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ON THE ADDITIVITY OP UNBOUNDED SET FUNCTIONS

BRIAN JEFFERIES

The set functions associated with Schrodinger's equation are known to be un-
bounded on the algebra of cylinder sets. However, there do exist examples of
scalar valued set functions which are unbounded, yet tr-additive on the underlying
algebra of sets. The purpose of this note is to show that the set functions associ-
ated with Schrodinger's equation are not <r-additive on cylinder sets. In the course
of the proof, general conditions implying the non-cr-additivity of unbounded set
functions are given.

1. INTRODUCTION

It has been known for some time that there are substantial mathematical difficulties
in implementing Feynman's program of interpreting quantum mechanics in terms of
path integrals. One of these difficulties is described as follows.

Let A be the Lebesgue measure on R. Let A be the self-adjoint extension acting
in L2(R) of the operator d2 /dx2 defined on all smooth functions of compact support.
Then for each z 6 C, z ^ 0, Imz > 0, the semigroup of operators Sz(t) = e*At/2z,
t ^ 0 is defined by the functional calculus for self-adjoint operators on L2(R). For each
t > 0, the operator Sz(t) has a kernel

in the sense that for all smooth functions </> with compact support in R, [
/K <7f (x — y)<j>(y)dy for A-almost all x G R. The branch of the square root is taken with
a cut along the negative real axis.

Denote the operator of multiplication by the characteristic function XA of a Borel
set A C R, acting on £ 2 (R) , by Q(A). The set functions we are interested in are
constructed from the semigroups 5* and the spectral measure Q as follows.

Let fl be the collection of all continuous functions w: [0, oo) —> R. Let t > 0,
n = 1, 2, . . . , and let 0 < <i < iz < ... < tn ^ t. Suppose that Bo, Bx, •••, Bn+\ are
Borel subsets of R, and set

(1) E = {w € O : w(0) e Bo, «(«i) £BU..., u(tn) € Bn, «(<) 6 Bn+1}.
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For each z G C, z ^ 0, Imz > 0, define

l)S*(t - tn)Q(Bn)... Sz(t2 - t1)Q(B1)S
z(t1)Q(B0).

Then M' is well-defined, and it extends to an additive set function on the algebra St
genera ted by all such sets E, as n, ti,t2, ... ,tn and Bo, B\, ..., Bn, Bn+i vary. We

denote this unique extension, again, by M/ .

If z — ai, a > 0, then Mt
z is actually the restriction to <S< of an operator-valued

measure, acting on L2(R), and defined on the ©--algebra <r(St) generated by St- If
o = 1, then Ml may be expressed in terms of Wiener measures Px associated with the
starting points x £ R:

(Mi(A)<j>, +)= I P\XA4 O Xt)<f>(x)d\(x), AeSuh + e L2(R).

Here X,: f2 —> R denotes the random variable X,(w) = u»(s), s ^ 0. There is an
analogous formula for other cases of positive a in terms of scaled Wiener measures.

The Feynman-Kac formula asserts that e(
A/2+v)« = /Q e/o

 VoX'd'dMi for suitable
functions V: R —> C. One attempt to attach meaning to the right hand side of the
equation

e-i(-A/2+V)t = f e-
ifiV'>X'*'dMli

Jn
so representing a solution to Schrodinger's equation as a path integral, is given in [4].
The topic, in various guises, has a venerable history which is outlined in [2].

Now it follows from an observation of Cameron (see, for example [2, Theorem
5.1.1, p.217]) that if Rez ^ 0 and tf>, rj> E L2(R) are non-zero, then (M'<j>, if>) is not
the restriction to St of a scalar measure defined on the ^--algebra <r(St) generated by
St, because (M£<j>, if>) is unbounded on St, that is, the set {(M/(A)^, ij>): A £ St}
is an unbounded subset of C. Consequently, the standard theory of integration with
respect to vector-valued measures does not apply to the operator-valued set functions
M*: St —» C(L2(R)) in the case that Rez ^ 0. This is what is usually meant when
it is stated that M* is not tr-additive [5, p.11] (The operator valued Feynman integral
KX(XB) considered in [5], for example, is the adjoint of M\ (E), with E as defined
above). However, it is well-known that there exist unbounded ^-additive set functions
defined on an algebra of subsets of a set. Such a set function cannot be the restriction
of a signed measure defined on a c-algebra, otherwise it would be bounded.

EXAMPLE. Let A be the algebra of subsets of R, the set of real numbers, consisting
of sets that are either finite, or have finite complements. Let m: A —* R be the set

https://doi.org/10.1017/S0004972700030082 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030082
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function denned by

m(j4) = cardinality of A, if A G A is finite,

m(A) = — cardinality of R \ A, if A G A is infinite.

Then m is <r-additive on A, but {m(A): A G -4} is an unbounded subset of R .

More interesting examples arise by taking the product of certain commuting spec-
tral measures [6, 7].

The purpose of this note is to show that this phenomonon does not occur in the
present situation — not only is the set function M' unbounded on the algebra St, it
is not even <r-additive on St whenever Re z ^ 0. Although this poor behaviour of the
set functions M* is not surprising, more analysis is required than in the proof of the
unboundedness of M*, which merely requires the calculation of the variation of the
additive scalar set function A H-> (Mf(A)<f>, i/>), A G 5« for <f>, %j) G L2(R).

In Section 2 we give a proof that (Mf<l>, ij>) is not <r-additive on St for any non-zero
<j>, if> G £ 2 (R) whenever Imz > 0, Rez ^ 0 (Theorem 1). Also, a result which may
be of independent interest is given formulating conditions under which an unbounded
additive set function is not tr-additive on the underlying algebra of sets (Proposition

That (Mf<f>, ijj) is not tr-additive on St for non-zero <j>, if) G £ 2 (R) whenever
Imz = 0, z ^ 0 is proved in Section 3 (Theorem 2). In this case, (Mf<f>,iJ>) is
unbounded on the algebra generated by all sets E defined as in (1), with n — 1, 2, ...

and ti, ..., tn fixed as Bi, ..., Bn varies, so the argument used in Section 2 does not
work. However, we give a simple proof that (M"<j>, if)) is not ©--additive on the algebra
generated by all sets E defined above with one fixed time t\, after proving a general
result concerning unbounded set functions (Proposition 2). This result is also relevant
to the theory of Radon polymeasures [3]. A similar proof would work for set functions
defined over a product of Hausdorff topological spaces endowed with Radon measures
with values in [0, oo] — sufficiently general to deal with polymeasures associated with
integral operators on manifolds, but we confine ourselves to R3.

Given an algebra of subsets S of a set SI, a set function m : 5 —* C is said to be
additive if m(A U B) = m(A) + m(B) for all A, B G S such that APiB = Q. It is
a-additive if for any pairwise disjoint family of sets Aj G <S, j — 1, 2, . . . such that

U Aj G 5 , the equality ml \J Aj ) = £ ™(Aj) h o l d s -
i=i \j=i ) i=i

The variation \m\ : S —* [0, oo] of an additive set function m: S —» C is defined
by

= SUP \m\ (A) = sup \ V \m(B)\ : it G H(A) \ , for every A<=S,
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where H(^4) is the collection of all finite partitions of A £ S by elements of S. Then
\m\ is an extended-real valued set function, and m is bounded and tr-additive on S
if and only if |m| has finite values and is a-additive. Given a subalgebra T of S, we
denote the variation of the restriction m \T of m to T by |m|T.

Note that if m is unbounded so that \m\ (fi) = oo, then the cr-additivity of \m\
on S does not guarantee the <r-additivity of m on S. From the examples outlined in
Section 3, we can produce an additive scalar-valued set function m whose variation is
the restriction of a ©--finite measure, but m is not <r-additive on the algebra S.

Given an operator valued set function m: S —> £(X2(K)), for all </>t ij> £ L2(K),
m<f>: S —* Z2(R) denotes the map defined by m<f>(A) = m(A)<f> for all A £ S, and
(m<f>, tf>): S —» C is defined by (m<f>, VO(-A) = (m(A)<j>, ij>) for all A £ S, for the inner
product (/, g) = SJ&f(x)g{x)dx, f,g£ L2(R) of L2(R).

The Borel <r-algebra of a topological space T is denoted by B(T). By a Radon
measure fi on T we mean a er-additive set function fi: B(T) —> [0, oo] such that for
every x £ T, there exists an open set U such that x £ U and fi(U) < oo, and for every
A G B(T), n(A) — sup{fi(K): K C A, K a compact subset of T}. A scalar-valued
(that is, complex or real valued) measure fi is called a Radon measure if its variation
\fi\ is a Radon measure.

2. THE CASE Imz > 0, Rez ^ 0

We start with a result concerning the <r-additivity of unbounded set functions
defined on the unspecified algebra of subsets of a set.

PROPOSITION 1. Let S be an algebra of subsets of a set fl. Let m: S —* C
be an additive set function. Suppose that Sn, n = 1, 2, . . . are subalgebras of S such
that Sn Q Sn+i for every n = 1, 2, . . . , and the variation \Tn\Sn : Sn —> [0, oo) is finite
and er-additive. Suppose that for all n = 1, 2, . . .

= S U P

Suppose also, that there exist sets An € Sn, n = 1, 2, . . . such that An+i C An
oo

for every n — 1, 2, . . . , f] An = 0, and lim |m|s {An) — oo.
n=l n-»oo n

Then m is not a-additive on S. In particular, there exist sets Bn £ Sn, n =

1, 2, . . . such that Bn+1 C Bn for every n = 1, 2, . . . , f] Bn = 0, and lim |m(£n) | =
n=l n - > o °

OO.

PROOF: Let p, g be the real valued additive set functions on S such that m =
p + iq. Because |m|5n (5) < |p|5n (5) + \q\Sn (S) for all S £ S and n = 1, 2, . . . , it
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is not possible for both Km sup \p\s (An) < oo and Km sup |g | s (An) < oo. We

suppose that Km sup \p\s (An) = oo, otherwise we can replace m by tm.
n—•oo n

Let p+ — (|p|5 + p I <S'n)/2 be the non-negative part of p | Sn- By choosing
a subsequence of An, n = 1, 2, . . . , and replacing pn by —pn if necessary, we may
assume that Pn(An) —> oo as n —> oo.

Let n = 1, 2 Now |m|5n (ft) < oo, and so p | Sn is <r-additive on <5n by
virtue of the <r-additivity of \m\Sn . Denote the <r-additive extension of p | Sn to <r(<Sn)
by pn. The <r-additive extensions to <r{Sn) of the set functions p£ and |"*lsn are
denoted by the same symbols. An appeal to the Hahn decomposition theorem shows
that there exists a set Xn G c(Sn) such that pj(5) — pn(S D Xn) for all S £ Sn.

Now for every n = 1,2, . . . , choose A'n G <Sn such that |fn|5n ({An 0 Xn)AAJ,) ^

l/(2nan + 2). Set Bn= f] (A'k U (Xn \Xk))nAn. Then Bn | 0 as n -» oo and

n

|mL ((A, n Xn)ASn) ^ V |m|- ((A, n Xn) \ (A'k U (JCn \ Xk)))\Sn

fc=i

* = i

for all n — 1,2, If one of the numbers \m\s ((AkD Xk)\A'k), k = 1, . . . , n
vanishes, then by the assumption it is clear that |Tn|Sn ((Ak D Xk) \ A'k) = 0 too, so
the inequality above still holds.

It follows that

\Pn-(An) - P(Bn)\ = \Pn{An n Xn) - p(Bn)\ ^ \P\Sn ((An n Xn)ABn)

< \™\sn ((^n n Xn)ABn) < 2,

so that p{Bn) —> oo as n —> oo too. The sequence m(Bn), n = 1, 2, . . . does not
converge in C, so m is not <7-additive on S. U

Fix t > 0. For each n — 1, 2, . . . , let Tn be the algebra of subsets of fi generated
by the random variables Xjt/n, j = 0, 1, . . . , n, that is, Tn is the smallest algebra
containing all sets

{w G n : X0(w) G Bo, Xt/n(w) G # i , X2t/n(o;) G B2, ..., J
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with B0,Bu...,Bn£B(R).
Let z G C, a - Imz > 0, Rez ^ 0. If <j>, ip G L2(R), then {M?<f>, V>) is bounded

and <r-additive on Tn for each n = 1,2, Let (M'^>,ip)n denote the restriction
(Mf<j>, ip) | %. of (M/0, V>) to 7^. Then |(M<*<£, VOJ is the variation of the tr-additive
set function (Mz<f>, i>)n- In Lemma 1, \{MZ4>, il>)n\ is given explicitly.

Let (Q, U,(Pa)x€n^ (X*)t>o) b e t h e Markov process such that for all t > 0,

P?(Xt eB)= I gfix - y)dy for aU x G R, B G B(R),
JB

This is just the diffusion process generated by (1/2<T)A.

The following result allows us to provide a lower bound for the variation of
<f>,<j>)n.

LEMMA 1 . Let n = 1, 2, . . . , A eTn, <j>, •>!> e L2(R). Then

PROOF: Let E be the set denned in (1). Then

M, +){E) = {Q(Bn+l)S
z(t-tn)Q(Bn)...S

z(t2-tl)Q(Bl)S
z(tl)Q(Bo)<t>,1>)

= / " • / / •$(xn+i)g;-tn{xn+1 - xn)gZn_tnl{xn - xn-.!)...
JBn+1 JBn JBi JB0

...gf^xi - xo)<l>(xo)dxo ... dxn+1.

As a function of the product sets Bo x Bi x • • • x Bn+i, Bk G B(R), k =
0 ,1 , . . . , n + l , the right hand side is the restriction of a complex Borel measure m
on R™+2 to the product of Borel subsets of R. The measure m is the integral, with
respect to Lebesgue measure Xn+2 on Rn+2, of the function / : Rn+2 —• R defined by

f(x0, X-L, . . . , xn + i ) = TJ>(xn+i)gZ_tn(xn+1 - xn)g
z
n_ini(xn - zn_i) . . .

•••gfai -xo)il>(xo)

for almost all xo, xi, . . . , zn+i G R •
Let A be the algebra of subsets of Rn+2 generated by products of Borel subsets

of R. The variation of m with respect to A is equal the restriction, to A, of the
variation |m| of m with respect to the Borel <r-algebra. Because \m\ = \f\ .An+2 and
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Iff*I = (1*1 /°0siff for all a > 0, we have

= / ' ' ' / /
JBn JB-i JBB0

dxodxi...dxn

= (\AY/2 f ... f I \^xn)\gi'Jn(xn-xn.1)...gijn(x2-x1)9i'Jn(x1-x0)
\ a / JBn JBx JBo

x |^(xo)| dxodxi... dxn

) n

for the set

A = { « e ( l : X0(u) e Bo, X1/n(w) G Bj, ^t/nto;) G .Bz, . . . , X«(a;) G £„} G 7^.

The validity of the equality follows for all A G Tn by the additivity of the set functions

on both sides of the equation. LI

THEOREM 1 . F o r e v e r y non-zero <j>, rj> G L 2 ( R ) , there exist sets B n G St,
oo

n = 1 , 2 , . . . suci that Bn+1 C Bn for every n = 1 , 2 , . . . , f| ^ n = 0>
n=l

Urn |(Mt»(BB)*,ifr)| = oo.

PROOF: For each n = 1, 2, . . . , let Ca = { w £ f l : w(</2) ^ n} . Then C7n+i C
oo

C n and f| C n = 0. We show that for each non-zero </>, V> G X2(K), there exist
n=l

positive integers JVn, n = 1, 2, . . . such that Cn G TNfl for all n = 1, 2, . . . , and

Denote the integer part of x G K by [x]. For every n = 1, 2, . . . , set

= 2. max

The assumption that <f> and ^ are non-zero implies that cn > 0. Then Cn € Tffn

because Nn is even, and by Lemma 1,

J = l ^ ) cn>n,

showing that Jim^ \{Mf<i>, 1>)Nn \ (Cn) = oo.
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The conclusion then follows from Proposition 1 once we establish that

' * > ' * (5) > 0, 1 < t < n | < co,

for every n — 1, 2, According to Lemma 1,

Jf1)"/2 J, J?(ltf o Xt\ xs) \K*)\

for all 5 G Tfc such that |(Mt
z<£, i/>)\Tk (5) > 0, and all 1 < k < n , so the proof is

complete. D

PROBLEM. If the sets Bk, k = 1, 2, . . . are of the form (1), with n and ti, ...,tn not
oo

necessarily fixed, Bk+i Q Bk for every k = 1, 2, . . . , and |"| JBJ, = 0, then is it true
J b = l

that lim \(M?(Bk)4>, <t>)\ = 0? We know this to be true at least in the case that n and
k—»oo

tii • • • > tn are fixed [1, Theorem 1].

3. THE CASE Imz = 0, z ^ 0

As in Section 2, we first state a general result which may be applied to the situation

at hand. Let B(R) xa B{R) Xa B{R) denote the algebra of subsets of Rs generated by

all product sets Ax B xC, A, B, C G B(R).

Let Kx: L2(R) -» L2(R), K2: L2(R) -» L2(R) be bounded linear operators. For
$, ip € L2(R), the additive set function m: B(R) xa B(R) xa B(R) -y C defined for
each set Ax B xC, A, B,C G B(R) by

(2) rn^{A x B x C) =

is separately <r-additive in each variable. We examine conditions under which this set
function is not o--additive on the algebra B(R) x a B(R) xa B(R).

Let diag = {(x, x): x G R} and let Br(a) be the open ball of radius r > 0 about
a G R . Suppose that for j = 1, 2, Kj has a kernel kj{x, y), x, y G R , x ^ y in
the sense that kj: R2 \ diag —> C is measurable, bounded on all compact subsets of
R2 \ diag, and for all smooth functions / , g with compact support in R,

(Krf, g) = Ynn+ J j g(.x)XB.(*y{y)kj(x, y)f(y)dydx.

Set D = R3 \ {x G Rs : *i = x2 or x2 = x 3 } .
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LEMMA 2 . Let <£, ^ G L2(R) and suppose that m ^ : B(R)x o S(R)x o ,0 (R) -> C
is the additive set function defined by (2). Then,

(3) \m^\{A)= f mx3)\\k2(x3,x2)\\k1{x2,x1)\\<l>(x1)\dx1dx2dx3,
JA

for all A £ B{R) x o B(R) x o B{R) such that A CD.

and k2 are locally bounded on R3, tien (3) holds for all A G B(R)x o B(R)x

If, in either case, | m ^ | (A) < oo, then

= /
JA

PROOF: Let <j)n, V>« £ C™(R), n = 1, 2, . . . , lim Vn = i>, lim <j>n = <f> in
n—»oo n—too

L2(R). Suppose tha t f,g,h€ C ~ R , s u p p / fl supper = 0 and supp<? D suppA = 0.
Then

{Q{h)K2Q{g)KxQU)4>n, *„)
(4)

This is seen as follows. If a G C~(R) then

, a) = lim
e—0+

=
JnJm

a(x2)g(x2)k1(x2, x1)f(xi)<f>n(xi)dx1dx2,

because for e < inf{|x — y| : x G supp/, y 6 supp^}, 5(a;2)XB.(j!j)'
:(a:i)/(*i) =

g(x2)f(xi) for all xi, x2 G R. Equality now follows for all a G £2(R) by dominated
convergence, because k\, &2 s116 assumed to be locally bounded off the diagonal. Simi-
larly, for every a G £2(R) which vanishes outside a compact set disjoint from supp/i,
we have

(a, K;Q(h)il>n) = ( I J(x3)h(x3)k2{x3,x2)a(x2)dx2dx3.
JnJjs.

The integrand in (4) is a bounded measurable function with compact support in
R3, so the equality (4) now follows from Fubini's theorem. By dominated convergence
and the continuity of the operator Q(h)K2Q(g)KiQ(f),

(5) r _
= / Ip{x3)h(x3)k2[x3,x2)g(x2)k1(x2,xi)f(x1)<t>(xi)dxidx2dx3.
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232 B. Jefferies [10]

Now let C i , C2, Cs be compact subsets of R such that C\ f~lC2 = 0 and C2DCs =
0. Let

= /
JA
/ xi, x2)g{x2)k1{x2,
A

for all A G B ( C I X O J X C J ) . Then according to equation (5),
B(C\ x C2 x Cs) —» C is the unique Radon measure such that

) = f id XC, XC,(/ <8>i7®fc)

for all functions h, g, f £ C~(R) such that s u p p / C C\, suppy C C2, supfe C C s .

By virtue of the or-additivity of the spectral measure Q, we have

(Q(C)K*Q{B)K1Q(A)4,i,)=poixo1xo,(A x B x C)

whenever ACClt B C C2, C C Ca are Borel sets.

Let T = B{CX) x o B(C2) x o B(C3). It follows that

— I il>(x3)k2(x3,x2)k1(x2,xi)<l>(x1)dxidx2dx3,
JA

= /
JA
/
A

for all 4̂ e T . Now let 5 be the family of sets A € B(R) xa B(R) x o B(R) such that
there exists a compact subset C of D such that A C C. Extending the argument
above to finite unions of compact product subsets of D, it follows that

\m<t>,1>\ (A) = / IV"(*s)| \k2{x3, x2)\ |fci(x2, xi) | |^(a;i)| dxxdx2dx3 < 00,
JA

(6) m^,^(A) = /
JA
/
A

for every i £ 5 .

Let M = { 4 e #(R) xo B(R) xa B(R): A C D}. An argument similar to that of [3,
Proposition 1] shows that the restriction |m^,y,| \u of |m^,^| to U extends to a Radon
measure on D (the difference is that here D is not a product space, but we can still
use the separate <r-additivity of m^^) . Every subset of D belonging to the algebra

xo S(R) xo B(R) can be written as the countable union of sets from <S, so

/
A

for all A E. U. Equality (6) is therefore true for all those sets A £ U such that
\m^{A) <oo.

If fci and k2 are locally bounded on Ks, then a similar proof works with D replaced
by R 3 , except we do not have to worry about the diagonals. U
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REMARK. For most operators of interest, such as singular integral operators, Kt —• K
in the weak operator topology as e —» 0 + , where Ke is the continuous linear extension
(which is assumed to exist) of the operator defined for all / , g G C£°(R) by

Under such an assumption for the operators K\ and K2, it is not hard to show that
equation (3) is valid for all A G B(R) x o S(R) x o S(R).

PROPOSITION 2 . Let <j>,i/> e L2(R) and suppose that the function

* G R3, xi ^ x2 and x2 ^ xs

is not integrable on the set { i £ R s : zi / x2 and x2 7^X3}. Then, for the set function

m^j, defined by (2), there exist sets Bj € S(R) xo B(R) xo B(R), j = 1, 2, . . . such
00

that J5,+i C Bj for every j = 1, 2, . . . , f| £,- f~l D = 0, and lim |m^ ^ ( 5 ; ) | = 00.

If ifci and kz are locally bounded on R3, we can choose the sets Bj j = 1, 2, . . .

so that f| Bj = 0 .
i=i

PROOF: Let Cj e B(R) x o B(R) x o B(R), j - 1, 2, . . . be an increasing family

of compact sets such that D = [J Cj in the case that both hi and k2 are not locally

00

bounded on R3, or Rs = |J Cj in the case that k\ and &2 are locally bounded. We

prove the result for the former case; the proof for the latter case is similar. We denote

scalar-valued representatives of the equivalence classes rf>, <f> by the same symbols.

Assume that J^3 |Re(•0(13)^2(^37 X2)ki(x2, Xi)<j>(xi))\ dx1d.x2d.x3 — 00, otherwise

replace Tra ,̂̂  by im,/,^. Assume also that / a 3 Re(i0(a!j)fc2(a;3) X2)ki(x2, x\)<f>(x\))

dxidx2dx3 — oo, otherwise replace m^,y, by —m^,^,. For every j — 1, 2, . . . , let

Vj = {xe Cj : Re(il>(xs)k2(xs, x2)k1(x2, n)<A(xi)) > 0}

ss, X2)h(x2, x^^)) < 0}.

Then Vj C Vj+1, W) C PFi+1 for each j = 1, 2, . . . , and D = \J VjUWj. For each

j = 1, 2, . . . , let Tj be the algebra of sets CjdA, A G B(R)xof i (R)xoB(R). By Lemma

2, for each j — 1, 2, . . . , the variation Im^^l^. of rn^^ on Tj is the restriction of a

Radon measure \LJ\ B(CJ) -* [0, 00). Choose subsets Xj, Yj G B(R) x o 5(R) x o B(R)

of Cj such tha t /i,-(V) AXj) < 2~2>, fij(WjAYj) < 2~2> for each j = 1,2, ... and set

S n = U ^ i , r n = U Y ^ , » = l , 2, . . . .
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Then for each n — 1, 2, . . .

n / n

(X\V) + u \V \ I | X -

1

; Mn(JT,- \ F,) + ^n(Fn \ Xn) = V W(X,- \ Vj) + fin{Vn \ Xn)

Similarly, fin(WnATn) < 1. Since Wn and Kn are disjoint, /in(Tn n 5n) < 3.
Let î n(-A) = JA Re{i>(x3)k2(x3, x2)ki(x2, xi)<j>(xi))dxidx2dx3 for every A

. If A € 7^, then by Lemma 1, vn[A) = Rem^i^(A). In particular,

) - ^ ( 5 n ) | = \un{Vn \ Sn) - un(Sn \ Vn)\

\ Sn)\ + Wn(Sn \ Vn)\ ^ |l/n| (FnA5n)

Similarly, \vn{Wn) - Rem^)Vl(Tn)| < 1.
Now by assumption,

lim vn{Vn) - lim / Re(ip(x3)k2{x3, x2)k1(x2, x1)<j>(x1))
+dx1dx2dx3 =

n—^oo n—^oo J(^
oo,

so lim R e m ^ ^ S n ) = oo. For each j = 1, 2, . . . , choose nj = 1, 2, . . . such that
n—»oo

rtj > j and
Rem^^^nyJ > j -

with Tij-i-i > n.j. Then

y U

> j - 3.

oo

Set Do = U S", u r i • Tl jen Do C D and

/ |^>(X3J| |^2Va;3) X2)\ \k\\X2,
JD\Do

= 0.
D\D0
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The null set D \ Do belongs to the a-algebra generated by U = {A G B(R) xo

B{R) x o B(R) : A C D}, so for every e > 0, there exist sets Ej eU, j = 1,2, ... such
OO OO

that D\D0 C U Ej and £) / E . |V>(x3)| |fc2(x3, x2) | |fci(x2, Xi)\\^>(x1)\dxidx2dx3 <e.

Choose e = 1/2 and set Bj = R3 \ ( s n y UT,-U |J £fc J G 5(R) x o B(R) x o B(R), for

all j = 1, 2, . . . . Then H ^ n I? = 0 and
7=1

',-) = Rem^ V ( R 3 ) - Rem^ ^ I 5 n . U T,- U I J £fc 1

^ ^ ^ U

)) ( ( )3
 u T i ) n U Ek

\J Ek

It follows that lim \m,j,,-d)(Bj)\ — oo, as required. U
j->oo

REMARK. A similar proof shows that if the function F defined by

-F(x) = | ^ (x 2 j | |fci(x2, x i ) | | ^ (x i ) | , x G R , xi ^ x2

is not integrable on R2\diag, then the additive set function AxB —> (Q(B)KIQ(A)<J>,TI>),

A, B G £(R) is not <r-additive on the algebra B(R) x o B(R). If Jbi is locally bounded

on R2 and <f>, TJ> G C~(R) , then F is integrable on R2.

If P is the spectral measure associated with the self-adjoint operator (l/») (d/dx)

acting in L2(R), then the additive set function AxB ^ (Q(A)P(B)<f>, ip), A, B G B(R)

is not <r-additive on the algebra B(R) xa B(R) whenever <f>, ij> G X2(R) \ X ^ R ) . Inte-

gration with respect to this set function is associated with the construction of pseudo-

differential operators.

THEOREM 2 . Let z G C, Z ^ 0, Imz = 0. For every non-zero </>, i/> G L2(R), and

every 0 < 8 < t, there exist sets Bn, n — 1,2, . . . belonging to the algebra generated
oo

by Xo, X, and Xt, such that Bn+i C Bn for every n = 1, 2, . . . , P| Bn = 0 , and
n=l

lim

P R O O F : For all Borel subsets A, B, C of R,

eA,x.e B, xt G C})4>, +) = (Q{c)sz{t - s)Q{B)sz{s)Q(A)<t>,
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For each u > 0, the operator 5 z (u) has a kernel g^(x —y), t , y £ K such that

\g*(x)\ = \z\ /V/2TTW for all I E R . Thus,

» ~ *a)| \9z.(x2 - Xl)\ \<j,(x1)\dx1dx2dxs

2 t
= 2ns(t

The conditions of Proposition 2 hold, so the result follows. U
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