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ON THE ADDITIVITY OF UNBOUNDED SET FUNCTIONS

BRIAN JEFFERIES

The set functions associated with Schrodinger’s equation are known to be un-
bounded on the algebra of cylinder sets. However, there do exist examples of
scalar valued set functions which are unbounded, yet o-additive on the underlying
algebra of sets. The purpose of this note is to show that the set functions associ-
ated with Schrédinger’s equation are not o-additive on cylinder sets. In the course
of the proof, general conditions implying the non-o-additivity of unbounded set
functions are given.

1. INTRODUCTION

It has been known for some time that there are substantial mathematical difficulties
in implementing Feynman’s program of interpreting quantum mechanics in terms of
path integrals. One of these difficulties is described as follows.

Let ) be the Lebesgue measure on R. Let A be the self-adjoint extension acting
in L?(R) of the operator d?/dz? defined on all smooth functions of compact support.
Then for each z € C, z # 0, Imz > 0, the semigroup of operators S§*(t) = e*A%/22,
t > 0 is defined by the functional calculus for self-adjoint operators on L?(R). For each
t > 0, the operator S*(t) has a kernel

eiz(z—y)’ /2t

in the sense that for all smooth functions ¢ with compact support in R, [§*(t)¢](z) =
Ja9i(z — y)é(y)dy for A-almost all z € R. The branch of the square root is taken with
a cut along the negative real axis.

Denote the operator of multiplication by the characteristic function x4 of a Borel
set A C R, acting on L*(R), by Q(A4). The set functions we are interested in are
constructed from the semigroups S* and the spectral measure @ as follows.

Let © be the collection of all continuous functions w: [0, c0) — R. Let t >0,
n=1,2,...,andlet 0<¢t <t2<...<?, <t. Suppose that By, By, ..., Bpyy are
Borel subsets of R, and set

(1) E = {we€ N:w(0) € By, w(t1) € By, ..., w(tn) € Bpn, w(t) € Bpy1}.
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For each 2 € C, 2 # 0, Im=z > 0, define
M{(E) = Q(Ba+1)57(t — ta)Q(Bn) ... §%(t2 — t1)Q(B1)5*(t1)Q(Bo).

Then M7 is well-defined, and it extends to an additive set function on the algebra S,
generated by all such sets E, as n, 3,13, ..., 1, and By, By, ..., B,, Bpy1 vary. We
denote this unique extension, again, by M;.

If z=ai, a >0, then M} is actually the restriction to S; of an operator-valued
measure, acting on L?(R), and defined on the o-algebra o(S;) generated by S,. If
a =1, then M} may be expressed in terms of Wiener measures P® associated with the
starting points z € R:

(M;(4)é, ¥) = /mP”(xAnl: o Xi)¢(z)dA(z), A€ S, ¢, ¥ € L*(R).

Here X,: 2 — R denotes the random variable X,(w) = w(s), s > 0. There is an
analogous formula for other cases of positive a in terms of scaled Wiener measures.

The Feynman-Kac formula asserts that e(4/2+V)t = Ja eft: V°X‘d'de for suitable
functions V: R — C. One attempt to attach meaning to the right hand side of the
equation
e~—i(—Aa/2+V)e _ e—t'j: V°X.d-th1,
0
so representing a solution to Schrédinger’s equation as a path integral, is given in [4].
The topic, in various guises, has a venerable history which is outlined in {2].

Now it follows from an observation of Cameron (see, for example (2, Theorem
5.1.1, p.217]) that if Rez # 0 and ¢, ¥ € L?(R) are non-zero, then (M} ¢, ¥) is not
the restriction to S; of a scalar measure defined on the o-algebra o(S;) generated by
S, because (M@, ¥) is unbounded on S;, that is, the set {(M7(A4)¢, ¥): A € S:}
is an unbounded subset of C. Consequently, the standard theory of integration with
respect to vector-valued measures does not apply to the operator-valued set functions
M7: 8¢ — L(L*(R)) in the case that Rez # 0. This is what is usually meant when
it is stated that M7 is not o-additive [5, p.11] (The operator valued Feynman integral
Kx(xEg) considered in [5], for example, is the adjoint of M:/ A(E), with E as defined
above). However, it is well-known that there exist unbounded o-additive set functions
defined on an algebra of subsets of a set. Such a set function cannot be the restriction
of a signed measure defined on a o-algebra, otherwise it would be bounded.

EXAMPLE. Let A be the algebra of subsets of R, the set of real numbers, consisting
of sets that are either finite, or have finite complements. Let m: A — R be the set
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function defined by

m(A) = cardinality of 4, if A € A is finite,
m(A) = — cardinality of R\ 4, if A € A is infinite.
Then m is o-additive on A, but {m(A4): 4 € A} is an unbounded subset of R.

More interesting examples arise by taking the product of certain commuting spec-
tral measures [6, 7).

The purpose of this note is to show that this phenomonon does not occur in the
present situation — not only is the set function Mf unbounded on the algebra S, it
is not even o-additive on S; whenever Rez # 0. Although this poor behaviour of the
set functions M} is not surprising, more analysis is required than in the proof of the
unboundedness of M{, which merely requires the calculation of the variation of the
additive scalar set function 4 — (M7 (A)¢, ¥), 4 € S; for ¢, ¥ € L*(R).

In Section 2 we give a proof that (M7 ¢, ) is not o-additive on S; for any non-zero
¢, ¥ € L*(R) whenever Imz > 0, Rez # 0 (Theorem 1). Also, a result which may
be of independent interest is given formulating conditions under which an unbounded
additive set function is not o-additive on the underlying algebra of sets (Proposition
1).

That (Mg¢, ) is not o-additive on S; for non-zero ¢, € L?*(R) whenever
Imz = 0, z # 0 is proved in Section 3 (Theorem 2). In this case, (M{¢, ) is
unbounded on the algebra generated by all sets E defined as in (1), with n =1, 2, ...
and ¢, ..., t, fixed as By, ..., B, varies, so the argument used in Section 2 does not
work. However, we give a simple proof that (M7 ¢, ¥) is not o-additive on the algebra
generated by all sets E defined above with one fixed time t;, after proving a general
result concerning unbounded set functions (Proposition 2). This result is also relevant
to the theory of Radon polymeasures [3]. A similar proof would work for set functions
defined over a product of Hausdorff topological spaces endowed with Radon measures
with values in [0, co] — sufficiently general to deal with polymeasures associated with
integral operators on manifolds, but we confine ourselves to R3.

Given an algebra of subsets S of a set {2, a set function m: § — C is said to be
additive if m(AU B) = m(A) + m(B) for all 4, B € S such that ANB =0. Itis
o-additive if for any pairwise disjoint family of sets A; € S, 7 = 1, 2, ... such that

i=1 j i=1

The variation |m|: S — [0, co] of an additive set function m: S — C is defined
by

U 4; € S, the equality m( A,-) = i m(A;) holds.
=1

|m|(A) = sup { Z |m(B)|: = € II(A)} , forevery A€S,
Bex
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where II(A) is the collection of all finite partitions of A € S by elements of S. Then
|m| is an extended-real valued set function, and m is bounded and o-additive on S
if and only if |m| has finite values and is o-additive. Given a subalgebra 7 of S, we
denote the variation of the restriction m |7 of m to T by |m|,.

Note that if m is unbounded so that |m|(f2) = oo, then the o-additivity of |m|
on § does not guarantee the o-additivity of m on S. From the examples outlined in
Section 3, we can produce an additive scalar-valued set function m whose variation is
the restriction of a o-finite measure, but m is not o-additive on the algebra S.

Given an operator valued set function m: § — L(L*(R)), for all ¢, € L*(R),
m¢: S — L%*(R) denotes the map defined by m¢(4) = m(A)¢ for all A € S, and
(mé, ¥): S — C is defined by (m¢, ¥)(4) = (m(A)¢, ¥) for all A € S, for the inner
product (f, g) = [y f(z)g(z)dz, f, g € L*(R) of L*(R).

The Borel o-algebra of a topological space T is denoted by B(T). By a Radon
measure g on T we mean a o-additive set function p: B(T) — [0, oo] such that for
every z € T, there exists an open set U such that 2 € U and p(U) < oo, and for every
A € B(T), p(A) = sup{p(K): K C A, K a compact subset of T}. A scalar-valued
(that is, complex or real valued) measure p is called a Radon measure if its variation

|#| is a Radon measure.

2. THECASEImz >0, Rez #0

We start with a result concerning the o-additivity of unbounded set functions
defined on the unspecified algebra of subsets of a set.

PROPOSITION 1. Let S be an algebra of subsets of a set 2. Let m: § —» C
be an additive set function. Suppose that S,, n =1, 2, ... are subalgebras of S such
that Sn C Sn+1 forevery n=1,2, ..., and the variation |m|g_ : Sn — [0, 00) is finite
and o-additive. Suppose that forall n=1, 2, ...

Imls, (5)
= ToTay Sk<
an sup{imls" ) S €Sk |mls, (§)>0,1<k<np <00

Suppose also, that there exist sets A, € S,, n =1,2,... such that A,4; C 4,

oo

forevery n=1,2,..., [} An =0, and lim |m|s (A4.)= co.

n=1 n—so0

Then m is not o-additive on S. In particular, there exist sets B, € S, n =

1,2, ... such that B, C B, foreveryn=1,2,..., [ B, =0, and lim |m(B,)| =
n=1 n—oo

0.

PROOF: Let p, ¢ be the real valued additive set functions on S such that m =
p + iq. Because |m|s (S5) < |pls, () +lgls, (S) forall S€S and n =1,2,...,it
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is not possible for both lim sup|p|s, (An) < co and lim sup|gls, (An) < 0. We
n—oo n—oo0 n
suppose that lim sup|plg (An) = 00, otherwise we can replace m by im.
n-—o00 n

Let pt = (|pl s, TPl Sn)/2 be the non-negative part of p | S». By choosing

a subsequence of A,, n = 1,2,..., and replacing p, by —pn, if necessary, we may
assume that p}(A4,) — 0o as n — 0.
Let n = 1,2,.... Now |m|s () < o0, and s0 p | S, is o-additive on S, by

virtue of the o-additivity of |m|s_. Denote the o-additive extension of p | Sn to o(Sa)
by pn. The o-additive extensions to o(S,) of the set functions p} and |m|s  are
denoted by the same symbols. An appeal to the Hahn decomposition theorem shows
that there exists a set X, € 0(S,) such that pf(S) = pa(SN X,) forall S € Sn.
Now for every n =1, 2, ..., choose 4!, € S, such that Im|s, ((An N XR)AAL) <

n

1/(2"an +2). Set B, = [} (AR U(Xa\ X:))NA,. Then B, | ) as n — oo and
1

mls, (4n N Xn)ABR) < Y Imls, ((An N Xa)\ (4} U (Xa \ Xi)))
k=1

+Imls, (4n \ (4n N X,))

1
< A X A —
glmls,.(( k0 XE)\ k)+2

1
< ; ai Imls, (Ax N Xi)\ 43) + 5

<2

forall n = 1, 2,.... If one of the numbers Imls,, ((AxNXe)\AL), k=1,...,n
vanishes, then by the assumption it is clear that |m|s ((4x N Xi)\ A}) = 0 too, so
the inequality above still holds.

It follows that

Ipi(An) - P(Bﬂ)l = |pn(An N Xn) ~ p(Bn)| < Ipls,, ((4n N Xn)ABn)
< Imls, ((An N Xa)AB,) <2,

so that p(B,) — oo as n — oo too. The sequence m(B,), n = 1,2, ... does not
converge in C, so m is not o-additive on S. 0

Fix t > 0. Foreach n =1, 2, ..., let 7, be the algebra of subsets of { generated
by the random variables X/, j = 0,1,...,n, that is, 7, is the smallest algebra
containing all sets

{w €N: Xo(w) € By, X,/,,(w) € B, Xu/,,(w) €B,,..., Xg(Q) € Bn},
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with By, By, ..., B, € B(R).

Let z€C, 0 =Imz >0, Rez #0. If ¢,y € L>(R), then (M7 ¢, ¥) is bounded
and o-additive on T, for each n = 1,2, .... Let (M{¢, %), denote the restriction
(MZ¢, ¥) | Tn of (M, ¢) to T,. Then (M@, ¥),]| is the variation of the o-additive
set function (M{¢, ¥),. In Lemma 1, |(M¢ ¢, ¥),,| is given explicitly.

Let (9, U,(P7),cns (Xt);50) be the Markov process such that for all ¢ > 0,

P*(X, € B) = / 9i(z - y)dy for all z € R, B € B(R),
B

This is just the diffusion process generated by (1/20)A.

The following result allows us to provide a lower bound for the variation of
(M{d, ¢),-

LEMMA 1. Letn=1,2,..., A€T,, ¢,% € L*(R). Then

JEd|
o

n/2
|(M:¢,¢)nl(A)=( ) [ P2 0 Xulxa) 18(2) .

PROOF: Let E be the set defined in (1). Then

(M7, $)(E) = (Q(Bnt1)S*(t - tn)Q(Ba) ... 5(t2 — :)Q(B1)S*(1)Q(Bo)é, ¥)
= Aﬂﬂ ‘/B't .. .‘/Bl Lo J(zn-f-])gt‘—tn (Zn+1 = Zn)9f, 4, _,(Zn — Zp-1)...

.- g (21 — zo)d(z0)dzo . .. dTn 1.

As a function of the product sets By X By X - X Bpt1, Br € B(R), k =
0,1,...,n+ 1, the right hand side is the restriction of a complex Borel measure m
on R™*2 to the product of Borel subsets of R. The measure m is the integral, with
respect to Lebesgue measure A,42 on R™ 2 of the function f: R*2 — R defined by

f(zo, 21, .05 Znp1) = i_b.(‘cn+1)9:—t,.(zn+l - ”n)g:,.—t,._l(zn —Zn-1)...
.- g (21 — 2o )¥(Z0)

for almost all zg, z1, ..., Zn4+1 € R.

Let A be the algebra of subsets of R**2? generated by products of Borel subsets
of R. The variation of m with respect to A is equal the restriction, to A, of the
variation |m| of m with respect to the Borel o-algebra. Because |m| = |f|.An+2 and
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l97| = (|2| /o)gic for all s > 0, we have

(M7 ¢, %), (A)

—/B..M/BI/BO
dzodzy ...dzy,

— |z| ﬂ/2/‘ / / Y io i o
= ( o Bn B, JB, l¢(3n)| gt/n(zn En—l) .. .g,/"(zz — 23 )gt/n(zl to)
X I‘i’(zo)l dzgdz, ... da:,,

P(2n)97/n(2n — Zn1) .- 9/n(22 — 21)95/m(21 — Z0)(20)

n/2
z z
- (BN [ pw o xaxa e
for the set
A= {w eN: Xo(w) € Bo, Xt/ﬂ(w) € By, Xu/,‘(w) €B,,..., Xg(w) € Bn} € T,.
The validity of the equality follows for all A € 7, by the additivity of the set functions
on both sides of the equation. 0
THEOREM 1. For every non-zero ¢,v% € L?*(R), there exist sets B, € &,
oo
n = 1,2,... such that B,,; C B, for every n = 1,2,..., (| Bn = 0, and
n=1
Tim [(MZ(Ba)$, ¥)] = .
PRoOOF: Foreach n = 1,2,...,let Cp = {w € 0 : w(¢/2) > n}. Then Cn4; C
Cn, and () C, = 0. We show that for each non-zero ¢,% € L?(R), there exist

n=1

positive integers N,, n = 1,2, ... such that C, € Ty, forall n = 1,2,..., and
lim |(M74, ¥), | (Cn) = oo.
Denote the integer part of z € R by [z]. Forevery n =1, 2, ..., set

The assumption that ¢ and 4 are non-zero implies that ¢, > 0. Then C, € Tn,
because N, is even, and by Lemma 1,

(026, 91100 = ()™ [ P2t o xixc e as = () er 5

showing that lim |(MZ¢, $) x| (Cn) = oo.
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The conclusion then follows from Proposition 1 once we establish that

(M, $)lx, (5)
(M, $)l7, (5)

for every n =1, 2, .... According to Lemma 1,

: S €Tk, (M, )7, (§)>0,1<k < n} < oo,

Mz, ¥z (5) (L‘-‘)"/z Ju P26 0 Xl xs) |#(2) | d=
(Mg, ¢)|T,, (s) ( ) fm P2(|% o Xi| xs) |6(z)| dz

() ()

for all § € Ti such that |(M7¢, ¥)| (S) > 0, and all 1 < k < n, so the proof is
complete. 1]

PROBLEM. IHf the sets By, k=1, 2, ... are of the form (1), with n and ¢,, ..., {, not

necessarily fixed, Bry1 C By for every k =1,2,..., and () Bi = 0, then is it true
k=1
that kh'm |(MZ(Bk)¢, ¢)| = 07 We know this to be true at least in the case that n and

t1, ..., tn are fixed [1, Theorem 1].

3. THECASEImz=0, z#0

As in Section 2, we first state a general result which may be applied to the situation
at hand. Let B(R) x4 B(R) X, B(R) denote the algebra of subsets of R generated by
all product sets A x B x C, A, B, C € B(R).

Let K,: L*(R) — L*(R), K»: L*(R) — L*(R) be bounded linear operators. For
é, ¥ € L*(R), the additive set function m: B(R) x4 B(R) xo B(R) — C defined for
each set A x Bx C, A, B, C € B(R) by

(2) mg, (4 x B x C) = (Q(C)K:Q(B)K1Q(4)$, ¥)
is separately o-additive in each variable. We examine conditions under which this set
function is not o-additive on the algebra B(R) x, B(R) x, B(R).

Let diag = {(z, z): ¢ € R} and let B,(a) be the open ball of radius » > 0 about
a € R. Suppose that for j = 1,2, K; has a kernel kj(z,y), z, y € R,z Ay in
the sense that k;: R?\ diag — C is measurable, bounded on all compact subsets of
R?\ diag, and for all smooth functions f, g with compact support in R,

(#5t,0)= m, [ [ S(ohm.cor@kite, ANy do.

Set D=R3\{3€R3221=22 0r22=13}.
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LEMMA 2. Let ¢, ¥ € L*(R) and suppose that m;.',/,: B(R)xaB(R)x.B(R)—C
is the additive set function defined by (2). Then,

3) Img, | (4) = /A [(zs)| k2(zs, z2)| [k1(22, 21)| |6(21)| d=1dz2dzs,

for all A € B(R) xq B(R) x4 B(R) such that AC D. -
If ky and kp are locally bounded on R®, then (3) holds for all A € B(R)x,B(R)Xq
B(R).
I, in either case, {mg, 4|(A) < oo, then

mg,4(4) = /A Y(zs)k2(zs, z2)k1(z2, 21)d(21)de deadzs,

PROOF: Let ¢n, ¥n € CP(R), n = 1,2,..., lim ¢, = ¢, Lm ¢, = ¢ in

L?*(R). Suppose that f, g, h € C>°R, supp f Nsuppg = @ and suppg Nsupph = 0.
Then

(Q(h)KzQ(g)KIQ(f)QSn’ "/’n)

@ . [, Falen)has)ia(as, 2)a(en)bs(z, 22)1(a1) (e dordoads.

This is seen as follows. If a € C°(R) then

(Q(9)K1Q(f) ¢, @)

lim /]R/mE(zz)g(zz)XB‘(zz)c(zl)kl(zz’zl)f(zl)flsn(h)dzldzz

e—0+

= [ [aGgtentk(er, 20)f(a)bn(er)dorden,
RJR

because for ¢ < inf{|z —y|:z € suppf,y € suppg}, 9(%2)XB.(z;)<(z1)f(Z1) =
9(z2)f(z1) for all z;, z; € R. Equality now follows for all « € L*(R) by dominated
convergence, because k;, k; are assumed to be locally bounded off the diagonal. Simi-
larly, for every a € L?(R) which vanishes outside a compact set disjoint from supph,
we have

(a, K;Q(_}D‘t/),,) = AAJ(:s)h(zs)kz(zs, zz)a(z;)dzzdzs.

The integrand in (4) is a bounded measurable function with compact support in
R3, so the equality (4) now follows from Fubini’s theorem. By dominated convergence
and the continuity of the operator Q(h)K2Q(9)K1Q(f),

(Q(R)K2Q(1)K1Q(f)9, ¥)

(5) = /maﬁ(zg)h(za)kz(zs, z2)9(z2)k1(z2, z1)f(21)¢(z1)dz, dzadzs.
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Now let C;, C», Cs be compact subsets of R such that C;NC; = @ and C,NCs =
@. Let

Bey xcaxcy(A) = /AJ(z;)h(za)kg(z,, z2)9(z2)k1(z2, 21) f(21)¢(z1)dz1dzadzs

for all A € B(C, xC2xCs). Then according to equation (5), pc,xcyxC,
B(C1 x C2 x C3) — C is the unique Radon measure such that

(Q(R)K2Q(9)K1Q(f), ¥) = oy xcyxc (F® g h)
for all functions h, g, f € C°(R) such that supp f C Ci, suppg C C,, suph C Cs.
By virtue of the o-additivity of the spectral measure @, we have
(Q(C)K2Q(B)K1Q(A), ¥) = pcy xcaxcs(A x B x C)

whenever A C C,, B C C,, C C Cs are Borel sets.
Let T = B(C1) xa B(C2) xa B(Cs). It follows that

mg,w(A) = poyxcaxcs(4) = /Alﬁ(M)kz(ta’ z3)k1(22, 21)$(21)dz1dz,dzs,

Img,wlr (A) = ke, xcyxc31 (4) = /Ah/’(za)”kz(zs, z2)| k1 (22, z1)| |$(21)| dz1dz2dzs

for all A € T. Now let S be the family of sets A € B(R) x4 B(R) x, B(R) such that
there exists a compact subset C of D such that A C C. Extending the argument
above to finite unions of compact product subsets of D, it follows that

Img, 4| (4) = /A|¢(Zs)llkz(23, 23)| |k1(=2, 21)| |6(21)| dz1dz2dzs < oo,

(6) m¢,¢(-4)=A¢(23)k2(zs,zz)kl(zz,zl)¢(zl)dzldzzdzs

for every A€ S.

Let U = {A € B(R)x,B(R)xqaB(R): A C D}. An argument similar to that of [3,
Proposition 1] shows that the restriction |my, | |u of |m¢, | to U extends to a Radon
measure on D (the difference is that here D is not a product space, but we can still
use the separate o-additivity of mg, ). Every subset of D belonging to the algebra
B(R) xq B(R) X4 B(R) can be written as the countable union of sets from §, so

Img, vl (4) = /A [¥(zs)| |k2(zs, z2)| |k1 (22, 21)| |6(21)| dz1dz2dzs

for all A € U. Equality (6) is therefore true for all those sets A € U such that
Ime, vl (4) < co.

If k; and k, arelocally bounded on R3, then a similar proof works with D replaced
by R3, except we do not have to worry about the diagonals. 0
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REMARK. For most operators of interest, such as singular integral operators, K, —+ K
in the weak operator topology as ¢ — 0%, where K. is the continuous linear extension
(which is assumed to exist) of the operator defined for all f, g € C°(R) by

(Kefo9) = [ [ 3. cor ke, 1)f(0)dy da.
Under such an assumption for the operators K; and K, it is not hard to show that
equation (3) is valid for all A € B(R) x4 B(R) x, B(R).
PROPOSITION 2. Let ¢, € L%(R) and suppose that the function

z = [(2s)| k2(2s, z2)| |ka(z2, 21)l [§(z1), = € R, 21 # 22 and 22 # 25
is not integrable on the set {z € R3: z, # z, and z; # z3}. Then, for the set function
my, 4 defined by (2), there exist sets B;j € B(R) xq B(R) xo B(R), j =1,2,... such

o0
that Bjy 1 C B; forevery j=1,2,..., {1 BjND =0, and him |my 4(B;)| = oo.
j=1 j—oo

If ky and k; are locally bounded on R3, we can choose the sets B; j =1, 2, ...
so that [ B; = 0.
=1

PRrOOF: Let C; € B(R) x, B(R) xo B(R), j = 1,2, ... be an increasing family

of compact sets such that D = |J Cj in the case that both k; and k; are not locally
i=1

J=
prove the result for the former case; the proof for the latter case is similar. We denote

bounded on R*, or R® = |J Cj in the case that k; and k, are locally bounded. We
1

scalar-valued representatives of the equivalence classes v, ¢ by the same symbols.
Assume that [is |Re (¥(z3)ka(zs, z2)k1(22, 21)é(21))| dz1dz2dzs = 00, otherwise

replace my, 4 by img 4. Assume also that fm, Re (¥(z3)k2(zs, z2)k1(z2, :1:1)45('.':1))+

dz,dz;dzs = o0, otherwise replace my,4 by —mg, 4. Forevery j=1,2,..., let

Vj = {z € Cj : Re(p(zs)ka2(zs, z2)k1(22, z1)$(21)) > O}
Wj = {2: € C,' :Re (1/)(23)k2(1:3, 22)k1(22, 31)()3(21)) < 0}.

Then V; C V4, W; C Wy, foreach j=1,2,...,and D = |J V;UW;,. Foreach

j=1
7=1,2,...,let T; be the algebra of sets C;NA, A € B(R)x,B(R)x,B(R). By Lemma
2, for each 7 =1, 2, ..., the variation |m4,,¢|,rj of my 4 on 7T; is the restriction of a

Radon measure p;: B(C;) — [0, 00). Choose subsets X;, Y; € B(R) x4 B(R) x4 B(R)
of C; such that u;(V;AX;) < 27%, pu;(W;AY;) <27% for each j =1, 2, ... and set

Sa=UX;, Tn=UY;,n=1,2,....
ij=1 i=1
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Then foreach n =1, 2, ...

3

pn(VaAS,) < ) ll'n(XJ' \ Va) + tin (Vn \ U XJ')

i=1 i=1

<) un(X \ V5) + 2a(Va \ Xn) = Y 55(X; \ V5) + pn(Via \ Xin)

i=1

—t ~a,
= M:
I

<

Similarly, pn(Wn,AT,) < 1. Since W, and V, are disjoint, pn(Tn N S.) < 3.
Let vn(A) = [, Re(¥(zs)ka(zs, 22)k1(22, £1)$(21))dz1dzodzs for every A €
B(C,). If A € T,, then by Lemma 1, v,(A) = Remy,4(A). In particular,

[n(Va) — Remg, ¢(Sn)l = [¥n(Va) = vn(Sn)| = [va(Va \ Sn) — vn(Sa \ Va)|
< [a(Va \ Sa)| + [va(Sa \ Va)| < lvn| (VaASR)
< |#n| (VRAS,) < 1.

Similarly, |vn(W,) — Remy,4(Th)| < 1.

Now by assumption,
hu%%hﬁm/IMMMM%JMMqunWmeu=&
n—oo n—oo Cn

so lLim Remy ¢(Sn) = oo. For each j =1,2,..., choose n; = 1,2, ... such that
n—000
n; > j and
Rem¢,¢(5n,-) > j — Remy,y(Tj5)

with njy; > n;. Then
Remy,y (S',,j U Tj) = Rem¢,,/,(S,.’.) + Remy, 4(Tj) - Rem¢'¢(T,~ n S',.’.)
>j— u,-(T,- n S,.J.)
2] — bnj (T,.’. N S,.j)

>j-3.

Set Dy = |J Sn; UT;. Then Dy C D and
j=1

/ bb(zs)] [ka(zs, 22) [Ka(z, 21)] [¢(e1)] dordzadas = 0.
D\Do
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The null set D\ Dy belongs to the o-algebra generated by & = {4 € B(R) xa
B(R)xqa B(R): A C D}, so for every € > 0, there exist sets E; €U, j=1,2,... such

2] o0
that D\Do C {J E; and ), ij lo(zs)| |k2(zs, 22)| |k1(z2, 21)| |$(21)| dz1dz2dzs <.
=1 j=1
i
Choose € = 1/2 and set B; = R%\ (S,.J. ut;u U Ek) € B(R) xq B(R) x4 B(R), for
k=1

all =1,2,.... Then [} B;ND =40 and

j=1
i
Rem¢_¢,(BJ-) = Rem¢_¢(R3) — Remy, 4 (S,.j U Tj U U Ek)
k=1

= Rem¢'¢(]Ra) - Rem¢,¢(5,.j U Tj)

i i
- Rem¢,.¢,<U Ek) + Rem¢,¢ ((Snj UT_-,‘) n U Ek)

k=1 k=1
i
< Remy,»(R®) — j + 3+ 2|mg, 4| (U Ek)
k=1
< Rem¢,¢,(R3) -j+4.

It follows that Lim |mg, 4(Bj)| = oo, as required. 1]
j—oo
REMARK. A similar proof shows that if the function F defined by

F(z) = [(22)| [k (22, 1)| |¢(=1)], 2 €R? 21 # 2,

is not integrable on R?\diag, then the additive set function AxB — (Q(B)K1Q(A)#,¥),
A, B € B(R) is not o-additive on the algebra B(R) x, B(R). If k; is locally bounded
on R? and ¢, ¥ € C°(R), then F is integrable on R2.

If P is the spectral measure associated with the self-adjoint operator (1/i)(d/dz)
acting in LZ(R), then the additive set function AxB — (Q(4)P(B)¢, ¥), A, B € B(R)
is not o-additive on the algebra B(R) x, B(R) whenever ¢, ¢ € L*(R)\ L*(R). Inte-
gration with respect to this set function is associated with the construction of pseudo-
differential operators.

THEOREM 2. Let 2 € C, z# 0, Imz = 0. For every non-zero ¢, ¢ € L*(R), and
every 0 < s < t, there exist sets B,, n =1, 2, ... belonging to the algebra generated

by Xo, X, and X;, such that Bny, C By forevery n=1,2, ..., () Bs = 0, and
lim |(MZ(Ba)g, $)| = co. "

PROOF: For all Borel subsets A, B, C of R,

(Mg ({Xo € 4, X, € B, X: € C})¢, ¥) = (Q(C)S*(t — 5)Q(B)S*(s)Q(A)¢, ¥)-
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For each u > 0, the operator $*(u) has a kernel gZ(z —y), z, ¥y € R such that
|gz(z)| = |z| /V2mu for all z € R. Thus,

/];a [¥(zs)! |97_.(zs — 22)| 19Z(z2 — 1)| |¢(z1)| dz1dz2dzs

2
z
= Er.sl(tl——s) ,[33 [¢(z3)| |¢(21)|d21d22d23 = .
The conditions of Proposition 2 hold, so the result follows. a
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