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Geometric Spectra and Commensurability

D. B. McReynolds

Abstract. The work of Reid, Chinburg–Hamilton–Long–Reid, Prasad–Rapinchuk, and the author
with Reid have demonstrated that geodesics or totally geodesic submanifolds can sometimes be used to
determine the commensurability class of an arithmetic manifold. The main results of this article show
that generalizations of these results to other arithmetic manifolds will require a wide range of data.
Specifically, we prove that certain incommensurable arithmetic manifolds arising from the semisimple
Lie groups of the form

(
SL(d,R)

) r ×
(

SL(d,C)
) s

have the same commensurability classes of totally
geodesic submanifolds coming from a fixed field. This construction is algebraic and shows the failure
of determining, in general, a central simple algebra from subalgebras over a fixed field. This, in turn,
can be viewed in terms of forms of SLd and the failure of determining the form via certain classes of
algebraic subgroups.

1 Introduction

The present article addresses the following general geometric question.

Question 1 How much of the geometry of a Riemannian manifold M is encoded in
the geometry of the totally geodesic submanifolds of M?

This question was the focus of the recent article [14] where two general results
were shown for hyperbolic 3-manifolds. First, two arithmetic hyperbolic 3-manifolds
M1,M2 with the same totally geodesic surfaces, up to commensurability, are com-
mensurable provided they have a single totally geodesic surface. Second, given any
finite volume hyperbolic 3-manifold M, there exist finite covers M1,M2 of M with
precisely the same totally geodesic surfaces (counted with multiplicity).

The article [14] was motivated by analogous results in spectral geometry where
the focuses are the geodesic length spectrum of M and the spectrum of the Laplace–
Beltrami operator acting on L2(M). Reid [20] proved that if X,Y are Riemann sur-
faces with the same geodesic length spectrum and X is arithmetic, then X,Y are com-
mensurable. In particular, Y is also arithmetic. Via Selberg’s trace formula, one gets
an identical result for the eigenvalue spectrum of the Laplace–Beltrami operator act-
ing on L2(X). We refer to these results as commensurability rigidity since the spectral
data is sufficient for determining the commensurability class of the manifold. More
recently, Chinburg–Hamilton–Long–Reid [5] proved that the geodesic length spec-
trum for arithmetic hyperbolic 3-manifolds also enjoys the same commensurability
rigidity. Specifically, two arithmetic hyperbolic 3-manifolds with the same geodesic
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length spectrum are commensurable. Prasad–Rapinchuk [19] have determined for a
large class of locally symmetric manifolds when commensurability rigidity holds. It
is worth noting that it does not always hold; see also [11] and [12].

These results all have algebraic analogs that are the primary tools in the above
rigidity results. For instance, the main algebraic observation in [14] was a similar
result about quaternion algebras. Let A1,A2 be quaternion algebras over number
fields K j with subfield F ⊂ K j with [K j : F] = 2. We can associate to A1,A2 the
sets of quaternion algebras B over F such that A j = B ⊗F K j . In [14], we proved
that these sets determine the algebras provided they are non-empty. Namely, if these
sets are equal and non-empty, then A1

∼= A2. In particular, the fields K1,K2 are
isomorphic. Similarly, Reid [20], in proving commensurability rigidity for the ge-
odesic length spectrum, proved that the splitting fields of the invariant quaternion
algebra determine the invariant quaternion algebra. See [4], [7], and [15] for results
describing the extent of the failure of this statement for general algebras and also
generalizations of these rigidity results.

The following algebraic questions also serve as motivation presently.

Question 2 How much of the structure of a central simple algebra A is encoded in the
subalgebras of A? How much of the structure of an algebraic group G is encoded in the
algebraic subgroups of G?

The work of Prasad–Rapinchuk addressed the second question for maximal sub-
tori of almost absolutely simple algebraic groups G. The work in [14] focused on
certain SL2-forms over real fields for certain algebraic forms of SL2.

This article continues this theme by demonstrating via example that generaliza-
tions of the above rigidity results need a large range of geometric (or algebraic) data.
Recall that for an extension K/F, we have a map on Brauer groups (see Section 2 for
the definitions)

ResK/F : Br(F) −→ Br(K)

given by
ResK/F(B) = B⊗F K.

With this notation set, we have the following result.

Theorem 1.1 There exist infinitely many pairs of number fields K,K′ and infinitely
many pairs of central simple division algebras A,A′ over K,K′, respectively such that

(ResK/Q)−1(A) = (ResK′/Q)−1(A′) 6= ∅.

There exist infinitely many distinct pairs A,A′ for a fixed degree d and pairs A,A′ for
every degree d ≥ 2.

Our next theorem shows that (ResK/Q)−1(A) and (ResK′/Q)−1(A′) can nearly be
equal without being equal.

Theorem 1.2 There exist number fields K,K′ and central simple algebras A,A′ over
K,K′ such that

|(ResK/Q)−1(A) ∩ (ResK′/Q)−1(A′)| =∞
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but

(ResK/Q)−1(A) 6= (ResK′Q)−1(A′).

The failure in equality in the above theorem is quite mild, only involving the local
behavior of the algebras B/Q at the ramified places of Q in the extensions K,K′.

The algebras A,A′ produce arithmetic lattices in semisimple Lie groups via orders
and restriction of scalars to Q. Specifically, the semisimple Lie groups are

Gr,s =
(

SL(d,R)
) r ×

(
SL(d,C)

) s

for certain pairs of r, s. The simplest example is when d = 2 and we can take the
algebras to be A = M(2,K), A′ = M(2,K′). The numbers r, s correspond in this case
to the number of real and complex places of K,K′. The lattices can be taken to be
SL(2,OK ), SL(2,OK′), and the associated arithmetic orbifolds are

M =
(

(H2)r × (H3)s
)
/PSL(2,OK ), M′ =

(
(H2)r × (H3)s

)
/PSL(2,OK′).

Here, H2,H3 are real hyperbolic 2 and 3-space. These orbifolds are sometimes called
Hilbert–Blumenthal modular varieties. By construction, they have the same com-
mensurability classes of totally geodesic surfaces coming from the field Q. Each com-
mensurability class of surfaces is associated to a Q-quaternion algebra B such that
B⊗Q R ∼= M(2,R), B⊗Q K ∼= M(2,K), and B⊗Q K′ ∼= M(2,K′).

More generally, for algebras A,A′ in Theorem 1.1, we have associated manifolds
MA,MA′ given by Xr,s/O, Xr,s/O

′, where Xr,s is the symmetric space associated to Gr,s

and O,O′ are orders in A,A′. The manifolds have the property that a manifold NB

coming from a central simple Q-algebra B of degree d arises as an arithmetic totally
geodesic submanifold of MA if and only if it arises as an arithmetic, totally geodesic
submanifold of MA′ , up to the commensurability of NB. In particular, these mani-
folds have a rich class of totally geodesic submanifolds that are unable to determine
the commensurability class of the manifold. This construction works for infinitely
many distinct pairs (r, s) and produces infinitely many distinct pairs of commensu-
rability classes of manifolds for each pair (r, s). We obtain the following geometric
corollary from the above discussion.

Corollary 1.3 Let A,A′ be central simple algebras over K,K′ with

(ResK/Q)−1(A) = (ResK′/Q)−1(A′)

and MA,MA′ , associated arithmetic manifolds for A,A′. Let B be a central simple al-
gebra defined over a Q of the same degree as A,A′ and NB an associated arithmetic
manifold for B. Then NB arises as a totally geodesic submanifold of MA up to com-
mensurability if and only if NB arises as a totally geodesic submanifold of MA′ up to
commensurability.

On the level of algebraic groups, Theorem 1.1 can be restated as follows.

Corollary 1.4 There exist number fields K,K′ and K,K′-forms G/K,G′/K′ of SLd

with precisely the same sets

{H/Q : H(K) ∼= G(K)} 6= ∅
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and

{H/Q : H(K′) ∼= G′(K′)}.
There are infinitely many pairs K,K′ and for each pair and each d > 1, infinitely many
groups G,G′ satisfying the above conditions.

One can state this in terms of Galois cohomology and maps between Galois co-
homology sets; below we work with Brauer groups instead of Galois cohomology
explicitly though they are one in the same (see [17, Chapter 14] or [21, Chapter X]).
The groups G,G′ in the theorem are called K,K′-forms for the groups H. In partic-
ular, G,G′ are the same K,K′-forms for Q-forms of SLd. In [6], we will investigate
relationships in Galois cohomology associated with various constructions over pairs
of fields in more depth. Finally, this article is far from exhaustive on the types of con-
structions possible via the methods presented here. In the final section we remark
more on generalizations of the constructions in this article.

2 Preliminaries

This section contains some preliminary material required in the sequel.

2.1 Number Fields

By a number field K we mean a finite extension of Q. We denote the set of places
of K by PK . Each place ω resides over a unique place q ∈ PQ and we write ω | q
when ω is a place over q. For q = ∞, the places ω are just the real and complex
places and are often referred to as the archimedean places. The associated extension
Kω/Qq of local fields has degree given by e(Kω/Qq) f (Kω/Qq) where e(Kω/Qq) is the
ramification degree and f (Kω/Qq) is called the inertial degree (see [3, Proposition 3,
p. 19]). There are only finitely many primes q for which e(Kω/Qq) > 1 for some ω
(see [3, Corollary 2, p. 22]). In addition, it is well known (see [13, Theorem 21,
p. 65]) that

(1)
∑
ω|q

e(Kω/Qq) f (Kω/Qq) = deg(K/Q).

The number of distinct places over a fixed q will be denoted by gq(K/Q).

2.2 Central Simple Algebras and Brauer Groups

We refer the reader to [17] for a general introduction to central simple K-algebras.
The Morita equivalence classes of central simple algebras over a number field K with
tensor product form a group called the Brauer group of K. We denote the Brauer
group of K by Br(K) (see [17, 12.5]). Given any extension of fields L/K, we obtain a
homomorphism

ResL/K : Br(K) −→ Br(L)

via

ResL/K ([B]) = [B⊗K L].
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For [A] ∈ Br(L), we denote the fiber of ResL/K over [A] by (ResL/K )−1([A]). In fact,
we will abuse notation and drop the notation for the Morita equivalence class since
we work (almost always) with division algebras and there is a unique division algebra
in each Morita equivalence class (see [17, Proposition B, p. 228]).

For each place ω ∈ PK , we have an associated algebra Aω = A ⊗K Kω . Via local
class field theory, we have an isomorphism (see [21, Proposition 6, p. 193])

Br(Kω) −→ Q/Z

when ω is a finite place. For a real or complex place, classically via Wedderburn, we
have

Br(R) = Z/2Z, Br(C) = 1.

From these isomorphisms, for B ∈ Br(K) and each place ω ∈ PK , we obtain

Invω(B)
def
= Inv(Bω) ∈ Q/Z,

1

2
Z/Z, or Z/Z

called the local invariant of B at ω. The total package

Inv(B) = {Invω(B) : ω ∈ PK}

is called the invariant of B. By the Albert–Hasse–Brauer–Noether Theorem (see [17,
Section 18.4]), B is determined as a K-algebra by Inv(B). Moreover, any set

{αω ∈ Br(Kω) : ω ∈ PK} ⊂
∏

ω∈PK

Br(Kω)

can be realized as the invariants of an algebra provided two conditions are met:

(a) αω = 0 for all but finitely many places ω ∈ PK (see [17, Proposition, p. 358]);
(b) ∑

ω∈PK

αω = 0 mod Z.

For this condition, see [17, Proposition B, p. 363].

If Lν/Kω is a finite extension and Bω ∈ Br(Kω), then (see [21, Proposition 7, p. 193])

(2) Invν(Bω ⊗Kω
Lν) = [Lν : Kω] Invω(Bω).

We say A/K is unramified at a place ω when A ⊗K Kω
∼= M(d,Kω) and ramified

otherwise. In particular, when Invω(A) 6= 0, A is ramified at ω. We denote the set of
places where A is ramified by Ram(A).

3 Arithmetically and Locally Equivalent Fields

We say two number fields K,K′ are arithmetically equivalent if ζK (s) = ζK′(s). We
say K,K′ are locally equivalent if AK

∼= AK′ , where

AK =
∏

ω∈PK

Kω

is the ring of K-adèles. By work of Iwasawa (see [8] or [16]), when K,K′ are locally
equivalent, K,K′ are arithmetically equivalent. When AK

∼= AK′ , there is a bijective
map (see [8, Lemma 3])

Φ : PK −→ PK′
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such that for all ω ∈ PK , we have Kω
∼= KΦ(ω). Moreover, we have

f (Kω/Qq) = f (K′Φ(ω)/Qq), e(Kω/Qq) = e(K′Φ(ω)/Qq), [Kω :Fν] = [K′Φ(ω) :Fν].

For arithmetically equivalent fields K,K′, we have a bijective map (see [16, Theo-
rem 1])

Φ : PK −→ PK′

such that
f (Kω/Qq) = f (K′Φ(ω)/Qq)

for any place ω ∈ PK . For any unramified prime q, we see that

[Kω : Qq] = f (Kω/Qq) = f (K′Φ(ω)/Qq) = [K′Φ(ω) : Qq]

since K,K′ have the same set of unramified primes and at such places we have by
definition

e(Kω/Qq) = e(K′Φ(ω)/Qq) = 1.

4 Fibers of the Restriction Map

Given a central simple K-algebra A and number fields K/F, if B ∈ (ResK/F)−1(A),
then by definition

A = B⊗F K.

At any place ω | ν, we have the local equation (2) given by

Invω(A) = Invω(B⊗F K) = [Kω :Fν] Invν(B).

Notice that for each place ν ∈ PF , we have an equation for each ω over ν. Solving for
Invν(B), we see that

Invω1 (A)

[Kω1 :Fν]
=

Invω2 (A)

[Kω2 :Fν]
= · · · =

Invωgν (K/F
(A)

[Kωgν (K/F)
:Fν]

= Invν(B)

holds for ω1, . . . , ωgν (K/F) over ν. In particular, the local invariants of A at all of the
places over ν satisfy

[Kω j :Fν]

[Kω1 :Fν]
Invω1 (A) = Invω j (A), j ∈ {1, . . . , gν(K/F)}.

Typically, these equalities will not be satisfied for an algebra A.
One of the main results of [14] was a proof that for an arithmetic hyperbolic

3-manifold with a totally geodesic surface, the invariant quaternion algebra of the
3-manifold is determined (among all invariant quaternion algebras of arithmetic hy-
perbolic 3-manifolds) by the quaternion algebras over the maximal totally real sub-
field of the invariant trace field. Specifically, each 3-manifold M1,M2 has an associ-
ated number field K1,K2 with precisely one complex place called the invariant trace
field. Since the manifolds contain a totally geodesic surface, there is a common to-
tally real subfield F = K1 ∩ K2 with [K j :F] = 2. The 3-manifolds also each have
an associated quaternion algebra A1,A1 over K1,K2 called the invariant quaternion
algebra. The condition that the manifolds have the same totally geodesic surfaces, up
to commensurability, implies that

(3) (ResK1/F)−1(A1) = (ResK2/F)−1(A2).
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The classification of totally geodesic surfaces in this setting also yields that

(4) |(ResK1/F)−1(A1)| =∞.
Combining (3) and (4) with basic class field theory, we obtain K1

∼= K2 and thus
A1
∼= A2. For arithmetic manifolds, we get immediately that M1,M2 are commensu-

rable.
The following results shows that such rigidity behavior is not always the case.

Theorem 4.1 There exist infinitely many pairs of fields K j ,K′j over Q such that the
following holds.

(a) There exist infinitely many pairs of central simple algebras Ai, j/K j ,A′i, j/K′j such
that

(ResK j/Q)−1(Ai, j) = (ResK′j /Q)−1(A′i, j) 6= ∅.
(b) For each pair of fields K j ,K′j , we can take the algebras to have degree d for any

d > 1. In particular, for each pair of fields, there exist infinitely many pairs of
algebras for every degree.

(c) If d = 2, the algebras Ai, j ,A′i, j can be constructed so that

|(ResK j/Q)−1(Ai, j)| =∞.

Proof Let K j ,K′j be distinct, locally equivalent number fields. We take here the

explicit examples given by [9, Theorem, p. 1] which have deg(K j) = deg(K′j) = 2 j

for all j > 2. For simplicity, we set K j = K and K′j = K′. Let q1, . . . , qr be a
finite number of primes. We will assume over each prime q j , there is a place ω j

with inertial degree 1. Infinitely many primes q have this property by the Cebotarev
Density Theorem. We further insist that the primes q j are also unramified in K (or
equivalently K′). Since there are only finitely many ramified primes, the set of r-
tuples of unramified primes (q1, . . . , qr) such that for each q j there is a place ω j of K
over q j with inertial degree 1 is infinite. We get an infinite set for each r but must
insist that d | r.

Let {q1, . . . , qr} be an r-tuple satisfying the above conditions. For each q j , we pick
a place ω j ∈ PK over q j with inertial degree 1. We define a central simple algebra A
over K of degree d by local invariants as follows:

(a) For each j, over the inert place ω j | q j , we define the invariant to be

Invω j (A) =
1

d
.

(b) For each ω | q j , we define the invariant to be

Invω(A) =
[Kω : Qq j ]

[Kω j : Qq j ]
Invω j (A) = [Kω : Qq j ] Invω j (A).

(c) Finally, for any place ω not over one of the q j , we define the invariant to be

Invω(A) = 0.

Via our bijection Φ : PK → PK′ , we define A′/K′ via the local data

Invω(A′) = InvΦ−1(ω)(A)
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for any place ω ∈ PK′ . By construction of A,A′, we have

|Ram(A)|, |Ram(A′)| <∞.
It remains to check that∑

ω

Invω A =
∑
ω

InvΦ(ω)(A′) = 0 mod Z.

If this equation holds, then we know that there exist algebras A,A′ with the above
local invariants. Now, to prove the above sum is zero, we have∑

ω

Invω(A) =

r∑
j=1

[∑
ω|q j

( [Kω : Qq j ]

d

)]

=
1

d

( r∑
j=1

[∑
ω|q j

[Kω : Qq j ]
])

=
1

d

[ r∑
j=1

mq j ,K

]
where

mq j ,K =
∑
ω|q j

[Kω : Qq j ].

However, by (1) we see that mq j ,K = [K : Q]. In particular,

1

d

[ r∑
j=1

mq j ,K

]
=

1

d

[ r∑
j=1

[K : Q]
]

=
r[K : Q]

d
.

By selection, d | r, and hence∑
ω∈PK

Invω(A) =
r[K : Q]

d
= 0 mod Z,

as needed. Thus, we know that there exist algebras A,A′ that satisfy (a), (b), and (c).
Next, we argue that

(ResK/Q)−1(A) = (ResK′/Q)−1(A′).

Given an algebra B ∈ (ResK/Q)−1(A), we know that by (2)

Invω(A) = [Kω : Qq] Invq(B)

for every prime q and every place ω over q. Via our bijection Φ : PK → PK′ we have

[Kω : Qq] = [KΦ(ω) : Qq]

and
InvΦ(ω)(A′) = Invω(A).

In tandem, we see that

InvΦ(ω)(A′) = Invω(A)

= [Kω : Qq] Invq(B)

= [K′Φ(ω) : Qq] Invq(B).
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The algebra B⊗Q K′ has local invariants given by (2) and thus

InvΦ(ω)(B⊗Q K′) = [K′Φ(ω) : Qq] Invq(B) = InvΦ(ω)(A′).

Therefore, by the Albert–Hasse–Brauer–Noether Theorem, A′ ∼= B⊗Q K′. In partic-
ular, B ∈ (ResK′/Q)−1(A′) and so

(ResK/Q)−1(A) ⊂ (ResK′/Q)−1(A′).

The reverse inclusion

(ResK′/Q)−1(A′) ⊂ (ResK/Q)−1(A)

follows from an identical argument.
Finally, to see that (ResK/Q)−1(A) is non-empty, simply note that by (a) and (b)

and the fact that the inertial degree of K at ω j is 1, we can define

Invq j (B) =
1

d
.

This is consistent with the local equations

Invω(A) = [Kω : Qq j ] Invq j (B)

by (b). At any other prime q, we could declare Invq(B) = 0 and thus complete the
local data for an algebra B over Q. For this claim, we are again using d | r to obtain∑

q

Invq(B) = 0 mod Z.

In total, we see that this local data satisfies the necessary conditions to be the local
invariants of an algebra B over Q.

However, it can sometimes be the case that we can choose non-zero invariants
for B at a place q not on the list {q1, . . . , qr}. Specifically, if q is a place such that for
every place ω over q we have d | [Kω : Qq], then we can certainly set Invq(B) = 1/d
without violating the local equations

0 = Invω(A) = [Kω : Qq] Invq(B) =
[Kω : Qq]

d
= 0 mod Z.

In the case d = 2, we assert that the set (ResK/Q)−1(A) is infinite. To that end, recall
that deg(K) = deg(K′) = 2 j for j ≥ 3, and let P2,Q denote the set of primes q such
that for every ω | q, we have 2 | f (Kω/Qq). By the Cebotarev Density Theorem, the
set P2,Q is infinite. Let B be a Q-algebra such that over the primes q1, . . . , qr, we have

Invq j (B) =
1

d
.

Next, set
Ram(B) = {q1, . . . , qr} ∪ {q′1 . . . , q′r′}

where q′j ∈ P2,Q, d | r′, and

Invq′j
(B) =

1

d
.

Then these invariants satisfy the necessary conditions to be the local invariants for
an algebra B over Q. To see that B ∈ (ResK/Q)−1(A), we split our consideration
into three places. First, for any place q ∈ {q1, . . . , qr}, we saw from above that B
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is consistent with the local equation (2) for each ω | q. Second, for any place q /∈
Ram(B), the algebra B is trivially consistent with the local equation (2) since

Invω(A) = Invq(B) = 0

for each ω | q. Finally, for q ∈ {q′1, . . . , q′r′}, the algebra B satisfies the local equa-
tion (2) since for each ω | q, we have

Invq(B) =
1

d
, Invω(A) = 0

and

d | [Kω : Qq].

Consequently,

Invω(B⊗Q K) =
[Kω : Qq]

d
= 0 mod Z

for each ω | q. Varying over the finite subsets of P2,Q, we produce infinitely many
distinct algebras B in (ResK/Q)−1(A).

In total, there exist infinitely many choices for the starting pair of fields K,K′. For
each such pair and each integer d > 1, there are infinitely many pairs of algebras
A,A′ of degree d satisfying the conclusions of the theorem. These algebras are given
by varying the set of primes {q1, . . . , qr}where each q j has a place over it with inertial
degree 1 and each prime q j is unramified. Finally, we can select r to be any integer
with d | r.

Theorem 4.1 visibly implies Theorem 1.1. Also notice that the above argument
proves the following.

Corollary 4.2 Let K/K′ be locally equivalent fields. Then for each d > 1, there exist
central simple division algebras A,A′ over K,K′ of degree d such that for every subfield
F ⊂ K ∩ K′, we have

(ResK/F)−1(A) = (ResK′/F)−1(A′) 6= ∅.

We now prove Theorem 1.2.

Proof of Theorem 1.2 Via [16, p. 351], there exist degree 8 non-isomorphic arith-
metically equivalent extensions K,K′ whose Galois closure is degree 32 and where
the associated Galois group is a 2-group. These fields are also not locally equivalent
as the ramified prime 2 has decompositions given by

(2)K = Q2
1Q2

2Q2
3Q2

4, (2)K′ = P1P2P2
3P4

4.

The inertial degree is 1 over each of these primes. Now let A be a quaternion algebra
over K constructed as in the proof of Theorem 4.1. Since K,K′ are arithmetically
equivalent, we have a bijection of places that preserves inertial degree. Since in the
proof of Theorem 4.1, we only worked over unramified primes, we can define an as-
sociated algebra A′ over K′ using the proof of Theorem 4.1. By the Cebotarev Density
Theorem, we know that there are infinitely many primes q where the inertial degree
of any place ω over q is at least 2. Over these primes, we certainly have 2 | [Kω : Qq].
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In particular, we can ramify an algebra B/Q at these places and still maintain the local
equations

0 = Invω(A) = [Kω : Qq] Invq(B) =
[Kω : Qq]

2
= 0 mod Z.

Thus, we again see that (ResK/Q)−1(A) is infinite. Moreover, if 2 /∈ Ram(B), then
B ∈ (ResK/Q)−1(A) if and only if B ∈ (ResK′/Q)−1(A′). Consequently,

|(ResK/Q)−1(A) ∩ (ResK′/Q)−1(A′)| =∞.

To see that

(ResK/Q)−1(A) 6= (ResK′Q)−1(A′),

simply note that over the prime 2, we can ramify the algebra B at 2 and maintain the
local equation (2) for A but not for A′. Indeed, over each of the four places over 2
for K, we have

[Kω1/Q2] = [Kω2/Q2] = [Kω3/Q2] = [Kω4/Q2] = 2,

while for K′, we have

[K′ω′1/Q2] = [K′ω′2/Q2] = 1, [K′ω′3/Q2] = 2, [K′ω′4/Q2] = 4.

Since A,A′ are unramified at all places over 2, we see by (2) that

Invω j (A) = [Kω j : Q2] Inv2(B) = 2 Inv2(B) = 0 mod Z

and

Invω′1 (A′) = Inv2(B) = 0 mod Z.

In the first case, clearly we can select Inv2(B) to be either 0 or 1/2, while in the second
case it can only be 0. This actually provides infinite many quaternion algebras in
(ResK/Q)−1(A) that are not in (ResK′/Q)−1(A′).

For contrast, we observe the following trivial result which shows the need for
working over pairs of fields K,K′.

Lemma 4.3 Let A,A′ be central simple K-algebras of degree d such that

(ResK/Q)−1(A) ∩ (ResK/Q)−1(A′) 6= ∅.

Then A ∼= A′.

Proof We have B/Q with B ∈ (ResK/Q)−1(A) ∩ (ResK/Q)−1(A′) such that

A1
∼= B⊗Q K ∼= A2.

This trivial lemma is meant to highlight the typical setting. Namely, the diffi-
cult work in commensurability rigidity results is often proving that the associated
algebraic structures giving rise to the arithmetic manifolds have the same field of
definition; see [5], [14] and [19].
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5 A Geometric Application

We refer the reader to [18] for the basic background on algebraic groups, forms of
algebraic groups, and arithmetic lattices in these algebraic groups. Witte–Morris’
book [22] also provides an excellent introduction to the topic.

Given a number field K/Q with r real places and s complex places, up to com-
plex conjugation, and a central simple K-algebra of degree d, we have the associated

groups
(

A⊗Kτ (K)
)−1

, where τ is one of the above real or complex places. According
to Wedderburn’s Structure Theorem, we know that

(
A⊗K τ (K)

)−1 ∼=



SL(d,C), if τ is a complex place

SL(d,R), if τ is a real place and (2, d) = 1

SL(d,R), if τ is a real place, 2 | d, and A splits over
τ (K)

SL(d/2,H) if τ is a real place, 2 | d, and A does not
split over τ (K).

For simplicity, we will assume that the fourth case does not happen for any real place.
Any OK -order O in A provides, by Borel–Harish-Chandra [2], a lattice O1 in the
group ∏

τ∈PK,∞

(
A⊗K τ (K)

) 1 ∼=
(

SL(d,R)
) r ×

(
SL(d,C)

) s
.

Any field F ⊂ K and a central simple F-algebra B of degree d with A ∼= B ⊗F K
provides us with a subgroup of O1 via

(O ∩ B)1 = O1
B.

This subgroup produces an arithmetic lattice in∏
θ∈PF,∞

(
B⊗F θ(F)

) 1

where θ ranges over the real and complex places (up to complex conjugation) of F.
Taking all the possible algebras B over all the subfields of F ⊂ K produces, up to
commensurability, all the arithmetic subgroups of O1 arising from groups of type(

SL(d,R)
) r′ ×

(
SL(d,C)

) s′

where r′ < r and s′ < s. As F = Q always happens,
we can always try to produce submanifolds from Q. Note that even if we have an
algebra B over Q with A = B ⊗Q K, the algebra B only produces an arithmetic sub-
group when B is unramified at the real place of Q. If d is odd, this is always the case.
Even when d is not odd, we can ensure that B is unramified at the archimedean place
provided the algebra A is unramified at every archimedean place.

One can use the previous section to produce manifolds with universal cover iso-
metric to the symmetric spaces Xr,s of Gr,s =

(
SL(d,R)

) r ×
(

SL(d,C)
) s

for various
pairs r, s and d. These manifolds MA,MA′ will have some common totally geodesic
submanifolds, up to commensurability, in certain dimensions. The algebras A,A′ in
the previous section are, by construction, unramified at all archimedean places. In
this case, r, s are the number of real and complex places of K,K′.
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The algebra A only determines MA, up to commensurability. Our construction
gives a relationship between the commensurability classes of certain submanifolds of
any manifold commensurable to MA with any manifold commensurable to MA′ .

For the fields K,K′ and a subfield F ⊂ K or K′ not contained in K ∩ K′, the
field F could produce totally geodesic submanifolds in the associated manifolds for
the algebras A or A′. However, these potential submanifolds cannot be immersed
as totally geodesic submanifolds in both classes of manifolds. In particular, though
these manifolds share a large class of totally geodesic submanifolds, they do not in
general contain the same classes of totally geodesic submanifolds up to commensu-
rability. This remarks prompts the following question.

Question 3 Do there exist incommensurable arithmetic manifolds M1,M2 with the
same class of totally geodesic submanifolds, up to commensurability? Or have precisely
the same totally geodesic submanifolds (with or without multiplicity), up to free homo-
topy?

To avoid trivialities, we must insist that M1,M2 have at least one totally geodesic
submanifold beyond geodesics or flats; the work of Prasad–Rapinchuk [19] provides
examples without assuming the manifolds have submanifolds beyond geodesics and
flats.

6 Final Remarks

One can generalize the above construction in a few different ways. First, by Ko-
matsu [10], there exist for any r, fields K1, . . . ,Kr that are pairwise non-isomorphic
and locally equivalent. In particular, we can produce arbitrarily large collections of al-
gebras A1, . . . ,Ar over K1, . . . ,Kr that pairwise have the same fiber (ResK j/Q)−1(A j).
In addition, using relative versions of arithmetic or local equivalence, we can produce
examples over larger base fields than Q. These constructions yield examples of man-
ifolds that share an even richer collection of submanifolds coming from subfields of
F = K1 ∩ K2. In addition, taking locally equivalent fields L1, L2 with degrees divisi-
ble by other primes, we can for any prime degree produce algebras A1,A2 over L1, L2

with
(ResL1/Q)−1(A1) = (ResL2/Q)−1(A2), |(ResL1/Q)−1(A1)| =∞.

We suspect also that these methods work equally as well for other simple non-
compact Lie groups and their associated symmetric spaces. In a forthcoming paper
with Britain Cox, Benjamin Linowitz, and Nicholas Miller [6], we will explore these
generalizations and relations in Galois cohomology. In particular, we provide a more
general picture of the work in this article.

After completing this paper, the author learned of the work of Manny Aka [1].
Our construction here is a generalization of his construction. Both articles make
essential use of locally equivalent fields. In [6], we will provide a lengthy discussion
on the relation of Aka’s work and the work here and in [6].
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