.
Next, we prove thatΦt ,n is an injective map. For τ1, τ2 ∈ Bt (n), letΦt ,n(τ1) = Φt ,n(τ2).
The parts ofΦt ,n(τ1) andΦt ,n(τ2)which are not of the type t(t + 1)`+ rt or r (for some
nonnegative integer ` and 1 ≤ r ≤ t − 1) are also the parts of τ1 and τ2. If t(t + 1)` + rt
and r are the parts ofΦt ,n(τ1) andΦt ,n(τ2)with multiplicity, say m, then (t + 1)(t` + r)
is a part in both τ1 and τ2 with multiplicity m. This implies that τ1 = τ2. Therefore,Φt ,n

is an injective map. This proves that |Bt (n)| ≤ |Bt+1(n)|, i.e., bt (n) ≤ bt+1(n). �

Proof of Theorem 1.1 It is easy to observe that for any partition τ the number of hooks
of length 1 in the Young diagram of τ is same as the number of distinct parts of τ, i.e.,
h1(τ) = `(τ). From Lemma 2.1, we have that bt (n) ≤ bt+1(n), for all n ≥ 0. Note that
the number of distinct parts in τ ∈ Bt (n) is less than or equal to the number of distinct
parts inΦt ,n(τ) ∈ Bt+1(n). Therefore, bt ,1(n) ≤ bt+1,1(n), for all n ≥ 0. �
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3 Proofs of Theorems 1.2 and 1.3

We represent a partition τ from B2(n) by

((6k + 5)αk ,5, (6k + 3)αk ,3, (6k + 1)αk ,1 )k≥0 ,

where αk , j is the multiplicity of the part 6k + j . From a partition τ ∈ B2(n), we define
triples by

τk = ((6k + 5)αk ,5, (6k + 3)αk ,3, (6k + 1)αk ,1 )k ,

such that τ = (τk)k≥0. The mapΦ2,n : B2(n) → B3(n) is defined by

Φ2,n(τ) = Φ2,n (((6k + 5)αk ,5, (6k + 3)αk ,3, (6k + 1)αk ,1 )k≥0)

:= ((6k + 5)αk ,5, (6k + 2)αk ,3, (6k + 1)αk ,1 ; 1αk ,3 )k≥0 .

We take (Φ2,n(τ))k =

{
((6k + 5)αk ,5, (6k + 2)αk ,3, (6k + 1)αk ,1 )k if k ≥ 1;(
5α0,5, 2α0,3, 1α0,1+

∑
i≥0 αi ,3

)
if k = 0.

3.1 Proof of Theorem 1.2

In the Young diagram of a partition, a hook of length 2, which we call a 2-hook, may
arise in two different ways.

(1) We call a 2-hook an m-2-hook if it appears due to the multiplicity of a part being
greater than one.

(2) We call a 2-hook a g-2-hook if it appears in the column corresponding to a part λi
with gap between λi and λi+1 being more than 1.

For example, see Figure 2.

2

(a)

2

(b)

Figure 2: Types of 2-hooks: (a) m-2-hook and (b) g-2-hook

Proof of Theorem 1.2Note that for k ≥ 1, τk and (Φ2,n(τ))k have the same number of
m-2-hooks but the number of g-2-hooks for τk is either equal to or one more than the
number of g-2-hooks for (Φ2,n(τ))k . Also, the number of 2-hooks in τ0 and (Φ2,n(τ))0
differ by at most 1.

The idea of our proof is as follows. The number of 2-hooks in τk and (Φ2,n(τ))k differ
by at most 1. For the case in which a triple τk loses a 2-hook while going under the map
Φ2,n, we assign a distinct triple to τk to compensate the loss of one 2-hook for it. For the
other case, when the number of 2-hooks is same for τk and (Φ2,n(τ))k , we are done. In
this way, we prove that a partition τ ∈ B2(n) either has the number of 2-hooks less than
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the number of 2-hooks inΦ2,n(τ) ∈ B3(n), or (in the other case, when τ loses 2-hooks
while going under Φ2,n) along with Φ2,n(τ) we associate a partition, say τ′, to τ which
compensates the loss.

We study triples τk in four cases. The cases in which (Φ2,n(τ))k has one 2-hook
fewer than τk , we associate a 4-tuple (a part of a partition in B3(n) and different than
(Φ2,n(τ))k ) to τk , which has at least one 2-hook.
Case 1: αk ,3 = 0. In this case, the number of 2-hooks in τk is the same as the number of
2-hooks in (Φ2,n(τ))k = τk , if k ≥ 1. For k = 0, the number of 2-hooks in (Φ2,n(τ))0
is greater than or equal to the number of 2-hooks in τ0.
Case 2: αk ,1 = 0. For k ≥ 1, the number of 2-hooks in τk is the same as the number
of 2-hooks in (Φ2,n(τ))k . For k = 0, if τ0 , (5α0,5, 3) then the number of 2-hooks in
τk is less than or equal to the number of 2-hooks in (Φ2,n(τ))0. If τ0 = (5α0,5, 3) and
α0,5 , 0 then we cover the loss of a 2-hook by associating ρ0 := (5α0,5−1,42,1x) to τ0,
where x is the multiplicity of 1 coming in the scene due to other triples of τ = (τk)k≥0.
If τ0 = (3) (i.e., α0,5 = 0 in τ0 = (5α0,5, 3)) then we cover the loss of 2-hook as follows.
Since n > 3, there is the smallest part with part size greater than or equal to 5, say λi . In
this case, we take 5 from the part λi and associate (42) to τ0 = (3). For the remaining part
λi − 5, we proceed by considering it as a part of the partition under consideration and if
λi − 5 = 6r + 6, for some r ≥ 0, then we change it to (6r + 5,1) along with other parts
while applyingΦ2,n. In this case ρ0 := (5w,42+z,2y,1x), where x is the multiplicity of 1
coming due to the other triples; y, z,w are themultiplicities of parts 2,4,5 (respectively),
whichmay occur due to the part λi−5. For example, if τ = (11,3) then ρ0 = (5,42,1); if
τ = (7,3) then ρ0 = (42,2); if τ = (9,3) then ρ0 = (43); if τ = (52,3) then ρ0 = (5,42).
Case 3: αk ,3 > 1 and αk ,1 , 0. In this case, there is at most one loss of 2-hook in
(Φ2,n(τ))k , which we cover by the following map

f (τk) = f (((6k + 5)αk ,5, (6k + 3)αk ,3, (6k + 1)αk ,1 )k)

=
(
(6k + 5)αk ,5, 6k + 4, (6k + 2)αk ,3−1, (6k + 1)αk ,1 ; 1αk ,3−2)

k .

In this case, we associate

σk :=
(
(6k + 5)αk ,5, 6k + 4, (6k + 2)αk ,3−1, (6k + 1)αk ,1

)
k

to τk for k ≥ 1. For τ0, σ0 = (5α0,5, 4, 2α0,3−1, 1α0,1+s), where s is the number of 1s due
to other triples.
Case 4: αk ,3 = 1 and αk ,1 , 0. In this case also, there is at most one loss of 2-hook in
(Φ2,n(τ))k , which we cover by the following map

g(τk) = g (((6k + 5)αk ,5, 6k + 3, (6k + 1)αk ,1 )k)

=

{ (
(6k + 5)αk ,5, 6k + 4, (6k + 1)αk ,1−1; 6k − 1, 1

)
k if k ≥ 1;(

5α0,5, 4, 1α0,1−1
)

if k = 0.

Here, for k ≥ 1, part 6k − 1 = 6(k − 1) + 5 is considered as a part of τk−1, doing which
does not decrease the number of 2-hooks in τk−1. In this case, we associate

δk :=
(
(6k + 5)αk ,5, 6k + 4, (6k + 1)αk ,1−1)

k

to τk for k ≥ 1. For τ0, σ0 = (5α0,5, 4, 1α0,1−1+s), where s is the number of 1s due to
other triples.

2025/06/17 21:47
https://doi.org/10.4153/S0008439525100921 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100921


6 G. Singh and R. Barman

Now, let τ = (τk)k≥0 ∈ B2(n). We consider the following two cases.
Case A. If the number of 2-hooks in τk is less than or equal to the number of 2-hooks
in (Φ2,n(τ))k for all k (from Case 1 and Case 2), then we define τ∗ := Φ2,n(τ). Clearly,
h2(τ) ≤ h2(τ∗).
Case B. If for any k ≥ 0, the number of 2-hooks in (Φ2,n(τ))k is one less than the
number of 2-hooks in τk , we take τ′ to be a partition inB3(n)with (Φ2,n(τ))k replaced
by the required ρ0, σk or δk , which has at least one 2-hook. In this case, we define τ∗ :=
(Φ2,n(τ), τ

′) and h2(τ∗) := h2(Φ2,n(τ)) + h2(τ′) (Note that τ∗ is a set of two partitions
from B3(n)). In that way, in this case also we have, h2(τ) ≤ h2(τ∗).

Finally, since Φ2,n is an injective map, all Φ2,n(τ) are distinct. Note that (Φ2,n(τ))k ,
ρ0, σk and δk are all distinct as well. Therefore, τ′ and Φ2,n(τ) are also distinct. For
example, see Table 2.

Hence, we have

b2,2(n) =
∑

τ∈B2(n)

h2(τ) =
∑

τ∈B2(n)
Case A

h2(τ) +
∑

τ∈B2(n)
Case B

h2(τ)

≤
∑

τ∈B2(n)
Case A

h2(Φ2,n(τ)) +
∑

τ∈B2(n)
Case B

(h2(Φ2,n(τ) + h2(τ′))

=
∑

τ∈B2(n)

h2(τ∗) ≤
∑

τ∈B3(n)

h2(τ) = b3,2(n).

This completes the proof of the theorem. �

3.2 Proof of Theorem 1.3

In the Young diagram of a partition, a hook of length 3, whichwe call a 3-hookmay arise
in four different ways.

(1) We call a 3-hook an m3-3-hook if it arises due to the multiplicity of a part being
greater than two and it appears in the third last column from the columns corre-
sponding to λi in the Young diagram.

(2) We call a 3-hook a g-3-hook if it appears in the column corresponding to a part λi
with gap between λi and λi+1 being more than 2.

(3) We call a 3-hook anm2-3-hook if it arises due to themultiplicity of a part λi being at
least two and it appears in the second last column from the columns corresponding
to λi in the Young diagram.

(4) We call a 3-hook a s-3-hook if it appears in the column corresponding to a part λi
with gap between λi and λi+1 being exactly 1 and the part λi+1 occurs once.

For example, see Figure 3.
Proof of Theorem 1.3 Similar to the case of 2-hooks, for k ≥ 1, τk and (Φ2,n(τ))k
have same number of m3-3-hooks. Also, the number of g-3-hooks for τk is same as the
number of g-3-hooks for (Φ2,n(τ))k , when k ≥ 1. However, the number ofm2-3-hooks
for (Φ2,n(τ))k is either equal to or one less than the number of m2-3-hooks for τk , for
k ≥ 1. Note that for a 2-regular partition, there is no s-3-hook in its Young diagram.
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Table 2: Outline of the proof of Theorem 1.2 for n = 13

τ ∈ B2(13) τ∗ = Φ2,n(τ) τ∗ = (Φ2,n(τ), τ
′) h2(τ) h2(τ∗)

(13) (13) 1 1
(11,12) (11,12) 2 2
(9,3,1) ((8,2,13), (8,4,1)) 2 2+2
(9,14) (8,15) 2 2
(7,5,1) (7,5,1) 2 2
(7,32) (7,22,12) 3 3
(7,3,13) ((7,2,14), (7,4,12)) 3 2+3
(7,16) (7,16) 2 2
(52,3) ((52,2,1), (5,42)) 3 2+2
(52,13) (52,13) 3 3
(5,32,12) ((5,22,14), (5,4,2,12)) 4 3+2
(5,3,15) ((5,2,16), (5,4,14)) 3 2+2
(5,18) (5,18) 2 2
(34,1) ((24,15), (4,23,13)) 2 2+3
(33,14) ((23,17), (4,22,15)) 3 2+3
(32,17) ((22,19), (4,2,17)) 3 2+2
(3,110) ((2,111), (4,19)) 2 1+2
(113) (113) 1 1

Total number of 2-hooks 43 57

3

(a)

3

(b)

3

(c)

3

(d)

Figure 3: Types of 3-hooks: (a)m3-3-hook, (b) g-3-hook, (c)m2-3-hook, and (d) s-3-hook

Therefore, the number of 3-hooks in τk can be, at the most, one less than the number of
3-hooks in (Φ2,n(τ))k . For k = 0, the number of m3-3-hooks for τ0 is either equal to or
one less than the number of m3-3-hooks for (Φ2,n(τ))0. Whereas, the number of g-3-
hooks for τ0 is either equal to or onemore than the number of g-3-hooks for (Φ2,n(τ))0
and same is the case for m2-3-hooks. Therefore, the number of 3-hooks in τ0 can be, at
the most, two less than the number of 3-hooks in (Φ2,n(τ))0.

The idea of the proof is similar to the proof of Theorem 1.2. A partition τ ∈ B2(n)
either has the number of 3-hooks less than or equal to the number of 3-hooks in
Φ2,n(τ) ∈ B3(n), or (in the other case, when τ loses 3-hooks while going under Φ2,n)
we associate a different partition, say τ′, to τ which compensates the loss.
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We study the triples τk in two cases.
Case 1: k ≥ 1. Note that the number of m2-3-hooks for τk decreases under the map
Φ2,n only when αk ,3 ≥ 2 and αk ,1 ≥ 1. In that case we associate a new tuple to τk to
cover the loss of an m2-3-hook by using the following map

F(τk) = F (((6k + 5)αk ,5, (6k + 3)αk ,3, (6k + 1)αk ,1 )k)

=
(
(6k + 5)αk ,5, (6k + 4)2, (6k + 2)αk ,3−2, (6k + 1)αk ,1−1; (6k − 1), 1αk ,3−2)

k .

In this case, we associate

θk :=
(
(6k + 5)αk ,5, (6k + 4)2, (6k + 2)αk ,3−2, (6k + 1)αk ,1−1)

k

to τk , which clearly has at least one 3-hook (m2-3-hook corresponding to the parts 6k +
4) to compensate the loss. Here, part 6k − 1 = 6(k − 1) + 5 is considered as a part of
τk−1, doing which does not decrease the number of 2-hooks in τk−1.
Case 2: k = 0. In this case, there might be loss of at most two 3-hooks and that also
when α0,3 > 0. We have τ0 = (5α0,5, 3α0,3, 1α0,1 ). Depending on the multiplicity of the
part 3, α0,3 = 4` + j , 0 ≤ j ≤ 3, we consider the following two cases.
Subcase (a): ` > 0. In this case, we compensate the loss with the following map:

G(τ0) =


(5α0,5, 43`, 1α0,1 ) if j = 0;
(5α0,5, 43`, 2, 1α0,1+1) if j = 1;
(5α0,5, 43`+1, 1α0,1+2) if j = 2;
(5α0,5, 43`+2, 1α0,1+1) if j = 3.

Clearly, in each caseG(τ0) has at least two 3-hooks.We associate θ0 to τ0, which isG(τ0)
including the multiplicity of part size 1 coming from the other triples τk .
Subcase (b): ` = 0.Here, j = 0 can not be the case since α0,3 > 0. For j = 3, the loss of
a 3-hook can be covered by the same map G in the above subcase, i.e.,

G(τ0) = G((5α0,5, 33, 1α0,1 )) = (5α0,5, 42, 1α0,1+1).

We associate θ0 = (5α0,5, 42, 1α0,1+1+
∑

k≥1 αk ,3 ) to τ0 in this case.
For j = 1, (Φ2,n(τ))0 = Φ2,n ((5α0,5, 3, 1α0,1 )) =

(
5α0,5, 2, 1α0,1+

∑
k≥0 αk ,3

)
. If either

α0,1 , 0 or
∑

k≥0 αk ,3 , 1 then there is no loss of 3-hook under Φ2,n. If α0,1 = 0 and∑
k≥0 αk ,3 = 1, then the loss of a 3-hook is covered by taking 1 from

∑
k≥0 αk ,3 and

changing part size 3 to part size 4 as follows

H(τ0) = H((5α0,5, 3)) = (5α0,5, 4) .

In this case θ0 = H(τ0).
For j = 2, (Φ2,n(τ))0 = Φ2,n

(
(5α0,5, 32, 1α0,1 )

)
=

(
5α0,5, 22, 1α0,1+

∑
k≥0 αk ,3

)
. If either

α0,1 , 0 or
∑

k≥0 αk ,3 , 0, then the loss of a 3-hook is covered by

I(τ0) = I((5α0,5, 32, 1α0,1 )) =
(
5α0,5, 4, 1α0,1+

∑
k≥0 αk ,3

)
.

For α0,1 = 0 and
∑

k≥0 αk ,3 = 0, let n > 6. Then there is the smallest part with part size
greater than or equal to 5, say λi . In this case, we take 4 from the part λi and associate
(4, 23) to (32). For the remaining part λi − 4, we proceed by considering it as a part of
the partition and if λi − 4 = 6r + 6, for some r ≥ 0, then we change it to (6r + 5,1)
along with other parts while applying Φ2,n. If the final multiplicity of 1 is v then (1v)
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is changed to (2v/2) or (2(v−1)/2,1), depending on v being even or odd, respectively. In
this case θ0 := (5w,41+z,2y,1x), where x is the multiplicity of 1 (either 0 or 1); y, z,w
are the multiplicities of parts 2,4,5 (respectively), which may also occur due to the part
λi − 4. For example, if τ = (11,32) then τ′ = (7,4,23) and θ0 = (4,23); if τ = (7,32)
then τ′ = θ0 = (4,24,1); if τ = (52,32) then τ′ = θ0 = (5,4,23,1).

Now, let τ = (τk)k≥0 ∈ B2(n) and n > 6. We consider two cases.
Case A. If the number of 3-hooks in τk is less than or equal to the number of 3-hooks
in (Φ2,n(τ))k for all k , then we define τ∗ := Φ2,n(τ). Clearly, h3(τ) ≤ h3(τ∗).
Case B. If for any k ≥ 0, the number of 3-hooks in (Φ2,n(τ))k is less than the number
of 3-hooks in τk , we take τ′ to be a partition in B3(n) with (Φ2,n(τ))k replaced by the
required θk , which covers the loss of one or two 3-hooks. In this case, we define τ∗ :=
(Φ2,n(τ), τ

′) and h3(τ∗) := h3(Φ2,n(τ)) + h3(τ′) (Note that τ∗ is a set of two partitions
from B3(n)). In this case also we have, h3(τ) ≤ h3(τ∗).

Since Φ2,n is an injective map, all Φ2,n(τ) are distinct. Note that (Φ2,n(τ))k and θk
are all distinct as well. Therefore, all τ′ and Φ2,n(τ) are also distinct. For example, see
Table 3. Hence, we have for n > 6

b2,3(n) =
∑

τ∈B2(n)

h3(τ) =
∑

τ∈B2(n)
Case A

h3(τ) +
∑

τ∈B2(n)
Case B

h3(τ)

≤
∑

τ∈B2(n)
Case A

h3(Φ2,n(τ)) +
∑

τ∈B2(n)
Case B

(h3(Φ2,n(τ) + h2(τ′))

=
∑

τ∈B2(n)

h3(τ∗) ≤
∑

τ∈B3(n)

h3(τ) = b3,3(n).

For 0 ≤ n ≤ 6, it is easy to check that the inequality b2,3(n) ≤ b3,3(n) holds. This
completes the proof. �

4 Concluding Remarks

Let t ≥ 2 and k ≥ 1 be integers. The main motive of our study is to find the biases
among bt ,k(n) and dt ,k(n), for fixed values of k . If λ is a t-distinct partition of n, then it
is also a (t + 1)-distinct partition of n. Therefore, dt+1,k(n) ≥ dt ,k(n), for all n ≥ 0. For
a fixed value of k , we want to find the biases in the following diagram:

bt+1,k(n)

bt ,k(n)

dt+1,k(n)

dt ,k(n)

?

?

?

>

In [8, Theorem 1.6], Li and Wang proved that for all t ≥ 2 and n ≥ 0∑
λ∈Dt (n)

`(λ) −
∑

λ∈Bt (n)

`(λ) ≥ 0,
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Table 3: Outline of the proof of Theorem 1.3 for n = 13

τ ∈ B2(13) τ∗ = Φ2,n(τ) τ∗ = (Φ2,n(τ), τ
′) h3(τ) h3(τ∗)

(13) (13) 1 1
(11,12) (11,12) 1 1
(9,3,1) (8,2,13) 1 2
(9,14) (8,15) 2 2
(7,5,1) (7,5,1) 1 1
(7,32) ((7,22,12), (4,24,1)) 3 1+2
(7,3,13) (7,2,14) 2 2
(7,16) (7,16) 2 2
(52,3) (52,2,1) 2 3
(52,13) (52,13) 3 3
(5,32,12) ((5,22,14), (5,4,14)) 1 2+2
(5,3,15) (5,2,16) 1 2
(5,18) (5,18) 2 2
(34,1) ((24,15), (43,1)) 2 2+3
(33,14) ((23,17), (42,15)) 3 2+3
(32,17) ((22,19), (4,19)) 2 1+2
(3,110) (2,111) 2 2
(113) (113) 1 1

Total number of 3-hooks 32 44

whereDt (n) is the set of all t-distinct partitions of n. Since h1(λ) = `(λ), it implies that
dt ,1(n) ≥ bt ,1(n), for all t ≥ 2 and n ≥ 0. Also, from Theorem 1.1 we have bt+1,1(n) ≥
bt ,1(n), for all t ≥ 2 and n ≥ 0. Therefore, for k = 1, all the biases are known and the
diagram is complete for all t ≥ 2 and n ≥ 0:

bt+1,1(n)

bt ,1(n)

dt+1,1(n)

dt ,1(n)

>

6

6

>

It is known due to Ballantine et al. [2] that b2,2(n) ≥ d2,2(n) for all n ≥ 0 and b2,3(n) ≥
d2,3(n) for all n ≥ 8. Also, we have Theorems 1.2 and 1.3. Therefore, for k = 2,3, we
have the following diagram for all but finitely many n ≥ 0:

b3,k(n)

b2,k(n)

d3,k(n)

d2,k(n)

>

?

>

>
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Table 4: Values of bt ,2(n) : 1 ≤ n ≤ 12 and 3 ≤ t ≤ 13

n→ 1 2 3 4 5 6 7 8 9 10 11 12
b3,2(n) 0 2 1 5 5 11 12 22 28 43 53 79
b4,2(n) 0 2 2 5 7 12 18 27 39 55 76 106
b5,2(n) 0 2 2 6 7 15 18 33 42 67 87 129
b6,2(n) 0 2 2 6 8 15 21 34 47 71 98 140
b7,2(n) 0 2 2 6 8 16 21 37 48 77 101 151
b8,2(n) 0 2 2 6 8 16 22 37 51 78 107 155
b9,2(n) 0 2 2 6 8 16 22 38 51 81 108 161
b10,2(n) 0 2 2 6 8 16 22 38 52 81 111 162
b11,2(n) 0 2 2 6 8 16 22 38 52 82 111 165
b12,2(n) 0 2 2 6 8 16 22 38 52 82 112 165
b13,2(n) 0 2 2 6 8 16 22 38 52 82 112 166

Our method of the proof of Theorem 1.2 can not be generalized to prove the biases for
the number of hooks of length 2 in t-regular partitions for the next values of t. However,
numerical evidence suggest that the number of hooks of length 2 in t-regular partitions
increases with increasing values of t. For example, in Table 4 values in every column are
in increasing order. In view of this, we propose the following conjecture.

Conjecture 4.1 Let t ≥ 3 be an integer. We have bt+1,2(n) ≥ bt ,2(n), for all n ≥ 0.

Recently, several hook length biases among t-regular and t-distinct partitions have been
established with the help of generating functions, see for example [2, 3, 12]. The gen-
erating functions of b2,2(n) and b3,2(n) are already known. Our proof of Theorem 1.2
does not use any generating function technique. It would be interesting to prove the bias
established in Theorem 1.2with the help of generating functions. To find a similar proof
of Theorem 1.3 we need to first derive the generating function of b3,3(n) as it is not yet
known. Further, it would be very interesting to know if for positive integers k and t ≥ 2,
there exists an integer Nt ,k such that bt+1,k(n) ≥ bt ,k(n), for all n ≥ Nt ,k . This is true
for certain values of t and k as we see in Theorems 1.1, 1.2 and 1.3. However, proving
similar results for general values of t and k seems to be a hard problem.
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