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THE VALUE DISTRIBUTION OF REDUCIBLE CUBICS 

BY 

P. D . T. A. E L L I O T T 

In memory of R. A. Smith 

ABSTRACT. The representation of integers by the products and quo­
tients of the values of x(x2 + a) at integer points is considered. 

1. Let r\, r2,... be a sequence of positive rational numbers. Considering the set of 
all positive rationals (2* as a group under multiplication, let T be its subgroup generated 
by the rh and let G be the quotient group Q*/T. The group G reflects to what extent 
an arbitrary positive integer n has a multiplicative representation 

« = lW, 
where every e, has the value +1 or - 1 . In particular G is trivial if and only if every 
integer n is so representable. 

Let F(x) be a rational function of x with integer coefficients, which is positive for 
all large positive real values of x. For any given positive integer k let ru r2,. . . be the 
sequence of positive rationals amongst the F{m) when m runs through the positive 
integers exceeding k. I conjecture that for all large k the group G is independent of k, 
and that for squarefree F{x) it is the direct sum of a free group and a finite group. 

As an example, G is free when F(x) = x2 + 1. Evidence for the conjecture is 
marshalled in my book [3]. As I there indicate, little is known when F(x) involves 
terms of degree 3 or higher. In the present paper I investigate the cases F(x) = 
x(x2 + a) for non-zero integers a. 

For the remainder of the paper W(JC) will be a reducible cubic x(x2 + a) where —a 
is an integer which is not a square. Unless otherwise indicated the rational functions 
which appear in the arguments have integer coefficients, although it will be seen that 
these arguments can be largely carried out in an arbitrary commutative ring which has 
an identity but no divisors of zero. 

When —a is a non-zero square, the result of my paper [2] shows that G is trivial. 
Surprisingly the cubics w(x) satisfy a multiplicative identity. 

THEOREM 1. There are polynomials //,(x), / = 1,. . . , t, of degree at most 4, and 
integers e,- = ± 1, so that 
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t 

x6 = n W(//,(JC))€' 

1=1 

in the field of rational functions of x over Q. 
The polynomials Hj(x) may be readily computed. As I presently show, only two of 

them need to be of degree 4, the rest may be quadratic or linear. In particular every 
polynomial has a positive leading coefficient. Thus every element of the above group 
G has in this case an order of at most 6. This can be improved. 

THEOREM 2. Every positive integer m has a representation of the form 
s 

m2 = I l w(njyj 
7 = 1 

where each positive integer n^ has at most a polynomial growth in m, and €, = ± 1. / / 
the restriction on the size of the n} is omitted, there are infinitely many representations. 

For F(x) = x(x2 + a) the group G is either trivial, or an infinite direct product of 
groups of order 2. 

As an application of Theorem 1 I prove 

THEOREM 3. Let 8 = 144 (a + If {a + 2). Then every positive integer m has infinitely 
many representations of the form 

' ,W(nj)W(nj + 2)y 

j - t
 V w(nj + l ) 2 I 

with nj a positive integer, e,- = ± 1. 
The value of ô in this theorem can be improved at once to 48(<z + l)3, perhaps 

further, but since Theorem 3 serves only as an illustration I do not pursue this matter. 

2. LEMMA 1. Let Q(t) = at2 + (3f + 7, a =É 0, be a polynomial with rational 
coefficients. Let M be a non-zero rational number. Then 

Q(M~lQ(t) + t) = M~2aQ{t)Q{t + Ma"1). 

PROOF. This can be verified directly. 
Consider now the reducible cubic z(t) = t(t2 + bt + c) where b, c are integers, not 

both zero. We apply Lemma 1 with Q = t2 + bt + c to obtain 

z(M~lQ + t) _ M~\Q + Mt) 

z(t)z(t + M) t(t + M) 

Here progress will be made if we can choose M to be an integer so that Q + Mt is 
reducible over Z[f]. This needs (M -I- b)2 -4c-r2 for some integer r. This is always 
possible, for example with M + b = c + 1, r = c - 1. With these choices for M and 
r> Q(0 wiU b e divisible by M in Z provided t is specialized to satisfy t + 1 = 0 
(mod M) or t + b - 1 = 0 (mod M). 

If we set t = (c + 1 - b)y - 1, then with certain integers a} the left-hand side of 
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(1) has the alternative representation 

(My + ax\( My + a2 \ 

\My- l/\M[y+ 1] - V 

say. One would expect that every positive integer g had a representation 

g = EI S(n,-)% e, = ± 1 , 

perhaps with «,• < c(6)g1 + e for each fixed 6 > 0. This would establish the conjecture 
for F(x) — x(x2 + bx + c). However, at the moment this line of argument seems 
difficult to follow. 

Instead I take b =0, c = a and restrict myself to w(x). 

LEMMA 2. If x = (a + l) y then in the ring Z[y] there are polynomials Fj(y) of 
degree at most 4 so that 

x\x2 + 0 - 1 ) A 
: = El MFi(y))\ €f- = ± 1 . 

x - 1 ,-=i 
PROOF. With Q = t2 + a, M = a + l the identity (1) becomes 

t2 + a 
+ t)w(\) 

1 + a I v 7 (r + l)(r + a) 
(2) 

w(t)w(t + 1 + 0 ) r(f + 1 + a) 
This will be useful so long as we specialize t so that (t2 + a)/(\ + a) can be interpreted 
as a polynomial with integer coefficients. 

Replacing t by x2 — 1 where x — (a + l)y now gives the desired relation, since 
X2 + 0 = H>(JC)JC-1. 

3. For polynomials Pj, P2 in Z[JC] we write Px ~ P2 if in the field of rational functions 
of x (with integer coefficients) there is an identity 

e 

with Gi(x) in Z[x] and e, = ± 1 . This is an equivalence relation. 
Group theoretically, let 9 be the multiplicative group of rational functions of JC with 

integer coefficients, and let Ti be the subgroup generated by the w(G(x)) where G(x) 
belongs to Z[x]. Then P, ~ P2 if and only if P, and P2 belong to the same coset mod 
IY As for G, we aim to determine the group 0/1^. 

In the following arguments Lemma 1 with M — 1 will be applied many times. 

LEMMA 3. 

x2 + 0 - 1 - (x - l)x\x + 1) 

PROOF. By definition the polynomial h\ = hx{x) = x2 + a satisfies hx ~ x~K 
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Replacing x by hx + x and appealing to Lemma 1 

(hi + JC)"' ~ A,(A, + x) = hx{x)hx{x + 1) ~ JT 'C* + l)"1, 

which gives 

h2 = /*2(JC) = JC2 + x + a ~ JC(X + 1). 

We now replace JC in this identity by h2 + x. 

(h2 + x)(h2 + JC + 1) ~ h2(h2 + x) = h2(x)h2(x + 1) 

~ x(x + 1)(JC + \)(x + 2). 

Here 

A2 + x + 1 = x2 + 2JC + A + 1 = (x + l)2 + a ~ (JC + l)"1 

giving 

x2 + 2x + a ~ x(x + 1)3(JC + 2) 

Replacing JC by JC - 1 the lemma is established. 

PROOF OF THEOREM 1. From Lemma 2 and Lemma 3 we obtain an identity 
s2 

((a+ l)y)6= H w(H,(y)y, 

and note that a + 1 = w(l). 

4. Let us say that a rational function /?(x) in Z(JC) has persistence of form if there 
are distinct non-constant polynomials Ti(x) in Z[JC] and integers dh positive, negative 
but not all zero, such that 

j 

FI R(Ti(x))di = constant. 
i = i 

From Theorem 1, using JC and 2JC, we see that JC(JC2 + a) has persistence of form. 
Persistence of form is useful in establishing product representations, as I shall illustrate 
in the proof of Theorem 3. 

In fact in the representation of JC6 in Theorem 1 one may take 

(z2 - l)2 + a 
#,(JC) = — + Z ~ 1, €, = 1, 

1 + a 

H2(x) = h,(h2(z - 1) + z - 1) + h2(z - 1) + z - 1, e2 - 1. 

with z = (a + 1)JC, and degree //, < 2 for all i > 3. 
5. Let us now write A ~ B if the polynomials A, B in Z[JC] satisfy 

ABX = M3!! w(yf-)
e' 
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with polynomials 7, in Z[x] and a rational function u with integer coefficients. We are 
thus working mod. the group (0/Ti)3. In particular A ~ B implies A ~ B. 

Consider the polynomial s = s(x) = x2 + a - 1. From Lemma 3, since cubes now 
become units, s(x) ~ x2 - 1. Replacing x by s + x in this last relation we have on the 
one hand 

s(s + x) « (x2 + x + a)(x2 + x + a - 2) 

« JC(JC + 1)(JC2 + JC + a - 2) 

since /z2 ~ x(x + 1). On the other hand, another application of Lemma 1 gives 

s(s + x) = s(x)s(x + 1) « (JC2 - 1)([JC + l]2 - 1). 

Altogether therefore 

x2 + x + a-2~(x- 1)(JC + 2). 

Writing 1y1(=1y1(x)) for the polynomial involving a - 2 we continue this process. 

S\(s\ + x) ~ (si + x - \)(s\ + x + 2) 

« (JC2 + 2* + A - 3)(JC2 + 2x + a) 

« (JC2 + 2JC + a - 3)x(x + 2) 

since 

JC2 + 2JC + a = (JC + l)2 + a - 1 « ([JC + l]2 - 1). 

Moreover, by Lemma 1 

J , ( J , + JC) = 5,(JC)5,(JC + 1) « (x - 1)(JC + 2)JC(JC + 3). 

These relations combine to give 

JC2 + 2JC + a - 3 « (JC - 1)(JC + 3). 

Replacing JC by JC - 1 we arrive at 

x2 + a - 4 « (JC - 2)(JC + 2) 

Comparing this relation with the initial 

x2 + a - 1 - (JC - 1)(JC + 1) 

the optimistic might hope that this process continues forever; unbelievably, it does! 

LEMMA 4. For each positive integer m 

jc2 + jc + fl — m2 + m~( j c — m + 1)(JC + m) 

x2 + a — m2 ~ (JC — m)(jc + m) 

PROOF. Using the pair of relations there is no difficulty in establishing this result by 
induction on m. 
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LEMMA 5. There are integers bp j = 1 , . . . A, far which the relation 

(x - bx)(x - b2) _ 

(x - b3)(x - b4) 

holds nontrivially. 

PROOF. If a is odd or 4 divides a, then we can write it in the form r2 - s2 using either 
r = (a 4- l ) /2 , s = (a - l ) /2 ; or r = (a 4- 4)/4, 5 = (a - 4)/4, respectively. From 
the second relation of Lemma 4, with m = r, we obtain 

(x — s)(x 4- 5) 

(JC — r)(jc 4- r) 

since then JC2 4- a - m2 = x2 - s2 and is reducible. This relation is trivial only if r = 
— 5" or equivalently a = 0, a case ruled out earlier. 

If a is even, but only divisible by 2, then it can be expressed in the form a = 
(c — k)(c 4- k — 1). One such representation is given by a = axa2, c = 
(ai + a2 + l ) /2 , A: = (a2 ~ ax 4- l)/2 provided that ax and a2 have different parity. 
Then 4a = (2c - l)2 - (2A: - l)2 and the quadratic polynomial x2 4- x 4- a — c2 + 
c is reducible, since its discriminant is (2k — l)2. With ax = a/2, a2 = 2, c = 
(a 4- 6)/4, A: = —(a — 6)/4 we obtain from the first relation of Lemma 4 

(JC + k)(x - JH- 1) 

(JC + c)(x - c + 1) 

This will be non-trivial unless c = kovc = —k+ 1, possibilities which also correspond 
to a = 0. 

Lemma 5 is established. 
The result of this lemma allows us to assert, bearing in mind the underlying cubes 

and applying Theorem 1, that 

/(JC - bx)(x - b2)\2 js 
(3) — —) = El w(K,{x))\ e, = ±1 

x(x - b3)(x - bAy 1=1 
for appropriately chosen polynomials Kt(x) in Z[JC]. Note that in this identity the 
degrees of the polynomials Kj(x) increase exponentially with |a|. Perhaps such an 
identity exists with exponent 1 in place of the 2, but working mod. the group (O/rO2 

which is presently called for doesn't seem to lead to great simplification. 

PROOF OF THEOREM 2. Let R(x) be a rational function of the form 

n (x - b,y> 

where the bt are distinct integers, and the integers d, have highest common factor 1. I 
proved [1] that every positive integer m has a representation 

h 

m=\\ R(nj)i 
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where the positive integers rij do not exceed cm for some constant c depending only 
upon R(x). This together with (3) establishes a representation of the type asserted in 
Theorem 2. 

The second assertion is similarly obtained. 

6. Consider now the rational function 

w(t)w(t + 2) t(t + 2)(t2 + a)(t2 + 4f + a + 4) 

w(t + l)2 (t + 1 ) V + It + a + l)2 

Let/: g* —* 1^/2 be an additive arithmetic function with values (mod 1) which satisfies 
f(L{n)) = 0 for all sufficiently large integers n, say n > n0. Thus if T is the subgroup 
of g* generated by the (assumed positive) L(n) with n > n0, then/is a homomorphism 
of the group Q*/T into the (additive) group R/Z. 

In terms of the shift operator E which takes the sequence ( v,, v2 , . . . ) to the sequence 
(v2, v 3 , . . . ) we have 

(£ - l)7(w(rc)) = 0 for « > /i0. 

This is a linear recurrence which may be solved to give 

(4) f(w(n)) = \ n 4- |JL, w > n0-

for some constants k,\x. 
We now employ the persistence of form of w(t). From Theorem 1 

x6 = w ( / / , W ) w ( / / 2 W ) . . . 

This holds also if we replace x by kx, so by division 

(5) w(Hx{kx))w(H2{kx))w{Hx(x)Yxw{H2{x)Yx ft w(ty)e/ = *6 

where the N, are quadratic polynomials in Z[x], possibly depending upon k, but s4 is 
an integer not depending upon k. 

Combining this last relation with (4) we see that 

\[#i(fot) + H2(kx) - Hx(x) - H2(x)] + (terms of degree < 2 in x) = 0 

provided /: > 1 is fixed, and x is a positive integer exceeding n0. This in turn gives 

(6) K[(a + \)\k4 - \)x4 4- (a + 1)4(£4 - 1)JC4] 

•f (terms of lower degree in x) = 0 

We now appeal to 

LEMMA 6. If a polynomial $(x), of degree r, with coefficients in R /Z , satisfies 
<!>(«) = 0/or a// sufficiently large positive integers n, then r\$(x) is identically zero. 

PROOF. A proof by induction on the degree r is readily constructed. The polynomial 
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shows that the coefficient r! in the conclusion cannot in general be decreased. 
In view of this lemma our relation (6) yields 4\X(a + \f(a + 2)(k4 — 1) = 

0 (mod 1). Since 24 — 1 (=7) and 34 — 1 (=80) are coprime, there are integers a, (3 
so that a(24 - 1)4- (3(34 - 1) = 1. Therefore, choosing k = 2,3 in turn we deduce 
that 4\\{a + \)\a + 2) = 0 (mod 1). Hence 

4 ! ( a + \)\a + 2)f{w(n)) = |JL 

a constant, holds for all n > n0. 
Returning now to the relation (5) and applying / : 

s4 

fji S e,, = 4(a + l)3(a + 2)6f(k) 
1=1 

and since s4 is independent of k, 

4\{a + \)\a + 2)6 / (£) = constant 

This holds for all positive k, including k = 1, which shows that the constant is zero. 
We have now proved that every homomorphism/: 0 * / r — > R / Z i s trivial on the 

8th powers of integers, where 8 = 4\(a + I)(a + 2)6. Hence as in Lemma 5 of my 
paper [2] in the Journal of the Australian Mathematical Society, there is a representation 
of the type asserted in the statement of Theorem 3. 

This proves Theorem 3. In fact, employing the earlier identity (3) involving the 
polynomials K{, the exponent 8 can be reduced to 41 (a + \)3(a + 2)2. Perhaps an even 
smaller exponent may be obtained by pursuing the particular form of the polynomials 
Kj and //,, 

7. The only accessible results on the value distribution of reducible cubics seem to 
be those of Burgess [1], the short note of his contribution to the meeting in honor of 
I. M. Vinogradov's eightieth birthday. There Burgess considers the polynomials 
g(jc) = x(x2 — c(c + 1)) in particular, and gives the identity (2). His interest lay in 
the consideration of x(#(•*)) for Dirichlet characters x-

I became interested in examples of the group G and remembered Burgess' paper, 
Lemma 1 represents my attempt to give a rationale for his identity (2). Lately, I wrote 
to him to enquire of his further researches and found to my surprise that his methods, 
which apply to the value distribution of polynomials at both positive and negative 
integers, have a different basis, and therefore lead to results different from those 
presented here. Note that if one allows both positive and negative integers, then the rôle 
of the group G will be played by Gi = Q*/T2 where Q fis the multiplicative group of 
non-zero rationals and T2 is its subgroup generated by the values of R(x) and R(—x) 
with positive integer specialisations of x. Almost certainly the assertion of the general 
conjecture concerning G can be made concerning the group Gx. 
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