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EXPANSION IN BELL POLYNOMIALS OF THE
DISTRIBUTION OF THE TOTAL CLAIM AMOUNT WITH

WEIBULL-DISTRIBUTED CLAIM SIZES
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Abstract

The total claim amount for a fixed period of time is, by definition, a sum of a random
number of claims of random size. In this paper we explore the probabilistic distribution
of the total claim amount for claims that follow a Weibull distribution, which can serve
as a satisfactory model for both small and large claims. As models for the number of
claims we use the geometric, Poisson, logarithmic and negative binomial distributions.
In all these cases, the densities of the total claim amount are obtained via Laplace
transform of a density function, an expansion in Bell polynomials of a convolution and
a subsequent Laplace inversion.
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1. Introduction

The distribution of the aggregate claim amount, together with ruin theory, is one
of the main research areas in actuarial mathematics. Despite researchers’ efforts,
however, at present only a few distributions of the total claim amount are known in
closed form. The computational difficulties are great enough that most of the advances
have been made only on recursive methods (see, for example, [6]) or purely numerical
approximation techniques such as the fast Fourier transform (see the works of Grübel
and Hermesmeier [2, 3]). Some techniques are based on the central limit theorem and
Monte Carlo methods (see [5]).

In this paper, we depart from numerical approaches and obtain some distributions of
the total claim amount in closed form. Specifically, we shall obtain the densities of the
total claim amount in the form of very rapidly converging double series that contain
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Bell polynomials. These polynomials lend themselves to simple recursive definition
and implementation with common mathematical software.

By definition, for fixed time t the total claim amount S is a random variable given
by a compound sum; in other words, it is the random sum of N randomly sized positive
claims X i ,

S =
N∑

i=1

X i ,

with partial sums

S0 = 0 and Sn = X1 + · · · + Xn for n ≥ 1.

The claims X i are assumed to be independent and identically distributed, with
common density fX (x) and independent of N .

If U is a random variable with density fU (x), then we denote by LU (z) the ordinary
Laplace transform of fU (x); that is, LU (z)=

∫
∞

0 e−zx fU (x) dx . The correspondence
between the original function and the image function under the Laplace transform is
written as fU (x): LU (z).

Let P(N = n) be the probability function of N , FX (x) the common cumulative
distribution function of the X i , and FSn (x) the cumulative distribution function of the
nth partial sum of S.

The cumulative distribution function of S is given by

P(S ≤ x)= E[P(S ≤ x |N )] =
∞∑

n=0

P(Sn ≤ x)P(N = n)

(see [5]) or, equivalently,

FS(x)=
∞∑

n=0

FSn (x)P(N = n).

In terms of the densities, after differentiation we obtain

fS(x)=
∞∑

n=0

fSn (x)P(N = n).

From the above equality, in view of the linearity of the Laplace transformation, we
obtain

L S(z)=
∞∑

n=0

L Sn (z)P(N = n) (1.1)

where, given that the X i are independent and that fSn (x) is the n-fold convolution of
fX (x) with itself,

L Sn (z)= (L X (z))
n. (1.2)

The function fS(x) can now be obtained by complex inversion of (1.1).
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According to a well-known theorem [1], if the series

∞∑
ν=0

aν
sλν

(0< λ0 < λ1 < · · · ) (1.3)

converges absolutely for |s|> ρ ≥ 0, then it is the Laplace transform of the series

f (t)=
∞∑
ν=0

aν
tλν−1

0(λν)
, (1.4)

which is obtained by termwise transformation of the former; the latter series converges
absolutely for all t 6= 0. This is the main tool that we shall employ to find the density
fS(x) from the Laplace transform L S(z). It is straightforward to verify that all such
series appearing in our paper satisfy the conditions of this theorem.

In the following sections we will derive closed-form expressions, in terms of Bell
polynomials, for the distribution of the total claim amount when the claim size has
a Weibull distribution and the number process follows a Poisson, negative binomial,
geometric or logarithmic distribution.

The paper is organized as follows. Section 2 summarizes the specifics of the Weibull
distribution in the context of this paper. Sections 3, 4 and 5 deal with the computation
of the densities for the Poisson, negative binomial and logarithmic cases, respectively.
The Weibull–geometric case is considered in Section 4 as a special case of the Weibull–
negative binomial combination.

2. Preliminaries

Let X be any one of the claims. If it follows a Weibull distribution with parameters
α and λ (α, λ > 0), then we write

fX (x)= αλxα−1e−λxα , x > 0. (2.1)

It is understood that this density vanishes for non-positive x .
The Weibull distribution appears to model “small claims” fairly well for a ≥ 1,

whereas for α < 1 it provides a satisfactory model for “large claims”.
We now obtain the Laplace transform of fX (x),

fX (x): L X (z)=
∫
∞

0
e−zx fX (x) dx = αλ

∫
∞

0
xα−1e−λxαe−zx dx . (2.2)

From (1.2) and (1.3), it is clear that L X (z) should be written as a series of inverse
powers of z. To this end, we expand the exp(−λxα) in (2.2) in powers of −λxα , and
then integrate term by term. As a result we find that

L X (z)=
∞∑

k=1

(−1)k+10[kα + 1]λk

k!

1
zkα , (2.3)
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where 0(·) is the Gamma function. We may view this series as a formal power series
(in powers of 1/zα).

The generating function of the partial Bell polynomials Bn,k(g1, . . . , gn−k+1) of
the variables gi , i = 1, . . . , n − k + 1, is given by

8(t, u) = exp
(

u
∞∑

m=1

gm tm

m!

)
(2.4)

= 1+
∞∑

n=1

n∑
k=1

Bn,k(g1, . . . , gn−k+1)
uk tn

n!
(2.5)

(this can be found in the section on Bell polynomials in [4], for example). The Bell
polynomials are well-suited for writing a function of a power series as a power series;
this is true even if the power series is only a formal one.

In particular, let g(t)=
∑
∞

m=0(gm tm/m!). Then the function h(g) may be written
as

h(g(t)) = h

( ∞∑
m=0

gm tm

m!

)
(2.6)

= h(0)+
∞∑

n=1

n∑
k=1

dkh

dgk

∣∣∣∣
t=0

Bn,k(g1, . . . , gn−k+1)
tn

n!
. (2.7)

In what follows we will obtain the Laplace transform L S(z) of the total claim
amount S as a function of L X (z). In other words,

L S(z)= h[L X (z)]. (2.8)

Comparing (2.8) with (2.3) and (2.6), we see that in all cases we can set

g(z)= L X (x) and gm = (−1)m+10[mα + 1]λm, (2.9)

unless we particularize the Weibull distribution to the exponential distribution. This
would happen when α = 1, in which case (2.1) would become fX (x)= λe−λx with
x > 0, λ > 0, and (2.9) would turn into

gm = (−1)m+1m!λm . (2.10)

3. N ∼ Poisson(θ)

The probability function of N is

P(N = n)= e−θ
θn

n!
, n = 0, 1, . . . . (3.1)
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According to (1.1), (1.2) and (3.1), we may write the Laplace transform of the total
claim amount as

L S(z)= e−θ
∞∑

n=0

[θL X (z)]n

n!
= e−θ exp(θL X (z)), (3.2)

where L X (z) is given by (2.3).
Since L S(z)= e−θ exp(θL X (z)), we see, by comparing with (2.4), that save for a

constant factor e−θ , L S(z) is the generating function for the partial Bell polynomials
(with u = θ and gm as in (2.9)).

From (2.5) we get

L S(z)= e−θ
(

1+
∞∑

n=1

n∑
k=1

Bn,k(g1, . . . , gn−k+1)
θk

n!znα

)
.

Given that δ(x): 1 where δ(x) is the Dirac delta function, applying the inversion
theorem (see [1]) to the sum above gives us the density of the total claim amount,

fS(x)= e−θ
(
δ(x)+

∞∑
n=1

n∑
k=1

Bn,k(g1, . . . , gn−k+1)
θk xnα−1

n!0(nα)

)
. (3.3)

Setting α = 1 in this expression and using (2.10) yields the density of the aggregate
claim amount for the exponential–Poisson combination,

fS(x)= e−θ
(
δ(x)+

∞∑
n=1

n∑
k=1

Bn,k(g1, . . . , gn−k+1)
θk xn−1

n!0(n)

)
. (3.4)

4. N ∼ NegativeBinomial(r, p)

Here P(N = n)= Cn+r−1
n pr qn

=
(
(r)n/(1)n

)
pr qn, n = 0, 1, . . . , where (λ)n

= 0(λ+ n)/0(λ) is the Pochhammer symbol. Also, p + q = 1.
Using this in conjunction with (1.1) and (1.2), we get

L S(z) = pr
∞∑

n=0

(r)n
(1)n
[q L X (z)]

n
= pr

∞∑
n=0

(r)n
[q L X (z)]n

n!
(4.1)

= pr
1 F0(r; q L X (z)), (4.2)

where 1 F0(α, β; z) is a hypergeometric function.
By virtue of (2.9), we can write L S(z)/pr

= h(g)= 1 F0(r; qg); this is (2.7). The
kth derivative of this function is easily found to be h(k)(g)= qk(r)k 1 F0(r + k; qg).
Therefore h(k)(g(0))= qk(r)k for k ≥ 1, and finally

L S(z)= pr
(

1+
∞∑

n=1

n∑
k=1

qk(r)k Bn,k(g1, . . . , gn−k+1)
1

n!znα

)
.
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Proceeding as before, we use the inversion theorem to obtain

fS(x)= pr
(
δ(x)+

∞∑
n=1

n∑
k=1

qk(r)k Bn,k(g1, . . . , gn−k+1)
xnα−1

n!0(nα)

)
. (4.3)

Setting α = 1 in this expression and using (2.10), we find the density of the total
claim amount for the exponential–negative binomial combination,

fS(x)= pr
(
δ(x)+

∞∑
n=1

n∑
k=1

qk(r)k Bn,k(g1, . . . , gn−k+1)
xn−1

n!0(n)

)
. (4.4)

For r = 1 in (4.3), we obtain additionally the density of the total claim amount for
the Weibull–geometric combination. In this case,

fS(x)= p

(
δ(x)+

∞∑
n=1

n∑
k=1

qkk!Bn,k(g1, . . . , gn−k+1)
xnα−1

n!0(nα)

)
. (4.5)

Putting α = 1 in (4.5) and using (2.10) should yield the well-known exponential–
geometric result, fS(x)= pδ(x)+ λpq exp(−λpx) (see [5]). This is indeed the case:
we obtain

fS(x)= p

(
δ(x)+

∞∑
n=1

n∑
k=1

qkk!Bn,k(g1, . . . , gn−k+1)
xn−1

n!0(n)

)
, (4.6)

which is in excellent agreement with the result quoted above.

5. N ∼ Logarithmic( p)

The probability function of N is P(N = n)=−qn/(n ln p), n = 1, 2, . . . .
In the same manner as before,

L S(z)=−
1

ln p

∞∑
n=1

[q L X (z)]n

n
=

1
ln p

ln(1− q L X (z)).

This time, using (2.9), we write L S(z) ln p = h(g)= ln(1− qg). By comparing
this result with (2.6) and (2.7), we find the derivatives to be h(k)(g)= (−1)kqk

(k − 1)!/(qg − 1)k . Therefore h(k)(g(0))=−qk(k − 1)! for k ≥ 1, and h(g(0))= 0.
Consequently,

L S(z)=−
1

ln p

∞∑
n=1

n∑
k=1

qk(k − 1)!Bn,k(g1, . . . , gn−k+1)
1

n!znα .

Finally, by the inversion theorem,

fS(x)=−
1

ln p

∞∑
n=1

n∑
k=1

qk(k − 1)!Bn,k(g1, . . . , gn−k+1)
xnα−1

n!0(nα)
. (5.1)
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Setting α = 1 in (5.1) and using (2.10), we obtain the corresponding exponential–
logarithmic case, namely

fS(x)=−
1

ln p

∞∑
n=1

n∑
k=1

qk(k − 1)!Bn,k(g1, . . . , gn−k+1)
xn−1

n!0(n)
.
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