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ON CONJUGACY CLASSES IN FINITE LOOPS

T. KEPKA AND M. NIEMENMAA

The rdle of the conjugacy relation is certainly important in the structure theory of groups.
Here we study this relation in a considerably more general setting, namely in the theory
of loops. We first recall some basic facts about quasigroups, their multiplication groups,
their inner mapping groups and the conjugacy relation. After this we estimate the size
and the number of the conjugacy classes and we study the structure of loops having only
two conjugacy classes. Finally, the values of the centraliser function are discussed.

1. PRELIMINARIES

Let Q be a finite loop (that is a finite groupoid with unique division and an identity
element usually denoted by e). For every a € Q, the left translation L, and the right
translation R, are permutations on @ defined by: La.(z) = az and Rs(z) = za for
every © € Q. The set of all left and right translations generates a subgroup M(Q) of
S(Q) (the group of all permutations on Q). We say that M(Q) is the multiplication
group of Q. Clearly, M(Q) is transitive on @ and the stabilisers of elements of @ are
conjugate in M(Q). We denote by I(Q) the stabiliser of the indentity element e; thus
I(Q) = {P € M(Q): P(e) = e}. This permutation group is called the inner mapping

group of Q. Now card (M(Q)) = card(Q) - card (I(Q)).
Recall that the left, right and middle nucleus of Q are defined as follows:

N(Q)={a€Q:a-zy=ax-yforallz, yc Q};
N.(Q)={a€Q:zy-a=z -yaforall z, y € Q};
N(Q)={a€Q:za-y==z-ayforallz, yc Q}
Further, N(Q) = N;(Q)ON,.(Q)ON,,,(Q) is called the nucleus of Q and C(Q) = {a €
N(Q): Ly = R,} is the centre of Q. All the nuclei are subloops of Q and the centre

is an abelian subgroup. We characterise the centre by

LeMma 1.1. C(Q) = {a € Q: I(@)(a) = a} = {a € Q: Lo € Z(M(Q))} =
{a € Q: R, € Z(M(Q))}

For proof, see |3, pp. 60-62} and |8, pp. 217-218]}.
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From Lemma 1.1 it follows that the groups C(Q) and Z(M(Q)) are isomorphic.
It is also very easy to see that I(Q) = {1} if and only if Q is an abelian group.

Now I(Q) is a permutation group on @ and this means that its orbits determine
an equivalence relation o on Q. If (a,b) € «, then we say that the elements a and
b are conjugate in Q. For any a € @, I(Q)(a) is the set of elements conjugate to
a. By Lemma 1.1, every element of C(Q) forms a one-element class of a. Clearly,
card (I(Q) a)) divides card (I(Q)) for every a € Q.

THEOREM 1.1. Suppose that Q is not an abelian group. Then the factor loop
Q/C(Q) contains at least three elements.

Proor: Put § = Q/C(Q). If card(5) =1, then Q@ = C(Q), a contradiction.
Next assume that card(S) = 2. It follows that there is an element ¢ € Q@ such
that Q@ = C(Q)U aC(Q), C(Q)NaC(Q) =0. Let =, y € C(Q). Now az -ay =
a’ -zy, a(az - ay) = (a-a?)(zy) = (a* - o)(zy) = a*(a - zy) = a*(az - y) = a*(za-y) =
a*(z-ay) = a*z -ay = (a-azx)(ay). We conclude that a € N(Q). In a similar
way we can show that a € N (Q), a € N.,(Q) and, finally, a € C(Q). But then
C(Q) = aC(Q), a contradiction. Thus card (S5) > 3. (]

Now let n = card(Q), 7 = the number of conjugacy classes and m = card (C(Q)).

We have

LEMMA 1.2. If Q is an abelian group, then m = r = n. If Q is not an abelian
group, then n 25, 2<r £ 2n/3 and 1 < m < n/3.

Proor: If n € {1,2,3,4} then Q is abelian group. If Q is not an abelian group,
then n > 5 and r > 2. By Theorem 1.1, m < n/3 and since r —m < (n ~m)/2, it
follows that » < 2n/3. ]

For basic facts about groups and loops we refer to {7] and [3].

2. BOUNDS FOR THE NUMBER OF CONJUGACY CLASSES

Let @ be a loop of order n. A subset M of Q is said to be tame if there exists
P c I(Q) (P #1) Such that P(z) =z for every z € M. Now we define

t(Q) = max{card (M): M is tame} and

(Q)=0, ifI(Q) = {1}.

We know already that I(Q) = {1} if and only if Q is an abelian group. If @ is a
nonabelian group, then #(Q) = max{card(Cqo(z)): z € @ — Z(Q)}. This means that
we are dealing with large centralisers and we shall return to this topic in section four.
Now we shall use ¢(Q) in order to estimate m and r.
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LEMMA 2.1. If Q is not an abelian group, then t(Q) 2 2m.

PROOF: Suppose that Q is not commutative. Then L, # R, for some a € Q
and 1 # P = R;'L, € I(Q). Clearly, a ¢ C(Q) and P(z) = z for every z €
C(Q) U aC(Q). It follows that t(Q) > 2m.

Now we assume that @ is commutative. Since @ is not associative we can find a
permutation S such that 1 # S = L7 Ly Ly, € I(Q). Here b ¢ C(Q) and for any
c € C(Q) we have

ba - bc = (ba - b)c = (b- ab)e = b(ab - ¢) = b(a - be),

and so S(bc) = bc. But then S(z) = z for every ¢ € C(Q) U bC(Q) and again

t(Q) 2 2m. The proof is complete. 1

Now assume that Q is not an abelian group (and hence n > 5). Let Q,,...,Q.,
be the conjugacy classes and n; = card (Q;) € nz = card(Q2) < -+ - € n, = card (Q,).
Thenl<m<r,ny=---=n,, =1 and 2<n;, i =m+1,...,7. We next establish

THEOREM 2.1. Let m+1<j <r. Then n < H{Q)n;.

PROOF: Assume by way of contradiction that n > t(Q)n; for some j (m+ 1<
j<r). Now P, = R;'L, € I(Q) for every z € Q. We shall first prove that P, = 1
for every a € Q;. If a € Q;, then P:(a) € Q; for every z € Q. For every b € Q; we
define the set

Ay ={z € Q: Py(a) = b}.
Now n = 3} card(4s) > t(Q)n;, hence card(4) > t(Q) for some b € Q;. Clearly,
bEQ;
L;]Ra(w) = z for every z € Ap. Furthermore, if ¢ € Ay, then S = Lc‘lLb'lR,,Lc €
I(Q) and S(z) = z for every ¢ € L;'(Ay). Since card (L7?(Ap)) > #(Q), we conclude
that $ =1 and thus cy-a =b-cy for any y € Q. But then za = bz for every z € Q,
a=>5 and hence P, = 1.

Next we prove that Q; C N (Q). Let a € Q; and v € Q. For every z € Q,

D, =L;'L;'L,, € I(Q) and D,(a) € Q;. For every b € Q;, let

By, ={z € Q: D,(a) = b}.

As in the first part of the proof we can again find b € Q; such that card (Bs) > (Q).
Now R;'R;'Ry4(z) = « for every z € By andif c € By, then L7*R;'R;'R L. =1.
It follows that cy-ub = (cy - u)a for every y € Q. Thus 2 - ub = zu - a for every u,
2 € Q, and a = b, and consequently ¢ € N.(Q).

Likewise it follows that @; C Ny(Q). But then @; C C(Q), n; =1 and j < m,

a contradiction. a
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THEOREM 2.2. The following inequalities hold:

(1) HQ)=(r—mn/(n—m),
(i) #Q) = (3r —n)/2,
(iii) HQ)=zr—m+1.

PRrRoOOF:

(i) This follows directly from Theorem 2.1.
(i) By Lemma 1.2, m < n/3 and since (r—m)/(n—m) > (r —n/3)/
(n —n/3), it follows by (i) that #Q) > (r-n/3)n/(n—n/3) =
(3r —n)/2. _
(iiil) Now (r—m)n/(n—-m) = (r—m)(n—m+m)/(n—m) = r —m + k,
where k£ > 0. R

We shall illustrate the situation by some examples.

Example 2.1. For every n > 5 there exists a loop @ of order n such that M(Q) =
S(Q) (see [5, Theorem 3.1.1.]). Now m=1, 7 =2 and {(@)=n —2.

Example 2.2. For every n > 6 there exists a loop Q of order n such that M(Q) =
A(Q) (the alternating group). Here m =1, r = 2 and Q) = n — 3 (for details, see

[6]).

Example 2.3. Consider a loop @ with the following multiplication table:

1 23 4 5 6
21 4 3 6 65
3 4 5 6 2 1
4 3 6 5 1 2
5 6 1 2 3 4
6 5 2 1 4 3

Here m = 2, r = 4 and ¢(Q) = 4. Furthermore, I(Q) is isomorphic to Klein’s four
group. The factor loop Q/C(Q) is a group of order three.

Remark. If Q is a group of order n, then the number of conjugacy classes has a lower
bound, namely r > log(logn)/log2 (see [9]).

3. Loops WITH Q) = 2

Let Q be a loop of order n which is not an abelian group (hence n > 5). In this
section we also assume that ¢(Q) = 2. By Theorem 2.2 (iii), r < Q) +m -1=m+1
and obviously » = m + 1. By Lemma 21, 2 = (@) > 2m > m + 1 = r which gives

r=2and m=1.
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Now we can consider I{Q) as a permutation group on E = @ — {e}. Clearly, I(Q)
is transitive on E and M(Q) is 2-transitive on Q. Furthermore, I(Q) is a Frobenius
group and therefore card (I(Q)) = k(n — 1), where k divides n ~ 2.

THEOREM 3.1. If (Q) = 2, then Q is simple and Q is either commutative or
anticommutative (that is ab # ba whenever e #a #£b#£e).

PROOF: Since M(Q) is 2-transitive it is primitive and it follows that @ is simple
(see [10, p. 10]).

Suppose then that ab = ba for some e # a # b # e. Put P = RJ1L,, then
P(e) = e, P(a) = a and P(b) = b. Since t{(Q) = 2, we conclude that P = 1.
Consequently, az = za for every z € Q. Hence, if S = R;'L, (z # e, = # a), then
S(e) = e, S{a) = a and S(z) = ¢ and necessarily S =1. But then zy = yz for every
z, Y€ Q. R

THEOREM 3.2. Let Q be a loop which is not an abelian group and let t{{Q) = 2.
Further, let Q be of the smallest possible order. Then:

(i) if A is a subloop of @ (1 # A +# Q), then A is a group of order two;
(i) n>=6.

PROOF:

(i) If A is not an abelian group then A satisfies {{A) = 2, too. This is a contra-
diction, hence A4 is an abelian group. Assume now that card (4) > 3. By Theorem
3.1, Q is commutative. Consider a permutation P = Lb‘lL;lLab, where a, b € A.
It is easy to see that, in fact, P = 1 and thus a-bz = ab- z for every =z € Q. Simi-
larly, if § = R;"R;'Ry., where b € A and = € Q, we conclude that § = 1. Thus,
y-bz = yb.z for every z, y € Q. Finally, if we put U = R;ILJIRILy , then U =1
and we have shown that y .2z = yz -z for every z, y, 2 € Q. But then Q is an
abelian group, a contradiction.

(ii) Let » = 5. Now card(I(Q)) is either = 4 or = 12. Since #Q) = 2, it
follows that card (I(Q)) = 12, and so card (M(Q)) = 60. This means that M(Q) is
the alternating group on Q. Now the complete list of non-associative loops of order
five (see for example [5]) reveals the fact that any such loop generates at least one odd

permutation, a contradiction. [ ]
It seems to be an open problem (at least to the authors) whether there exist loops
Q satisfying t(Q) = 2.
4. THE CENTRALISER FUNCTION

For n > 5, we define the centraliser function T by T(n) = min{{(Q)
@ is a loop of order n which is not an abelian group}. Similarly, for n > 1, put ¢{(n) =
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min{{(G): G is a nonabelian group of order n} and t(n) = 0 if all groups of order n
are abelian. Clearly, T(n) 2 2 and T(n) < t(n) provided t(n) # 0. Further T'(5) = 3
and t(n) = 0 if and only if n is cube-free and (n,p(n)) = 1; we denote by A the set
of all such integers n.

While nothing is known about T'(n) we are able to give a lower bound for #(n).
Recall that #(G) = max{card (Cg(z)): = € G — Z(G)}.

THEOREM 4.1. Let n > 6, n ¢ A. Then t(n) > n'/*. Moreover, t(n) > n!/?

provided that n is odd.

PROOF: Let G be a nonabelian group of order n. If G is soluble, then t(G) > n'/?
(see [4]), hence t(n) > n'/? for n odd. Thus we may assume that G is not soluble,
hence (by the odd order theorem) n is even. If Z(G/Z(Q)) # {1}, then t(G) > n!/?
(see {1, Lemma 2}). If Z(G) = {1}, then we can use the theorem by Brauer and Fowler
(see [2]) and ¢(G) > n'/?. Finally, we assume that Z(G) # {1} and Z(G/Z(G)) = {1}.
Now H = G/Z(G) is of even order k and hence we have an element aZ(G) € H
such that card (Cy(aZ(G))) > k'/? and also card (Cg(a)) > k'/® (see [1, Lemma
1]). It follows that t(G) > max{k'/®,n/k}, hence #(G) > nl/4. We conclude that
t(n) > n'/%. This completes the proof. (]
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