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ABSTRACT. Bending shear was observed to produce 
nearly vertical shear bands in a calving ice wall standin~ on 
dry land on Deception Island (Iat. 63.0 oS., long . 60.6 W.), 
and slabs calved straight downward when shear rupture 
occurred along these shear bands (Hughes, 1989). A formula 
for the calving rate was developed from the Deception 
Island data, and we have attempted to justify generalizing 
this formula to include ice walls standing along beaches or 
in water. These are environments in which a wave-washed 
groove develops along the base of the ice wall or along a 
water line above the base. The rate of wave erosion 
provides an alternative mechanism for controlling the calving 
rate in these environments. We have determined that the 
rate at which bending creep produces nearly vertical shear 
bands, along which shear rupture occurs, controls the 
calving rate in all environments. Shear rupture occurs at a 
calving shear stress of about I bar. Our results justify using 
the calving formula to compute the calving rate of ice walls 
in computer models of ice-sheet dynamics. This is especially 
important in simulating retreat of Northern Hemisphere ice 
sheets during the last deglaciation, when marine and 
lacustrine environments were common along retreating ice 
margins. These margins would have been ice walls standing 
along beaches or in water, because floating ice shelves are 
not expected in the ablation zone of retreating ice sheets. 

INTRODUCTION 

Slabs calve from ice walls along shear bands that rise 
vertically from the base of the ice wall and curve slightly 
toward the ice wall (Hughes, 1989). Shear strain in shear 
bands increases from zero at the base, which is a rigid 
boundary, to a maximum at the surface, which is a free 
boundary. In this respect, slip in shear bands is analogous 
to slip between pages of a book when the book is bent 
around its binding, where the binding is a rigid boundary. 
Based on this mechanism, a formula for the calving rate of 
slabs from an ice wall was derived in which calving rate Uc 
is: 

(I) 

where Us is the horizontal surface velocity of ice at the top 
of the ice wall, c is the horizontal distance between the ice 
wall and transverse crevasses immediately behind the ice 
wall, h is the height of the ice wall, e is the angle through 
which the ice wall bends to produce the curving shear 
bands, and R ~ hi e is the radius of bending curvature of 
the shear bands (Hughes, 1989). For steady-state calving , 
Uc = u = kus' where u is the mean forward velocity of the 

• See Annals of Glaciology, Vol. 12, 1989, p. 204 for an 
extended abstract. 
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ice wall and k is a constant. Therefore, c = khe ~ kh2 I R 
in Equation (I). 

By definition, ice walls are grounded in water whose 
depth ranges from zero to the depth needed to float ice 
having the height of the ice wall. Equation (I) was derived 
using data obtained from an ice wall standing on dry land. 
When an ice wall stands in the intertidal zone of a beach, 
a wave-cut groove exists along the base of the ice wall. 
This groove exists along the water line when the ice wall is 
grounded in water. In addition, inhomogeneous creep in the 

Fig. 1. The bending creep mechanism for shear rupture in 
calving ice walls. lee walls are shown grounded on dry 
land (top), at the shoreline of a beach (middle), and in 
deep water (bot/om ). Straight dashed lines intersecting the 
ice wall at 45 ° are the slip lines of maximum shear 
stress for homogeneous creep, curving solid lines rising 
vertically from the bed are shear bands produced by 
bending creep. Heavy lines are calving surfaces for shear 
rupture. 
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curving shear bands interacts with homogeneous creep 
between shear bands that is described by lines of maximum 
shear stress intersecting the ice wall at 45

0 

angles and 
which constitute the slip-line field for plastic flow. These 
features are illustrated in Figure I . They pose this question: 
is the rate of slab calving controlled by the rate at which 
bending creep produces curving shear bands, the rate at 
which shear rupture occurs along slip lines, or the rate at 
which grooves are produced by wave action? We wish to 
present our answer to that question. 

ICE WALLS GROUNDED ON DRY LAND 

The role of shear rupture along slip lines was deduced 
from observations of a calving ice wall grounded on dry 
land in an eruption crater on Deception Island (Iat. 63 .0 oS., 
long. 60 .6 °W.), which lies off the Antarctic Peninsula. Four 
tunnels were dug at various heights up the ice wall , and a 
shallow groove was cut down the entire height of the ice 
wall (Hughes, 1989). These excavations revealed the bend ing 
shear mechanism shown schematically in Figure 2. The 
increase of bending shear with distance above the base of 
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Fig . 2 . A cartoon of the crater produced by the 12 Aug ust 
1970 subglacial volcanic eruption on Deception Island . 
Details of the up-slope ice wall show offsets of ash and 
dust layers by shear bands produced by a bending 
movement ( from Hug hes. 197 1). 

the ice wall was revealed by increasing offsets of ash and 
dust layers intersected by the shear bands. We determined 
crystal fabrics from ice samples taken from these 
excavations. 

An ice sample containing a shear band intersecting an 
ash layer is shown in Figure 3, and Figure 4 shows ice 
fabrics inside (Fig. 4a) and outside (Fig. 4b) of this shear 
band. Fabric (a) is the typical ice fabric in a shear band . It 
shows that optic axes (the crystallographic c-axes normal to 
easy-glide atomic planes of hexa$onal symmetry) are 
strongly clustered near a pole at 90 to the plane of the 
shear band, and weakly clustered near a pole at 45

0 

to this 
plane. Fabric (b) is the typical ice fabric between shear 
bands. It shows that optic axes are strongly clustered near a 
pole at 45

0 

to the plane of the shear band and very weakly 
clustered near a pole at 0

0 
to the plane of the shear band. 

We interpret clustering of optic axes near the 90
0 

pole 
as resulting from recrystallization within the shear band to 
produce an easy-glide ice fabric favoring inhomogeneous 
bendin& creep. We interpret clustering of optic axes near 
the 45 pole as resulting from homogeneous creep between 

Hug hes alld Nakagawa: Bending shear 

Fig. 3. A dirt layer and air bubbles drawn into a shear 
band in the calving ice wall on Deception Island. 
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Fig . 4 . Ice f abrics in a thin section of the ice sample in 
Fig ure 3. Fabric ( a) is contoured f rom 61 poles inside the 
shear band. Fabric ( b) is contoured from 80 poles oU/side 
the shear band. Numbers denote the per cent of c- ax es 
per 1% of area in the S chmidt diagrams. The dirt layer 
in Fig ure 3 has the orientation shown. 

shear bands to produce an easy-glide ice fabric favoring 
shear deformation along lines of maximum shear stress 
aligned at 45

0 

to the ice wall (and, therefore, at nearly 45
0 

to the shear bands), with this fabric predominating between 
shear bands and existing as a much weaker "ghost" fabric of 
unrecrystallized grains within shear bands . We interpret the 
very weak clustering of optic axes near the 0

0 
pole 

observed between shear bands as resulting from basal 
traction, as this fabric becomes stronger in ice samples 
closer to the bed, and this pole is perpendicular to the bed , 
where basal traction tends to produce an easy-glide ice 
fabric having this pole orientation. 
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Actual observations of slab calving on the Deception 
Island ice wall show that the easy-glide fabric for 
inhomogeneous bending creep in shear bands is 
superimposed on an older easy-glide fabric for homogeneous 
creep in the direction of the slip-line field (Hughes, 1989). 
Slabs calve when easy glide in the shear bands drastically 
reduces coupling across shear bands and drastically enhances 
slip along shear bands. Since the shear bands are nearly 
vertical, up-glacier uncoupling means that virtually the 
entire weight of ice slabs between shear bands must be 
borne by ice at the base of these slabs. Shear rupture along 
a 45

0 

plane near the base of the slab between the ice wall 
and the shear band will allow the slab to calve from the 
ice wall. Since the easy-glide ice fabric that exists in these 
45

0 

planes cannot lead to shear rupture until bending creep 
produces the easy-glide ice fabric in shear bands, bending 
creep is the rate-controlling process for slabs calved from 
ice walls grounded on dry land. 

ICE WALLS GROUNDED ALONG A BEACH SHORELINE 

Along the northern Antarctic Peninsula, most calving 
ice walls are grounded in the intertidal zone of beaches . 
Similar ice walls may have extended along the beach 
shorelines of pro-glacial lakes during retreat of North 
American and Eurasian ice sheets after the last glacial 
maximum about 14000 years ago. Hence, slab calving from 
these ice walls is the dominant ablation mechanism for 
glaciers on the northern Antarctic Peninsula today and may 
have been an important ablation mechanism during the last 
deglaciation. 

The dominant features of intertidal ice walls along 
Antarctic beaches are a continuous shoreline groove at the 
base of the ice wall and large cavities in re-entrant angles 
of the ice wall. Both features are eroded by wave action in 
the intertidal zone between high and low tides, 
supplemented by waves that accompany storms. The grooves 
and cavities are everywhere, except for sections of the ice 
wall that are fresh unweathered fracture surfaces. Personal 
observations of calving events along these ice walls during 
November and December of 1988 showed that slab calving 
was caused by nearly vertical shear rupture along transverse 
crevasses immediately behind the ice wall . Moreover, the 
fresh surface exposed after a slab calved had the slight 
concave curvature that was observed in the nearly vertical 
shear bands produced by bending creep in the ice wall we 
studied in detail on Deception Island. 

If development of shear bands by bending creep along 
the intertidal ice walls of the Antarctic Peninsula precedes 
undercutting of the ice wall by wave action, then the tidal 
groove and re-entrant cavities should be the exception 
rather than the rule for these ice walls, because shear 
rupture would occur as soon as the groove and cavities had 
undercut ice back to the shear band closest to the ice wall. 
On the other hand, if bending creep produced shear bands 
more slowly than wave action produced the groove and 
cavities, these intertidal features would be almost ubiquitous, 
because they would develop long before shear rupture in 
the shear bands produced calving events. Since intertidal 
grooves and cavities exist at the base of intertidal ice walls 
along nearly all shorelines of the Antarctic Peninsula, 
except where slabs have recently calved, we conclude that 
bending creep producing shear bands along which shear 
rupture occurs is the rate-controlling mechanism for slab­
calving. 

ICE WALLS GROUNDED IN WATER 

Calving ice walls standing in water exist along the 
margin of the Antarctic ice sheet everywhere except where 
the ice margin abuts mountains, forms an ice wall in the 
intertidal zone along beaches, or advances in water deep 
enough to float the ice and produce an ice shelf. Much of 
the Wilkes Land margin of the Antarctic ice sheet is an ice 
wall grounded in water. It is likely that retreating margins 
of the North American and Eurasian ice sheets during the 
last deglaciation often were ice walls grounded in sea-water 
along marine margins and in pro-glacial lakes along 
terrestrial margins. Slab calving is the dominant ablation 
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mechanism where these ice walls exist in Antarctica today, 
and may have been an important ablation mechanism for 
retreating Northern Hemisphere ice sheets. 

Wave-washed grooves form along the water line of ice 
walls grounded in water, and these grooves are enlarged 
into cavities in the re-entrant angles of the ice walls, where 
wave action is focused . Calving of ice slabs above the 
groove and cavities proceeds by the same mechanism that 
we observed for ice walls standing in the intertidal zone of 
beaches, where wave action produces a groove and cavities 
at the base of the ice wall . Under-water calving of ice 
beneath the wave-washed groove and cavities may also 
proceed by shear rupture along the shear bands produced by 
bending creep. The basic difference would be that shear 
rupture proceeds downward above the water line and 
upward below the water line. 

In order for the calving rate to be the same above and 
below the water line, the downward gravity force and the 
upward buoyancy force that cause shear rupture above and 
below the wave-washed groove should produce identical 
calving stresses. Since the density of ice is about ten times 
the density difference between ice and water, slabs calved 
below the wave-washed groove must be about ten times 
larger than slabs calved above the groove if the upward and 
downward calving causes shear rupture at the same calving 
stress. 

CAL VING FORCES ON ICE WALLS 

Nature abhors a vacuum, and air in front of an ice 
wall is a vacuum compared to ice in back of the ice wall, 
so a horizontal force exists that pulls the ice wall forward 
and opens transverse crevasses behind the ice wall. Shear 
rupture proceeds downward from these crevasses along shear 
bands produced by bending creep (Hughes, 1989). For 
orthogonal axes with x horizontal and perpe~dicular to the 
ice wall, y horizontal and parallel to the ice wall, and z 
vertical, the horizontal pulling force F x calving a slab of 
width w from an ice wall of height h standing in water of 
depth d is: 

(2) 

where PI and Pw are ice and water densities and g is 
gravity acceleration. Pulling force F x opens transverse 
crevasses behind the ice wall and induces a bending moment 
M yCz) at the base of the ice wall that produces the shear 
bands extending upward from the base of the ice wall to 
the tips of surface crevasses, and along which shear rupture 
occurs. From Hughes (1989): 

where z = 0 and z = h at the bottom and top of the ice 
wall, respectively. Notice that the bending moment decreases 
as water gets deeper, and vanishes at depth 
d = (PI / PW)1/3h, which is greater than depth d = (PI / Pw)h 
at which the ice wall floats and thereby creates an ice 
shelf. Hence, a bending moment exists so shear bands can 
form even after the ice floats. 

For an ice wall grounded on dry land, a slab having 
height h, width w, and thickness c calves when a vertical 
gravity force F z causes shear rupture across the shear bands 
produced by bending creep. The calving slab then slides 
across the plane in the slip-line field that intersects both 
the shear band and the ice wall at a 45

0 
angle. Hence, 

shear rupture occurs only along distance h - c of the shear 
band and: 

(4) 

For an ice wall grounded in the intertidal zone of a beach, 
the basal groove and cavities eliminate shear rupture on the 
45

0 

planes and the calving force when the groove has 
radius r is: 

F z = PIg(h - 2r)wc. (5) 

For an ice wall grounded in water of depth d, the calving 
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force above the wave-washed groove and cavities is: 

(6) 

and the calving force below the wave-washed groove and 
cavities is: 

F z = (PI - pw)g(d - r)wC (7) 

where C is the calving distance behind the submerged part 
of the ice wall. 

CAL VING STRESSES ON ICE WALLS 

The calving stress on an ice wall would be calving 
force F c divided by the area across which shear rupture 
occurs. For an ice wall grounded on land, this would be 
area w(h - c{ of the shear band produced by bending creep 
and area (2) cw of the plane that lies in the slip-line field 
and intersects both the ice wall and the basal part of the 
shear band at a 45

0 

angle. Since the rate of slab calving is 
controlled by shear rupture across the shear band, which 
has the larger area and therefore the lower stress for shear 
rupture, the calving stress is: 

Plg(h - c)wc 

(h - c)w 
(8) 

For an ice wall grounded in the wave-washed zone of a 
beach, shear rupture occurs only across shear bands 
produced by bending creep so that: 

(9) 
(h - 2r)w 

For an ice wall grounded in water, shear rupture above the 
water line occurs for: 

Plg(h - d - r)wc 

Tc 
(h - d - r)w Plgc (10) 

and shear rupture below the water line occurs for: 

(PI - pw)g(d - r)wC 
TC 

(d - r)w 
-Plgc (11) 

where Equations (10) and (I I) must be equal for the 
calving rate to be the same above and below the 
wave-washed groove and cavities, so that: 

C (12) 

Since c = ID m is a typical slab thickness between the ice 
wall and the first transverse crevasse, Equations (8) through 
(I I) give I To I = I bar = 100 kPa for the absolute value of 
the calving stress. Hence, it appears that a bending shear 
stress of about I bar is required to generate the easy-glide 
ice fabrics in shear bands that facilitate shear rupture. 

Our only evidence that Equation (12) holds was our 
observation of a submarine calving event on San Rafael 
Glacier in the Chilean fjords on 21 November 1988. The 
submarine block that rose to the surface was about ten 
times larger than slabs calved above a wave-washed groove 
3 m deep. The ice wall extended 100 and 50 m above and 
below sea-level near the fjord walls, and 130 and 120 m 
above and below sea-level near the center of the fjord, 
where the calving event occurred. Setting PI = 920 kg/ m3 

for ice and Pw = 1020 kg/m3 for sea-water gives C = 9.2c 
in Equation (12). Other evidence that blocks calved below 
sea-level are much larger than slabs calved above sea-level 
for ice walls grounded in water is figure 28 from Post and 
LaChapelle (197 I), a photograph showing these blocks and 
slabs floating in front of the South Sawyer Glacier calving 
ice wall in south-east Alaska. 

Hughes and Nakagawa: Bending shear 

We conducted laboratory creep experiments in which 
simple shear predominated, and we determined the shear 
stress needed to create an easy-glide ice fabric in a shear 
band of the same thickness as those produced by bending 
shear on the Deception Island calving ice wall. A poly­
crystalline ice specimen having a random orientation of 
crystal grains was produced by packing snow into a mold 
75 mm by 75 mm by 220 mm, saturating the snow with cold 
water, and freezing the mixture. This produced grains of 
about I mm in diameter. The sample was then removed 
from the mold and each end was frozen into twin box 
grips, 75 mm long, 75 mm wide, and 100 mm deep, of the 
creep machine shown schematically in Figure 5. Weights 
hung on the chain from the large-diameter wheel 
transmitted a constant shear stress to the 75 mm by 75 mm 
cross-section of ice exposed between the two box grips, by 
means of a chain from the small-diameter wheel. 

As seen in Figure 5, the box grips moved in nearly 
friction less ball-bearing housings, with vertical motion of 

TRACKS 

Fig . 5. A schematic diagram showing the configuration of 
specimen grips and the applied load for simple shear­
creep experiments. The creep machine is designed to 
conduct creep experiments in simple shear, uniaxial 
tellsion, uniaxial compression, alld torsion, with constant 
stress in the uniaxial tests maintained using a variable 
lever-arm (Carofalo and others, 1962). 

one box grip allowing simple shear in the exposed specimen 
and horizontal motion of the other box grip suppressing 
uniaxial tension in the exposed specimen. Taking rectilinear 
axes with x horizontal and normal to the plane of shear, y 
horizontal, and z vertical and both parallel to the plane of 
shear, as shown in Figure 6, the exposed volume of the ice 
specimen was V = LxLyLz , where Lx could be varied, but 
Ly = L z = 75 mm is constant. The plane of shear initially 
had about 75 grains along L z , making the production of an 
easy-glide ice fabric independent of the initial grain-size. 
When a load was applied, one box grip underwent vertical 
translation U z and the other box grip underwent horizontal 
translation u x' Vertical motion introduces shear stress T zx in 
volume V and causes shear strain E zx' where 2E zx = 
tan r = u z/ L x' Horizontal motion suppresses a tensile stress 
that would otherwise stretch volume V by an amount 
(sec r - I)L x' The only stresses are shear stress T zx and 
bending stress Gxx' where volume V is bent near the box 
grips because the box grips do not rotate during translation 
uz (Dehlinger, 1950; Read, 1950). 

The distribution of G;>:x and Tz~ along L z is provided 
by beam theory. For elastIC deformatIOn Gxx varies linearly 
from Gxx = Gm for maximum tension (convex bending) or 
compression (concave bending) at z = ±Lz/2, to G xx = 0 at 
z = O. For plastic deformation, DXX = Gm along L z , but 
changes abruptly from tension to compression at z = O. For 
elastic deformation, T zx varies parabolically from T zx = 0 
at z = ±L z/2 to T zx = T m for maximum shear at z = O. 
For plastic deformation, T zx = Tm along most of L z , 
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Fig, 6, Stresses and deformation of an ice specimen 
mounted in the simple shear-creep configuration shown in 
Figure 5. Top: the distribution of elastic shear stress T zx 
and bending stress a xx in response to shear force F z and 
bending moment My at the onset of creep deformation. 
Bottom: the distribution of viscoplast ic shear and bending 
produced by strain "'I at the conclusion of creep 
d eformation . Bending is suppressed when Lx « L z . 

except at z = ±Lz / 2, where an abrupt drop to T zx = 0 
occurs. 

If simple shear is to produce an easy-glide fabric in 
exposed volume V of the specimen, T zx must dominate a xx 
during creep deformation. A creep test began with elastic 
deformation producing the linear a"x and parabolic T zx 
distribution along L z shown in Figure 6. The ratio of 
exposed specimen lengths Lx and Lz needed for T zx to 
dominate a xx can be computed readily for this situation. If 
a is the average absolute value ofaxx' then: 

+LZ/2 L z / 2 

aLz = J axxdz 2 J am(2z/ L z)dz !amLz . (13 ) 

-L z /2 0 

The bending moment My about y at the box grips is 
therefore: 

(14) 

where lever-arms ±l L z act on forces ±! L zLya, and 
a = !am . If T is the average value of T zx' then: 

(i 5) 

264 

The bending moment about y at the box grips is therefore: 

(16) 

Equating Equations (\4) and (16) for equilibrium gives: 

The creep test was ended when recrystallization produced an 
easy-glide ice fabric that mimicked plast ic deformation 
(Hughes, 1977 , fig. 23). Hence, a = Gm except at z = 0 
and T = T m except at z = ±L z / 2. Therefore: 

I 2-
-L L z a 4 y 

for which 

I 
-L L 2 a 4 y z m 

(18) 

We conclude from Equations (\ 7) and (\ 9) that T zx will 
dominate a xx if L z » Lx' 

We conducted creep experiments with Lx = 10 mm and 
Lx = 20 mm, both for L z = 75 mm. Recrystallization 
produced an easy-glide fabric in both cases. Slight bending 
at the box grips was observed for L x = 20 mm, but none 
for Lx = 10 mm . Bending was monitored by freezing 
cross-hair threads into the ice specimen in order to compare 
local shear strain EZX = HBuz/ Bx + Bux/z) = /:;uz / 2llLx 
midway between the box grips with shear strain E zx = 

t tan "'I = uz / 2Lx between the box grips. Box grips were 
used to prevent bending from detaching the specimen from 
the grips where bending stress Gxx was tensile and 
produced convex bends , as observed by Rigsby (1958). 

Our laboratory creep experiments were conducted at 
-3°C, the mean annual temperature on Deception Island, 
and recrystallization invariably occurred when the applied 
shear stress approached I bar (\ 00 kPa) and shear strain 
approached 10%. To illustrate this , Figure 7 compares creep 
data at -3°C for Tzx = 55 kPa and Tzx = 117 kPa. At 
55 kPa, recrystallization had not begun after 4 months , the 
time between the 12 August 1970 volcanic eruption that 
produced the ice wall on Deception Island and our initial 
observations of shear bands in the ice wall. In Figure 7, 
liDO h of creep at 55 kPa had produced E zx = 0.05 and a 
steady-state strain-rate of E zx = 0.40 / a . At 117 kPa, 
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Fig. 7. Creep curves for simple shear of laboratory 
polycrystalline Ice conducted at -3°C using the creep 
configuration in Figure 5 to duplicate the shear bands in 
the calving ice wall on Deception Island. Curve A: 
T zx = 117 kPa ; curve B: T zx = 55 kPa. 
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recrystallization began at E zx = 0.08 after 300 h of creep 
and ended at E zx = 0.40 after 300 additional hours of 
creep, to produce a steady-state strain-rate of £ zx = 

1.9/ a before recrystallization and £ zx = 24/a after re­
crystallization. 

Measurements of the size and fabric of grains after 
recrystallization showed that ice in deformed volume V had 
an average grain diameter of 5 mm, compared to I mm 
before recrystallization, and that recrystallization had 
converted the random grain fabric into a single-maximum 
fabric in which optic axes were clustered tighly about a 
pole lying 90 ° from the plane of shear. Figures 8 and 9 
show the grain-size and fabric after recrystallization. Even 

Fig. 8. Grain-sizes in a thin section made from the ice 
specimen sheared in a laboratory creep experiment to 
produce the data for curve A in Figure 7. 
Recrystallization in the plane of shear was accompanied 
by grain growth. 

Fig. 9. The ice fabric in the recrystallized part of the thin 
section ill Figure 8. A sillgle-maximum fabric exists in 
the plane of shear. Numbers denote the per cent of 
c-axes per J% of area in the S chmidt diagram for J65 
poles inside the shear band. 

with a 5 mm diameter, sheared length L z of the specimen 
includes about 15 grains, so the increase in grain-size 
should not invalidate the creep experiments. Interestingly, 
the 5 mm diameter of recrystallized grains was also the most 
common grain-size in the Deception Island ice wall, both in 
and between shear bands. As is seen by comparing Figures 
4 and 9, the single-maximum fabric for easy glide was 
much stronger in our laboratory creep experiments than in 
the Deception Island shear bands, even though total strain 
was much greater in the Deception Island shear bands. This 
may be because the original fabric was random in our 
laboratory ice but had a single-maximum fabric at 45 ° to 
the shear bands in Deception Island ice, a fabric that was 
retained between shear bands and even survived 
recrystallization in the shear bands, where it was weakened 
but not detroyed. 

Recrystallization in the laboratory ice increased the 
strain-rate over ten-fold, from 'Y = 4.3 x 1O-4/ h to 'Y = 

5.5 x 1O-3/h; that is, from £ zx = 1.88/ a to £ zx = 24.I / a. 

Hughes and Nakagawa: Bending shear 

We believe a drastic strain-rate increase of this order leads 
to shear rupture and slab calving along the ice wall on 
Deception Island, an increase that takes place in only about 
300 h when the shear stress is about I bar. This is the 
shear stress for slab calving that is predicted by Equations 
(8) through (10) for ice walls when crevasses open about 
10 m behind the wall, a common occurrence, and by 
Equation (11) for under-water block calving. 

Our creep data allow a calculation of viscoplastic 
exponent n and hardness parameter A in the flow of ice 
for our close approximation to simple shear: 

(20) 

Using the creep data in Figure 7 as an example, if the two 
minimum strain-rates and applied shear stresses before 
recrystallization are designated by subscripts 1 and 2, 
respectively, Equation (20) gives n = In[(£ ZX)I/ (£ ZX)2]/ 
In[(T zx)/(T ZX)2] = 2.07. This value of 11 is then used to 
obtain A = 86.3 kPa a1/ n and A = 25.2 kPa a l / n before and 
after recrystallization, respectively, from Equation (20) and 
the two sets of £ zx and T zx data in Figure 7. 

Our creep experiments gave 11 ~ 2, which can be 
interpreted in two ways. First, following Weertman (1983), 
perhaps n ~ I for T zx < 10 kPa, 11 ~ 3 for 10 kPa < 
T ZX < 100 kPa, and n > 3 for T zx > 100 kPa. On this 
basis, we should expect n ~ 3 in our experiments. Secondly, 
following Hughes (1981), perhaps 11 ~ I for transient creep 
and n ~ 3 for steady-state creep . In this case, 11 ~ 2 
implies that recrystallization began during transient creep in 
our creep experiment at 117 kPa, so that in Figure 7 the 
minimum creep rate at 117 kPa was not the true 
steady-state creep rate, whereas the minimum creep rate at 
55 kPa was the true steady-state creep rate because 
recrystallization did not occur. Favoring this interpretation is 
the observation from polar ice sheets and ice shelves that 
11 ~ I when transient creep is important (Doake and Wolff, 
1985; Weertman, 1985), and a component of transient creep 
would exist in our ice specimens because the distribution of 
T zx across L z changes from parabolic to nearly constant 
during the creep test even though the applied T zx was 
constant. Opposing this interpretation are the creep data by 
Duval (1976), who found that n ~ 3 for both transient and 
steady-state creep (Hughes, 1985). Although both field and 
laboratory studies give n ~ 3 as the most common value 
(Paterson, 1981), lower values have been reported . Colbeck 
and Evans (1973) obtained n = 1.3 for Blue Glacier, for 
example. 

Our creep experiments gave unusually low values of 
hardness parameter A, both before and after recrystallization . 
Most published creep data report a softness parameter B, 
which is obtained from the flow law £ zx = Br ZXIl in our 
creep experiments, so that B = A -Il from Equation (20). 
Converting A into B from our data for n = 2.07 gives 

B = 3.15 x 10-12 kPa-1l S-I before recrystallization and B = 

4.02 x 10- 11 kPa-1l S-1 after recrystallization. Equivalent 
values for n = 3 would be B = 3.74 x 10-14 kPa-1I S-1 

before recrystallization and B = 4.77 x 10-13 kPa-1I S-1 after 
recrystallization. Paterson (1981, table 3. 1) presented field 
data from temperate glaciers ranging from 11 = 2.8 and 
B = 8.85 x 10-15 kPa- n a-I to 11 = 5.2 and B 5.06 x 

10-20 kPa-n a-I. Paterson (1981, table 3.2) presented 
laboratory data for the minimum creep rate in our stress 
range at or near -2°C. These data give a mean value of 
B = 2.7 x 10- 15 kPa-1l S-I standardized for n = 3, but the 
largest value was ten times the smallest value. Our values of 
B standardized for 11 = 3 are outside the upper end of that 
range by a factor of 2.8 before recrystallization and by a 
factor of 35 after recrystallization . We conclude that our 
value of B is close to the usual range for minimum creep 
rates before recrystallization, but is unique after 
recrystallization. 

The differences between our laboratory creep data and 
those tabulated by Paterson (1981) may be explained by the 
different states of stress. The Paterson (1981) data were for 
creep in uniaxial compression, in which the compressive 
stress was uniform across the specimen cross-section. Our 
data were for creep in simple shear, in which the shear 
stress varied across the specimen cross-section from zero at 
the sides to a maximum at the center, and only became 
relatively uniform after recrystallization. Consequently, 
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recrystallization was not uniform; it began in the center and 
spread to the sides. 

CONCLUSIONS 

Calving ice walls are found grounded on dry land, 
along beaches, and in water. We have concluded that (I) in 
all these environments the rate-controlling calving 
mechanism is bending creep that produces nearly vertical 
shear bands in the ice wall, and leads to shear rupture 
along these bands, (2) the calving rate is accurately 
predicted by a calving formula based on this mechanism, 
using data from a calving ice wall on Deception Island, and 
(3) calving follows shear rupture at a shear stress of about 
I bar. 

These results are fortunate because they (J) extend the 
calving formula developed for the Deception Island ice wall 
to all calving ice walls in all environments, (2) spare us 
from addressing turbulent flow, the one great unsolved 
problem of classical physics because, without bending creep, 
wave action would control the calving rate in beach and 
aquatic environments, and (3) allow us to incorporate the 
calving rate along with the melting rate in computer models 
that simulate advance and retreat of continental ice sheets 
in polar, lacustrine, and marine environments, where ice 
walls are grounded on land, along beaches, or in water. 
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