
Forum of Mathematics, Sigma (2024), Vol. 12:e95 1–92
doi:10.1017/fms.2024.81

RESEARCH ARTICLE

Singularities of nilpotent Slodowy slices and collapsing levels
of W-algebras
Tomoyuki Arakawa 1, Jethro van Ekeren 2 and Anne Moreau3

1School of Mathematics and Statistics, Ningbo University, Ningbo City, 315211, China and Research Institute for Mathematical
Sciences Kyoto University, Kyoto 606-8502, Japan; E-mail: arakawa@kurims.kyoto-u.ac.jp.
2Instituto de Matemática Pura e Aplicada, Estr. Dona Castorina 110, Rio de Janeiro, 22460-320, Brazil; E-mail: jethro@impa.br
(corresponding author).
3Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, CNRS, Rue Michel Magat, Bât. 307, Orsay, 91405, France;
E-mail: anne.moreau@universite-paris-saclay.fr.

Received: 6 September 2023; Revised: 17 June 2024; Accepted: 26 July 2024

2020 Mathematics Subject Classification: Primary – 17B69; Secondary – 17B08, 17B67, 81R10

Abstract
We develop techniques to construct isomorphisms between simple affine W-algebras and affine vertex algebras at
admissible levels. We then apply these techniques to obtain many new, and conjecturally all, admissible collapsing
levels for affine W-algebras. In short, if a simple affine W-algebra at a given level is equal to its affine vertex
subalgebra generated by the centraliser of an 𝔰𝔩2-triple associated with the underlying nilpotent orbit, then that
level is said to be collapsing. Collapsing levels are important both in representation theory and in theoretical
physics. Our approach relies on two fundamental invariants of vertex algebras. The first one is the associated
variety, which, in the context of admissible level simple affine W-algebras, leads to the Poisson varieties known
as nilpotent Slodowy slices. We exploit the singularities of these varieties to detect possible collapsing levels. The
second invariant is the asymptotic datum. We prove a general result asserting that, under appropriate hypotheses,
equality of asymptotic data implies isomorphism at the level of vertex algebras. Then we use this to give a sufficient
criterion, of combinatorial nature, for an admissible level to be collapsing. Our methods also allow us to study
isomorphisms between quotients of W-algebras and extensions of simple affine vertex algebras at admissible levels.
Based on such examples, we are led to formulate a general conjecture: for any finite extension of vertex algebras,
the induced morphism between associated Poisson varieties is dominant.
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1. Introduction

Vertex algebras have emerged as fundamental objects mediating interactions between representation
theory and two-dimensional conformal field theory, three-dimensional topology and, more recently,
four-dimensional physics in the guise of the 4D/2D duality. This article concerns two important classes
of vertex algebras: the affine Kac-Moody vertex algebras and the affine W-algebras. Examples of W-
algebras were first uncovered as vertex algebra extensions of the Virasoro algebra [41], and these algebras
were later perceived to be natural quantisations of Poisson structures of certain completely integrable
models (the Gelfand-Dickii brackets in the KP hierarchy, for instance; see the review [28] and references
therein), as well as natural chiralisations of quantised transverse slices. By W-algebra in general we shall
mean the quantised Hamiltonian (Drinfeld-Sokolov) reduction of an affine Kac-Moody vertex algebra
[42, 57], or a quotient thereof.

1.1. Affine vertex algebras, W-algebras and collapsing levels

Let G be a complex connected, simple algebraic group of adjoint type with Lie algebra 𝔤, and let 𝑘 ∈ C
be a complex number, referred to as the level. The universal affine Kac-Moody vertex algebra 𝑉 𝑘 (𝔤) is
constructed from these data, and its simple quotient is denoted 𝐿𝑘 (𝔤); see Section 3. The Hamiltonian
reduction 𝐻0

𝐷𝑆, 𝑓 (−) takes an additional choice of nilpotent element 𝑓 ∈ 𝔤 as input, the vertex algebra
𝒲𝑘 (𝔤, 𝑓 ) = 𝐻0

𝐷𝑆, 𝑓 (𝑉
𝑘 (𝔤)) depending on f only through its adjoint orbit O = 𝐺 · 𝑓 . We denote by

𝒲𝑘 (𝔤, 𝑓 ) the simple quotient of the universal W-algebra 𝒲𝑘 (𝔤, 𝑓 ). See Section 4 for more details about
W-algebras.

The theory of vertex algebras is connected to Poisson geometry through the associated variety
construction [10, 20, 21]. In particular, the associated varieties of the vertex algebras 𝐿𝑘 (𝔤) and𝒲𝑘 (𝔤, 𝑓 )
include extensively studied families of Poisson varieties such as nilpotent orbit closures and nilpotent
Slodowy slices. The theory of vertex algebras, and in particular the structure of the vertex algebras
𝐿𝑘 (𝔤) and 𝒲𝑘 (𝔤, 𝑓 ) at special levels k called admissible levels (see Definition 3.1), is connected as
well to the theory of modular functions [13, 14, 58, 83]. Both of these themes will be put to use in our
investigation of the structure of W-algebras in this work.

The universal W-algebras are easy to describe as graded vector spaces. Via spectral sequence
arguments, the algebra 𝒲𝑘 (𝔤, 𝑓 ) is seen to have a PBW basis corresponding to a set of strong generators
indexed by a basis of the centraliser 𝔤 𝑓 [27, 44, 60]. The relations between these generators are, however,
extremely complicated and in general are not known explicitly. This hampers direct analysis of the simple
quotient 𝒲𝑘 (𝔤, 𝑓 ) via generators and relations. Though, importantly, it is known that 𝒲𝑘 (𝔤, 𝑓 ) contains
an embedded copy of the affine vertex algebra𝑉 𝑘♮ (𝔤♮), where 𝔤♮ ⊂ 𝔤 denotes the centraliser subalgebra
of an 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) containing f, and 𝑘 ♮ is some level determined by the other data. It follows that
the simple quotient 𝒲𝑘 (𝔤, 𝑓 ) contains an embedded homomorphic image of the affine vertex algebra,
and the level k is then said to be a collapsing level (see Definition 5.3) if the embedded subalgebra
coincides with 𝒲𝑘 (𝔤, 𝑓 ) itself, that is to say if we have an isomorphism of vertex algebras:

𝒲𝑘 (𝔤, 𝑓 ) � 𝐿𝑘♮ (𝔤♮). (1)
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In [4], it was shown that collapsing levels have remarkable applications to the representation theory
of affine vertex algebras. They are also useful in elucidating the structure of modular tensor categories of
representations of simple W-algebras at admissible, not necessarily collapsing, levels [14]. Furthermore,
it has recently been observed [81] that many collapsing levels for quasi-lisse W-algebras should come
from nontrivial isomorphisms of 4D 𝑁 = 2 SUSY field theories, via the 4D/2D duality [25].

There is a full classification of collapsing levels for the case that f is a minimal nilpotent element 𝑓min,
including the case in which 𝔤 is a simple Lie superalgebra ([2, 3]). For more general nilpotent elements
f, since the commutation relations in 𝒲𝑘 (𝔤, 𝑓 ) are unknown, almost nothing is known about collapsing
levels, and to discover them we must appeal to more indirect methods. In this work, we exploit two
important invariants of vertex algebras: associated varieties and asymptotic data. The general strategy
we use to detect (admissible) collapsing levels is given in Section 6.

1.2. Associated variety, asymptotic data and main results

To a vertex algebra V one attaches, in a functorial manner, a certain affine Poisson variety 𝑋𝑉 referred to
as the associated variety [7]. The associated variety of𝑉 𝑘 (𝔤) is 𝔤∗ and the associated varieties of simple
affine vertex algebras at admissible levels are nilpotent orbit closures with the induced Kirillov-Kostant-
Souriau Poisson structures [10]. At the level of associated varieties, the Drinfeld-Sokolov reduction
𝐻0
𝐷𝑆, 𝑓 (−) corresponds to intersection with the Slodowy slice S 𝑓 � 𝑓 + 𝔤𝑒 [34] [10]. In general, the

intersection

SO, 𝑓 = O ∩ S 𝑓 (2)

of a nilpotent orbit closure O with a Slodowy slice S 𝑓 is referred to as a nilpotent Slodowy slice.
Normalisations of nilpotent Slodowy slices are symplectic singularities in the sense of Beauville [24],
and, like nilpotent orbit closures, these varieties are studied for their role in representation theory and
in the theory of symplectic singularities.

The nilpotent Slodowy slices are best understood in the case of minimal degeneration in which 𝐺 · 𝑓
is an open subvariety of the boundary1 of O in O. In the context of this class of examples, one has the
celebrated result of Brieskorn and Slodowy ([29, 77]) confirming a conjecture of Grothendieck, that
the nilpotent Slodowy slice associated with the principal nilpotent orbit O = Oprin and a subregular
nilpotent element 𝑓subreg has a simple singularity of the same type as G, for G of type 𝐴, 𝐷, 𝐸 .

The second invariant of vertex algebras which we make use of, the asymptotic datum (see Defini-
tion 2.1), originates in the phenomenon of modular invariance of characters. Consider the character,
that is, normalised graded dimension

𝜒(𝜏) = 𝑞−𝑐/24
∑

dim(𝑉𝑛)𝑞𝑛,

of an affine vertex algebra or W-algebra V of central charge c. Under favourable circumstances, the
character converges to a function of 𝜏 a variable in the complex upper half plane (having set 𝑞 = 𝑒2𝜋𝑖𝜏).
Explicit formulas for these characters, ultimately coming from the Weyl-Kac character formula, yield
modular transformation rules, [54, 58], and asymptotic behaviour of 𝜒(𝜏) of the form

𝜒𝑉 (𝜏) ∼ A𝑉 𝑒
𝜋i

12𝜏 g𝑉 as 𝜏 � 0.

Here 𝜏 � 0 means 𝜏 tends to 0 along the positive imaginary axis. The invariants A𝑉 and g𝑉 are called
the asymptotic dimension and asymptotic growth of V. Explicit formulas have been given for principal
admissible level k by Kac and Wakimoto [61], and for coprincipal admissible levels in the present work.
See Sections 3 and 4 and in particular Propositions 3.8 and 4.10.

1The boundary of O in O is precisely the singular locus of O as was shown by Namikawa [73] using results of Kaledin and
Panyushev [63, 74]; this can also be deduced from [65, 66, 47].
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Plainly the isomorphism (1) entailed by a collapsing level induces an equality of asymptotic data.
We now come to our first main theorem, which is a sort of converse (see also Theorem 3.10 and
Proposition 6.6).

Theorem 1.1. Assume that k and 𝑘 ♮ are admissible levels for 𝔤 and 𝔤♮, respectively, that 𝑓 ∈ 𝑋𝐿𝑘 (𝔤) and
that 𝜒𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) (𝜏) ∼ 𝜒𝐿

𝑘♮
(𝔤♮) (𝜏), as 𝜏 � 0. Then k is a collapsing level – that is,𝒲𝑘 (𝔤, 𝑓 ) � 𝐿𝑘♮ (𝔤♮).

Using this theorem, we establish many new infinite families of collapsing levels for 𝔤 of classical
type and approximately one hundred collapsing levels for 𝔤 of exceptional type. To give a flavour of
our results, we quote the following which is part of Theorem 8.8 and is representative of the results in
classical types. See also Theorems 8.7, 9.7, 9.10, 9.14 and 9.16.

Theorem 1.2. Let 𝔤 = 𝔰𝔩𝑛 with 𝑛 ≥ 2, and let 𝑘 = −𝑛 + 𝑝/𝑞 where 𝑞 ≥ 1 and 𝑝 ≥ 𝑛 is coprime to q
(that is, n is admissible for 𝔤 = 𝔰𝔩𝑛). Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition
(𝑞𝑚, 1𝑠) of n, with 𝑚 ≥ 0 and 𝑠 > 0. Then k is collapsing if and only if 𝑝 = 𝑛 = ℎ∨𝔰𝔩𝑛 . Moreover,

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � 𝐿−𝑠+𝑠/𝑞 (𝔰𝔩𝑠).

Similarly, we exhibit here, as an illustration, one of the isomorphisms which we uncover in exceptional
types with the help of Theorem 1.1:

𝒲−12+13/3(𝐸6, 2𝐴2) � 𝐿−4+7/3(𝐺2).

The remaining cases in the exceptional types are covered in Theorems 10.1, 10.6, 10.11, 10.18 and
10.16. We conjecture (see Conjectures 9.20 and 10.22) that our list of admissible collapsing levels is
exhaustive. We also obtain a number of cases where the simple W-algebra 𝒲𝑘 (𝔤, 𝑓 ) is merely a finite
extension of its simple affine vertex algebra (see all the above cited theorems).

1.3. Nilpotent Slodowy slices

The nature of the formulas for asymptotic data is such that it is not feasible to find collapsing levels by a
naive search for coincidences between respective asymptotic data. For this reason, we turn to the more
refined invariant given by the associated variety. Although the problem of determining the associated
variety of 𝐿𝑘 (𝔤) is wide open in general, many of the Poisson varieties arising as associated varieties
of simple W-algebras are nilpotent Slodowy slices. More precisely, whenever k is an admissible level
for 𝔤, the associated variety 𝑋𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) is the nilpotent Slodowy slice (2) above, with O = O𝑘 ⊂ 𝔤 a

certain nilpotent orbit determined by k [10] [15]. It is conjectured in general (and confirmed in many
cases) that 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) is simple, so that 𝒲𝑘 (𝔤, 𝑓 ) = 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) in fact (see Conjecture 4.4).

A collapsing level thus induces [10], in these cases, an isomorphism

O𝑘 ∩ S 𝑓 � O𝑘♮ . (3)

In particular, the singularity of the nilpotent Slodowy slice in 𝔤 on the left-hand side should be of the
same type as that of the nilpotent orbit closure in 𝔤♮ on the right-hand side. We may therefore apply
known results on the geometry of nilpotent Slodowy slices to find candidates for collapsing levels.

Kraft and Procesi studied nilpotent Slodowy slices for minimal degenerations in the classical
types [65, 66], motivated by the normality problem for nilpotent orbit closures. They introduced the
row/column removal process, reviewed in Section 6 below, and which we now briefly describe. Nilpotent
orbits in simple Lie algebras of classical type are parametrised by certain classes of integer partitions
and, roughly speaking, the row/column removal rule is a set of combinatorial operations on a pair of
partitions (𝝀, 𝝁) under which the nilpotent Slodowy slice SO𝝀 , 𝑓𝝁 remains unchanged up to isomorphism.
Using the row/column removal rule, it is possible to identify classes of nilpotent orbits for which an
isomorphism of the type (3) holds. Recently, Fu, Juteau, Levy and Sommers [47] have complemented
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the work of Kraft and Procesi by determining the generic singularities of nilpotent orbit closures O
in exceptional types, which they did through a study of the nilpotent Slodowy slices SO, 𝑓 at minimal
degenerations 𝐺 · 𝑓 . We make use of these results also in the sequel.

Upgrading the isomorphisms of nilpotent Slodowy slices to collapsing levels is then a matter of
computing the level 𝑘 ♮ in terms of k and comparing asymptotic data. This is straightforward in principle,
but in practice it is extremely complicated, and exact (as opposed to numerical) computations require
extensive use of classical cyclotomic product identities such as those presented in Section 7.

We observe that many of our examples of collapsing levels are of the form

−ℎ∨𝔤 +
ℎ∨𝔤

𝑞
,

with (ℎ∨𝔤 , 𝑞) = (𝑟∨, 𝑞) = 1, or of the form

−ℎ∨𝔤 +
ℎ𝔤 + 1
𝑞

,

with (ℎ𝔤 + 1, 𝑞) = 1, (𝑟∨, 𝑞) = 𝑟∨, where ℎ𝔤 is the Coxeter number, ℎ∨𝔤 is the dual Coxeter number,
and 𝑟∨ is the lacing number of 𝔤, respectively. A level of the first form is called a boundary principal
admissible level [57] (see also [62]). The vertex algebras 𝐿𝑘 (𝔤) and 𝒲𝑘 (𝔤, 𝑓 ) at boundary principal
admissible level k appear as vertex algebras associated with Argyres-Douglas theories via the 4D/2D
duality ([76, 80, 82]). Collapsing levels which are boundary principal admissible have been studied by
Xie and Yan [81] in this connection, and our results confirm their conjectures [81, Section 3.4].

1.4. Related problems

Aside from determination of collapsing levels, the methods we develop in this article can be used to
prove other results of a similar flavour, some of which are remarked upon in the body of the text. For
instance (see Remark 9.9 for details), if 𝔤 = 𝔰𝔭𝑛 and 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 where q is twice an odd integer and
𝑝 = ℎ + 1, then for 𝑓 ∈ O𝑘 = O𝝀 where 𝝀 = ( 𝑞2 + 1, ( 𝑞2 )

𝑚, 2),

𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � Vir2,𝑞/2 .

In addition to such results, we pose a number of conjectures, mostly related to presentation of W-algebras
as finite extensions of simple affine vertex algebras. By finite extension we mean here, for definiteness,
a vertex algebra W which decomposes as a finite direct sum of irreducible modules over its conformal
vertex subalgebra V. In particular, we make the following:

Conjecture 1.3. If W is a finite extension of the vertex algebra V, then the corresponding morphism of
Poisson algebraic varieties 𝜋 : 𝑋𝑊 � 𝑋𝑉 is a dominant morphism.

The validity of Conjecture 1.3 would imply the widely believed fact that if a finite extension of a
vertex algebra is lisse, then so is the vertex algebra. We plan to return to these matters in future work.

Plan of the article

The rest of the article is organised as follows. In Section 2, we collect results on asymptotic data for
vertex algebras and their modules. We exhibit a large class of vertex algebras admitting an asymptotic
datum (see Proposition 2.6). Section 3 is about affine vertex algebras. The main result of the section
describes the asymptotic data of simple affine vertex algebras at admissible levels and of their simple
ordinary representations (see Corollary 3.9). Section 4 gathers together several properties of W-algebras.
One of the main results of this section is Proposition 4.10, which gives the asymptotic datum of the
Drinfeld-Sokolov reduction 𝐻0

𝐷𝑆, 𝑓 (𝐿(𝜆)) for all simple ordinary 𝐿𝑘 (𝔤)-module 𝐿(𝜆) for admissible k.

https://doi.org/10.1017/fms.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.81


6 T. Arakawa, J. van Ekeren and A. Moreau

The notion of collapsing level is introduced in Section 5. In Section 6, we then explain in detail our
strategy to find collapsing admissible levels. The identities obtained in Section 7 are useful to compute
the asymptotic data in the sections which follow. Our results for the classical types are presented in
Sections 8 and 9. See Theorems 8.7 and 8.8 for 𝔤 = 𝔰𝔩𝑛, Theorems 9.7 and 9.10 for 𝔤 = 𝔰𝔭𝑛, and
Theorems 9.14 and 9.16 for 𝔤 = 𝔰𝔬𝑛. Our results for the exceptional types are presented in Section 10.
See Theorem 10.1 for 𝔤 = 𝐸6, Theorem 10.6 for 𝔤 = 𝐸7, Theorem 10.11 for 𝔤 = 𝐸8, Theorem 10.18 for
𝔤 = 𝐹4 and Theorem 10.16 for 𝔤 = 𝐺2. Finally, useful data related to nilpotent orbits in the exceptional
types are collected in Appendix 11.

2. Asymptotic data of vertex algebras

A vertex algebra is a complex vector space V equipped with a distinguished vector |0〉 ∈ 𝑉 , an
endomorphism 𝑇 ∈ E𝑛𝑑 𝑉 and a linear map

𝑉 � (End𝑉) [[𝑧, 𝑧−1]], 𝑎 �� 𝑎(𝑧) =
∑
𝑛∈Z

𝑎 (𝑛) 𝑧
−𝑛−1

satisfying the following axioms:

◦ 𝑎(𝑧)𝑏 ∈ 𝑉 ((𝑧)) for all 𝑎, 𝑏 ∈ 𝑉 ,
◦ (vacuum axiom) |0〉(𝑧) = Id𝑉 and 𝑎(𝑧) |0〉 ∈ 𝑎 + 𝑧𝑉 [[𝑧]] for all 𝑎 ∈ 𝑉 ,
◦ (translation invariance axiom) [𝑇, 𝑎(𝑧)] = 𝜕

𝜕𝑧 𝑎(𝑧),
◦ (locality axiom) (𝑧 − 𝑤)𝑁𝑎,𝑏 [𝑎(𝑧), 𝑏(𝑤)] = 0 for a sufficiently large integer 𝑁𝑎,𝑏 , for all 𝑎, 𝑏 ∈ 𝑉 .

A vertex algebra V is called conformal if there exists a vector 𝜔 called the conformal vector such that
𝐿(𝑧) = 𝜔(𝑧) =

∑
𝑛∈Z 𝐿𝑛𝑧

−𝑛−2 satisfies

(a) [𝐿𝑚, 𝐿𝑛] = (𝑚−𝑛)𝐿𝑚+𝑛 +
𝑚3 − 𝑚

12
𝛿𝑚+𝑛,0𝑐𝑉 , where 𝑐𝑉 is a constant called the central charge of V,

(b) 𝐿0 acts semisimply on V,
(c) 𝐿−1 = 𝑇 on V.

For a conformal vertex algebra V and a V-module M, we set 𝑀𝑑 = {𝑚 ∈ 𝑀 : 𝐿0𝑚 = 𝑑𝑚}. The 𝐿0-
eigenvalue of a nonzero 𝐿0-eigenvector 𝑚 ∈ 𝑀 is called its conformal weight. For an element 𝑎 ∈ 𝑉 of
conformal weight Δ , we write 𝑎(𝑧) =

∑
𝑛∈Z 𝑎𝑛𝑧

−𝑛−Δ . Note that in general 𝑎0 : 𝑀𝑑 � 𝑀𝑑 .
A finitely generated V-module M is called ordinary if 𝐿0 acts semisimply, dim𝑀𝑑 < ∞ for all d,

and the conformal weights of M are bounded from below. The minimum conformal weight of a simple
ordinary V-module M is called the conformal dimension of M. More generally, a V-module M will be
said to be of positive energy (also called admissible) if it possesses a Z+-grading 𝑀 =

⊕
𝑘∈Z+ 𝑀𝑘 such

that 𝑎𝑛𝑀𝑘 ⊂ 𝑀𝑘−𝑛 for all 𝑎 ∈ 𝑉 . The normalised character of an ordinary representation M is defined
by

𝜒𝑀 (𝜏) = tr𝑀 𝑞𝐿0−𝑐𝑉 /24 = 𝑞−𝑐𝑉 /24
∑
𝑑∈C

(dim𝑀𝑑)𝑞𝑑 , 𝑞 = 𝑒2𝜋i𝜏 with 𝜏 ∈ C.

A conformal vertex algebra is called conical if 𝑉 =
⊕

Δ∈ 1
𝑟 Z≥0

𝑉Δ for some 𝑟 ∈ Z≥0 and 𝑉0 = C. A
Z-graded conical vertex algebra is said to be of CFT-type. Let V be a vertex algebra of CFT-type. Then
V is called self-dual if 𝑉 � 𝑉 ′ as V-modules, where 𝑀 ′ denotes the contragredient dual [46] of the
V-module M. Equivalently, V is self-dual if and only if it admits a non-degenerate symmetric invariant
bilinear form.
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The following definition goes back to [58, Conjecture 1].2

Definition 2.1. A conformal vertex algebra V is said to admit an asymptotic datum if there exist A𝑉 ∈ R,
w𝑉 ∈ R, g𝑉 ∈ R such that

𝜒𝑉 (𝜏) ∼ A𝑉 (−i𝜏)
w𝑉

2 𝑒
𝜋i

12𝜏 g𝑉 as 𝜏 � 0.

The numbers A𝑉 , w𝑉 and g𝑉 are called the asymptotic dimension of V, the asymptotic weight, and
the asymptotic growth, respectively. Similarly, an ordinary V-module M is said to admit an asymptotic
datum if there exist A𝑀 ∈ C, w𝑀 , g𝑀 ∈ R such that

𝜒𝑀 (𝜏) ∼ A𝑀 (−i𝜏)
w𝑀

2 𝑒
𝜋i

12𝜏 g𝑀 as 𝜏 � 0.

For a conformal vertex algebra V and an ordinary V-module M,

qdim𝑉 𝑀 := lim
𝜏�0

𝜒𝑀 (𝜏)
𝜒𝑉 (𝜏)

is called the quantum dimension of M if it exists ([35]). If both V and M admit asymptotic data, g𝑉 = g𝑀
and w𝑉 = w𝑀 , then the quantum dimension of M exists and is equal to the ratio of the asymptotic
dimensions:

qdim𝑉 𝑀 =
A𝑀

A𝑉
. (4)

Given a vertex algebra V, one naturally defines a Poisson algebra 𝑅𝑉 , called the Zhu 𝐶2-algebra, as
follows ([83]). Let 𝐶2 (𝑉) be the subspace of V spanned by the elements 𝑎 (−2)𝑏, where 𝑎, 𝑏 ∈ 𝑉 , and set
𝑅𝑉 = 𝑉/𝐶2 (𝑉). Then 𝑅𝑉 acquires a Poisson algebra structure via

1 = |0〉, �̄� · �̄� = 𝑎 (−1)𝑏 and {�̄�, �̄�} = 𝑎 (0)𝑏,

where �̄� denotes the image of 𝑎 ∈ 𝑉 in the quotient 𝑅𝑉 .
The associated variety [7] 𝑋𝑉 of a vertex algebra V is the affine Poisson variety defined by

𝑋𝑉 = Specm 𝑅𝑉 .

A vertex algebra V is called lisse if dim 𝑋𝑉 = 0. It is called quasi-lisse [17] if 𝑋𝑉 has finitely many
symplectic leaves.

A vertex algebra V is called rational if any finitely generated positively graded V-module is completely
reducible. For a lisse conformal vertex algebra V, any finitely generated V-module is ordinary, and there
exist finitely many simple V-modules ([1]).

The following fact is well known.

Proposition 2.2. Let V be a finitely strongly generated, rational, lisse self-dual simple vertex operator
algebra of CFT-type. Then any simple V-module M admits an asymptotic datum with w𝑀 = 0.

Proof. We include a proof for completeness. By [1], any simple V-module is ordinary, and there exist
finitely many simple V-modules – say, {𝐿𝑖 : 𝑖 = 0, . . . , 𝑟}. Let ℎ𝑖 be the conformal dimension of 𝐿𝑖 . Then

𝜒𝐿𝑖 (𝜏) = 𝑞ℎ𝑖−𝑐/24
∑
𝑑≥0

(dim(𝐿𝑖)ℎ𝑖+𝑑)𝑞𝑑 .

2In [58], the triple (A𝑉 ,w𝑉 , g𝑉 ) was called the asymptotic dimension.
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By Zhu’s theorem [83], the vector space spanned by 𝜒𝐿𝑖 (𝜏), 𝑖 = 0, . . . , 𝑟 is invariant under the natural
action of the modular group SL2 (Z). Hence,

𝜒𝐿𝑖 (𝜏) =
𝑟∑
𝑗=1
𝑆𝑖, 𝑗 𝜒𝐿 𝑗 (−1/𝜏)

for some 𝑆𝑖, 𝑗 ∈ C, 𝑗 = 0, . . . , 𝑟 . The assertion follows. �

The following assertion is widely believed.

Conjecture 2.3. Let V be a rational, lisse, simple, self-dual conformal vertex algebra V, {𝐿0, . . . , 𝐿𝑟 }
the complete set of simple V-modules. There exists a unique simple module 𝐿𝑖◦ with conformal dimension
ℎmin := ℎ𝑖◦ such that ℎ𝑖 > ℎmin for all 𝑖 ≠ 𝑖◦, and that 𝑆𝑖𝑖◦ ≠ 0 for all i.

In Theorem 4.11, we confirm the uniqueness of the simple module with minimal conformal dimension
for exceptional W-algebras ([12, 60]). See also Conjecture 4.6 and the subsequent remarks.

Proposition 2.4. Let V be as in Conjecture 2.3, with simple modules {𝐿0, . . . , 𝐿𝑟 } ordered so that 𝐿0 =
𝑉 , and assume that there exists a unique simple module 𝐿𝑖◦ satisfying the assertion of Conjecture 2.3.
Then

g𝐿𝑖 = 𝑐𝑉 − 24ℎmin, A𝐿𝑖 = dim(𝐿𝑖◦ )ℎmin𝑆𝑖,𝑖◦

for all i. Moreover,

qdim𝑉 (𝐿𝑖) =
𝑆𝑖,𝑖◦
𝑆0,𝑖◦

,

and

qdim𝑉 (𝐿𝑖 � 𝐿 𝑗 ) = qdim𝑉 (𝐿𝑖) qdim𝑉 (𝐿 𝑗 ), (5)

where � is the fusion product ([49, 51, 52, 53]). In particular, the quantum dimension is well defined
for all simple V-modules.

Proof. The assertions except for the last follow from the proof of Proposition 2.2. For the assertion (5),
see [35, Remark 4.10]. �

The number 𝑐𝑉 − 24ℎmin is called the effective central charge of V in the literature ([36]).

Remark 2.5. Let V be as in Proposition 2.4. By a result of Huang [50], the category 𝑉 -mod of finitely
generated V-modules forms a modular tensor category. In this context, the quantum dimension of a
simple V-module is the same as the Frobenius-Perron dimension ([39]) of V in 𝑉 -mod.

Proposition 2.6. Let V be a finitely strongly generated, quasi-lisse vertex operator algebra of CFT-type.
Then any simple ordinary V-module L admits an asymptotic datum.

Proof. By [17], the set {𝐿𝑖} of simple ordinary V-modules is finite, and the characters 𝜒𝐿𝑖 (𝜏) are
solutions of a modular linear differential equation. Since the space spanned by the solutions of a modular
linear differential equation is invariant under the natural action of SL2 (Z), the assertion follows in a
similar manner as Proposition 2.2, except that a solution of a modular linear differential equation may
have logarithmic terms – that is, it has the form

𝑞𝛽𝑖
𝑒∑
𝑖=1

𝑓𝑖 (𝑞) (log 𝑞)𝑒−𝑖 , 𝑓𝑖 (𝑞) ∈ C[[𝑞]] .

�
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Let Vir𝑐 be the universal Virasoro vertex algebra at central charge 𝑐 ∈ C, Vir𝑐 the unique simple
quotient of Vir𝑐 .

Lemma 2.7 [43, 58]. A quotient of a universal Virasoro vertex algebra admits an asymptotic datum.

Proof. It is well known that Vir𝑐 has length two if 𝑐 = 1−6(𝑝−𝑞)2/𝑝𝑞 for some 𝑝, 𝑞 ∈ Z≥2, (𝑝, 𝑞) = 1,
and otherwise Vir𝑐 = Vir𝑐 . Hence, a quotient V of Vir𝑐 is either Vir𝑐 or Vir𝑐 . If 𝑉 = Vir𝑐 , then

𝜒𝑉 (𝜏) = (1 − 𝑞)𝑞 (1−𝑐𝑉 )/24

𝜂(𝑞) ,

where 𝜂(𝑞) = 𝑞1/24 ∏
𝑗≥1 (1 − 𝑞 𝑗 ). Hence (indicating by + · · · terms of lower growth),

𝜒𝑉 (𝑒2𝜋i𝜏) = (1 − 𝑒2𝜋i𝜏)𝑒2𝜋i𝜏 (1−𝑐𝑉 )/24(−i𝜏)
1
2

(
𝑒2𝜋i(− 1

𝜏 )(− 1
24 ) + · · ·

)
,

∼ (−2𝜋i𝜏) (−i𝜏)
1
2 𝑒

𝜋i
12𝜏 ,

where we have used l’Hopital’s rule. So V admits an asymptotic datum with A𝑉 = 2𝜋, w𝑉 = 3, g𝑉 = 1.
If 𝑉 = Vir𝑐 with 𝑐 = 1 − 6(𝑝 − 𝑞)2/𝑝𝑞, 𝑝, 𝑞 ∈ Z≥2, (𝑝, 𝑞) = 1, then as it is well known [43, 58] V

admits an asymptotic datum with w𝑉 = 0,

A𝑉 =

(
8
𝑝𝑞

)1/2
sin

(
𝜋𝑎(𝑝 − 𝑞)

𝑞

)
sin

(
𝜋𝑏(𝑝 − 𝑞)

𝑝

)
, (6)

where (𝑎, 𝑏) is the unique solution of 𝑝𝑎 − 𝑞𝑏 = 1 in integers 1 ≤ 𝑎 ≤ 𝑞 and 1 ≤ 𝑏 ≤ 𝑝, and

g𝑉 = 1 − 6
𝑝𝑞
. (7)

�

The simple Virasoro vertex algebra Vir𝑐 with 𝑐 = 1− 6(𝑝 − 𝑞)2/𝑝𝑞, 𝑝, 𝑞 ∈ Z≥2, (𝑝, 𝑞) = 1 is known
to be rational and lisse ([79]). The simple Vir𝑐-modules are the (𝑝, 𝑞)-minimal series representations
of the Virasoro algebra, and for each simple Vir𝑐-module L, we have w𝐿 = 0, g𝐿 = gVir𝑐 and A𝐿 > 0
([43, 58]).

Lemma 2.8. Let V be a conformal vertex algebra with central charge 𝑐 = 1−6(𝑝−𝑞)2/𝑝𝑞, 𝑝, 𝑞 ∈ Z≥2,
(𝑝, 𝑞) = 1, and suppose that V admits an asymptotic datum with g𝑉 < 1. Then V is a direct sum of simple
(𝑝, 𝑞)-minimal series representations of the Virasoro algebra. If further A𝑉 = AVir𝑐 , then 𝑉 � Vir𝑐 .

Proof. The vertex algebra homomorphism Vir𝑐 � 𝑉 , 𝜔Vir𝑐 � 𝜔𝑉 factors through the embedding
Vir𝑐 ↩� 𝑉 because otherwise g𝑉 ≥ gVir𝑐 = 1. Thus, the rationality of Vir𝑐 proves the first statement,
and so we have 𝑉 =

⊕
𝑖 𝐿

⊕𝑚𝑖

𝑖 , where {𝐿𝑖} is the set of simple (𝑝, 𝑞)-minimal series representations
of the Virasoro algebra and 𝑚𝑖 ∈ Z≥0 ∪ {∞}. It follows that A𝑉 =

∑
𝑖 𝑚𝑖A𝐿𝑖 , and we get the second

assertion. �

Recall that a homomorphism 𝑓 : 𝑉 � 𝑊 of conformal vertex algebras is called conformal if 𝜔𝑊 =
𝑓 (𝜔𝑉 ).

Proposition 2.9. Let 𝑓 : 𝑉 � 𝑊 be a homomorphism of conformal vertex algebras. Suppose that

◦ 𝑓 (𝜔𝑉 ) ∈ 𝑊2 and (𝜔𝑊 )(2) 𝑓 (𝜔𝑉 ) = 0,
◦ the simple quotient L of V admits an asymptotic datum,
◦ W is a quotient of a conformal vertex algebra �̃� that admits an asymptotic datum.

If g𝐿 = g�̃� , then f is conformal.
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Proof. Our aim is to show that 𝜔 = 𝜔𝑊 − 𝑓 (𝜔𝑉 ) vanishes. Now, if 𝜔 ≠ 0, then [67, Theorem 3.11.12]
asserts that the commutant subalgebra

Com(𝑊, 𝑓 (𝑉)) = {𝑤 ∈ 𝑊 : 𝑓 (𝑣)( 𝑗)𝑤 for all 𝑣 ∈ 𝑉 and 𝑗 ∈ Z+}

is conformal with Virasoro vector 𝜔 of some central charge c. We note that 𝜔 ∉ 𝑓 (𝑉), for otherwise we
would have 𝜔 (0)𝜔 = 0, which contradicts that 𝜔 is a conformal vector. We thus proceed to show that
𝜔 ∈ 𝑓 (𝑉) and deduce that 𝜔 = 0 by contradiction.

Consider the homomorphism 𝑓 : Vir𝑐 ⊗𝑉 � 𝑊 of conformal vertex algebras that sends the con-
formal vector 𝜔 (0) of Vir𝑐 to 𝜔, and such that 𝑓 (|0〉 ⊗ 𝑣) = 𝑓 (𝑣) for all 𝑣 ∈ 𝑉 . We now have the
vertex subalgebra𝑈 = 𝑓 (Vir𝑐 ⊗𝑉) ⊂ 𝑊 whose simple quotient is isomorphic to Vir𝑐 ⊗𝐿. We thus have
g�̃� ≥ g𝐿 + gVir𝑐 , and hence, gVir𝑐 = 0 by our hypotheses. From Lemma 2.7, it follows that 𝑐 = 0.

We recall that Vir0 = C, that the maximal proper ideal of Vir0 is generated by 𝜔 (0) and that this ideal
is simple as a Vir0-module.

Let N be the maximal ideal of V, so that 𝐿 = 𝑉/𝑁 . We now consider the surjection

𝑓1 : Vir0 ⊗(𝑉/𝑁) � 𝑈/ 𝑓 (Vir𝑐 ⊗𝑁),

and we define

𝐾 = {𝑣 ∈ 𝐿 : 𝑓1(𝜔 (0) ⊗ 𝑣) ∈ 𝑓 (Vir𝑐 ⊗𝑁)}.

Since 𝐾 ⊂ 𝐿 is a V-submodule, we have either 𝐾 = 𝐿 or 𝐾 = 0.
If 𝐾 = 0, then 𝑓1 is an isomorphism because of simplicity of the maximal proper ideal in Vir0. But

then we would have g�̃� ≥ g𝐿 + gVir0 > g𝐿 since gVir0 > 0, and this contradicts our hypotheses.
Therefore, 𝐾 = 𝐿. Since (Vir0 ⊗𝑉)2 = C𝜔 (0) ⊗ |0〉 ⊕ |0〉 ⊗ 𝑉2, it follows that

𝑓 (𝜔 (0) ⊗ |0〉) ⊂ 𝑓 (|0〉 ⊗ 𝑁) = 𝑓 (𝑁) ⊂ 𝑓 (𝑉)

and in particular that 𝜔 ∈ 𝑓 (𝑉). Thus, 𝜔 = 0, and we are done. �

3. Admissible affine vertex algebras

Let 𝔤 be a complex simple Lie algebra of rank ℓ. Let 𝔤 = 𝔫− ⊕ 𝔥 ⊕ 𝔫+ be a triangular decomposition with
a Cartan subalgebra 𝔥, Δ the root system of (𝔤, 𝔥) and Δ+ a set of positive roots for Δ , Π = {𝛼1, . . . , 𝛼ℓ }
the set of simple roots. Let 𝜃 be the highest root, and 𝜃𝑠 the highest short root. We also have Δ∨ the set
of coroots. Let P be the weight lattice, Q the root lattice and 𝑄∨ the coroot lattice. The lattice P is dual
to 𝑄∨, and we write 𝑃∨ for the dual of Q. Recall that the Coxeter number and the dual Coxeter number
of 𝔤 are denoted by ℎ𝔤 and ℎ∨𝔤 , respectively. Identifying 𝔥 with 𝔥∗ using the inner product

( | )𝔤 =
1

2ℎ∨𝔤
× Killing form of 𝔤,

we view 𝑄∨ as a sub-lattice of both P and Q. We denote by 𝜌 the Weyl vector (i.e., the half-sum of
positive roots).

For 𝜆 ∈ 𝔥∗, let 𝐿𝔤 (𝜆) be the irreducible highest weight representation of 𝔤 with highest weight 𝜆, and
let

𝐽𝜆 = Ann𝑈 (𝔤) 𝐿𝔤 (𝜆). (8)

Let �̃� = 𝔤[𝑡, 𝑡−1] ⊕ C𝐾 ⊕C𝐷 be the affine Kac-Moody algebra, with the commutation relations

[𝑥𝑡𝑚, 𝑦𝑡𝑛] = [𝑥, 𝑦]𝑡𝑚+𝑛 + 𝑚𝛿𝑚+𝑛,0 (𝑥 |𝑦)𝔤𝐾, [𝐷, 𝑥𝑡𝑛] = 𝑛𝑥𝑡𝑛, [𝐾, �̂�] = 0,
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for all 𝑥, 𝑦 ∈ 𝔤 and all 𝑚, 𝑛 ∈ Z. Let �̃� = �̂�− ⊕ �̃� ⊕ �̂�+ be the standard triangular decomposition – that is,
�̃� = 𝔥 ⊕ C𝐾 ⊕C𝐷 is the Cartan subalgebra of �̃�, �̂�+ = 𝔫+ + 𝑡𝔤[𝑡], �̂�− = 𝔫− + 𝑡−1𝔤[𝑡−1].

Let �̂� = [̃𝔤, �̃�] = 𝔤[𝑡, 𝑡−1] ⊕ C𝐾 , and let �̂� = 𝔥 ⊕C𝐾 ⊂ �̂�, so that �̂� = �̂�− ⊕ �̂� ⊕ �̂�+. The Cartan
subalgebra �̃� is equipped with a bilinear form extending that on 𝔥 by

(𝐾 |𝐷) = 1, (𝔥|C𝐾 ⊕ C𝐷) = (𝐾 |𝐾) = (𝐷 |𝐷) = 0.

We write 𝛿 and Λ0 for the elements of �̃�∗ orthogonal to 𝔥∗ and dual to K and D, respectively. We have
the (real) root system

Δ̂ re = {𝛼 + 𝑛𝛿 : 𝑛 ∈ Z, 𝛼 ∈ Δ} = Δ̂ re
+ � (−Δ̂ re

+ ),

Δ̂ re
+ = {𝛼 + 𝑛𝛿 : 𝛼 ∈ Δ+, 𝑛 ≥ 0} � {𝛼 + 𝑛𝛿 : 𝛼 ∈ Δ , 𝑛 > 0},

and the affine Weyl group 𝑊 generated by reflections 𝑟𝛼 for 𝛼 ∈ Δ̂ re. For 𝛼 ∈ 𝔥∗, the translation
𝑡𝛼 : �̃�∗ � �̃�∗ is defined by

𝑡𝛼 (𝜆) = 𝜆 + 𝜆(𝐾)𝛼 −
[
(𝛼 |𝜆) + |𝛼 |2

2
𝜆(𝐾)

]
𝛿.

For 𝛼 ∈ 𝑄∨, we have 𝑡𝛼 ∈ 𝑊 and, in fact,𝑊 � 𝑊 � 𝑡𝑄∨ . The extended affine Weyl group, which is the
group of isometries of Δ̂ , is𝑊 = 𝑊 � 𝑡𝑃 . Here, for R a subset of P, 𝑡𝑅 stands for the set {𝑡𝛼 : 𝛼 ∈ 𝑅}.

Let Õ𝑘 be the category O of �̃� at level k ([54]), and let K̃L𝑘 be the full subcategory of Õ𝑘 consisting
of objects on which the action of 𝔤 is integrable. The simple objects of Õ𝑘 are the irreducible highest
weight representations 𝐿(𝜆) with 𝜆 ∈ �̃�∗ such that 𝜆(𝐾) = 𝑘 , while the simple objects of K̃L𝑘 are those
𝐿(𝜆) with 𝜆 ∈ 𝑃+ + 𝑘Λ0 + C𝛿, where 𝑃+ is the set of dominant integral weights of 𝔤.

For a weight 𝜆 ∈ �̂�∗, the corresponding integral root system is

Δ̂ (𝜆) = {𝛼 ∈ Δ̂ re :
〈
𝜆, 𝛼∨

〉
∈ Z},

where 𝛼∨ = 2𝛼/(𝛼 |𝛼) as usual, and the subgroup 𝑊 (𝜆) of𝑊 generated by 𝑟𝛼 with 𝛼 ∈ Δ̂ (𝜆) is called
the integral Weyl group of 𝜆.

Definition 3.1. A weight 𝜆 ∈ �̃�∗ is said to be admissible if

1. 𝜆 is regular dominant – that is, 〈𝜆 + �̂�, 𝛼∨〉 > 0 for all 𝛼 ∈ Δ̂+(𝜆) := Δ̂ (𝜆) ∩ Δ̂ re
+ ,

2. QΔ̂ re = QΔ̂ (𝜆).

Here, �̂� = 𝜌 + ℎ∨𝔤 Λ0 is the affine Weyl vector. An admissible �̃�-module is one of the form 𝐿(𝜆) for 𝜆
admissible.

Given any 𝑘 ∈ C, let

𝑉 𝑘 (𝔤) = 𝑈 (�̂�) ⊗𝑈 (𝔤 [𝑡 ] ⊕C𝐾 ) C𝑘 ,

where C𝑘 is the one-dimensional representation of 𝔤[𝑡] ⊕ C𝐾 on which 𝔤[𝑡] acts by 0 and K acts as a
multiplication by the scalar k. There is a unique vertex algebra structure on 𝑉 𝑘 (𝔤) such that |0〉 is the
image of 1 ⊗ 1 in 𝑉 𝑘 (𝔤) and

𝑥(𝑧) := (𝑥 (−1) |0〉)(𝑧) =
∑
𝑛∈Z

(𝑥𝑡𝑛)𝑧−𝑛−1

for all 𝑥 ∈ 𝔤, where we regard 𝔤 as a subspace of V through the embedding 𝑥 ∈ 𝔤 ↩� 𝑥 (−1) |0〉 ∈ 𝑉 𝑘 (𝔤).
The vertex algebra 𝑉 𝑘 (𝔤) is called the universal affine vertex algebra associated with 𝔤 at level k.
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The vertex algebra 𝑉 𝑘 (𝔤) has a conformal structure given by the Sugawara construction provided
that k is noncritical – that is, 𝑘 ≠ −ℎ∨𝔤 , with central charge

𝑐𝑉 𝑘 (𝔤) =
𝑘 dim𝔤
𝑘 + ℎ∨𝔤

.

A 𝑉 𝑘 (𝔤)-module is the same as a smooth �̂�-module of level k. Recall that a �̂�-module M is smooth if,
for all 𝑎 ∈ 𝔤 and 𝑚 ∈ 𝑀 , one has 𝑎𝑡𝑛𝑚 = 0 for all sufficiently large positive 𝑛 ∈ Z. The highest weight
�̃�-module 𝐿𝑘 (𝜆 + 𝑘Λ0) (regarded as a �̂�-module and thus𝑉 𝑘 (𝔤)-module) acquires conformal dimension

ℎ𝐿 (𝜆) =
(𝜆 |𝜆 + 2𝜌)
2(𝑘 + ℎ∨𝔤 )

.

For a noncritical level k, we consider a 𝑉 𝑘 (𝔤)-module M as a �̃�-module by letting D act as the
semisimplification of −𝐿0. In particular, we identify the categories O𝑘 and KL𝑘 of �̂�-modules of level
k with the respective full subcategories of Õ𝑘 and K̃L𝑘 consisting of modules on which the universal
Casimir element C [54, Section 2.5] of �̃� acts nilpotently. Accordingly, the affine space �̂�∗𝑘 := 𝔥∗ + 𝑘Λ0

is identified with an affine subvariety of �̃�∗ by the correspondence

𝜆 + 𝑘Λ0 �� 𝜆 + 𝑘Λ0 − ℎ𝐿 (𝜆)𝛿

preserving the corresponding linkage relations in O𝑘 .
Let 𝐿𝑘 (𝔤) be the unique simple graded quotient of 𝑉 𝑘 (𝔤). For any graded quotient V of 𝑉 𝑘 (𝔤), we

have 𝑅𝑉 = 𝑉/𝑡−2𝔤[𝑡−1]𝑉 . In particular, 𝑅𝑉 𝑘 (𝔤) � C[𝔤∗], and hence, 𝑋𝑉 𝑘 (𝔤) = 𝔤∗. Furthermore, 𝑋𝐿𝑘 (𝔤)
is a subvariety of 𝔤∗ � 𝔤, which is G-invariant and conic.

More generally, let 𝔞 be a Lie algebra endowed with a symmetric invariant bilinear form 𝜅, and

�̂�𝜅 = 𝔞 [𝑡, 𝑡−1] ⊕ C1

be the Kac-Moody affinisation of 𝔞. It is a Lie algebra with commutation relations

[𝑥𝑡𝑚, 𝑦𝑡𝑛] = [𝑥, 𝑦]𝑡𝑚+𝑛 + 𝑚𝛿𝑚+𝑛,0𝜅(𝑥, 𝑦)1, [1, �̂�𝜅 ] = 0,

for all 𝑥, 𝑦 ∈ 𝔞 and all 𝑚, 𝑛 ∈ Z. Then the �̂�𝜅 -module

𝑉 𝜅 (𝔞) = 𝑈 (𝔞) ⊗𝑈 (𝔞 [𝑡 ] ⊕C1) C,

where C is the one-dimensional representation of 𝔞 [𝑡] ⊕ C1 on which 𝔞 [𝑡] acts by 0 and 1 acts as the
identity, has a unique vertex algebra structure such that |0〉 is the image of 1 ⊗ 1 in 𝑉 𝜅 (𝔞) and

𝑥(𝑧) := (𝑥 (−1) |0〉)(𝑧) =
∑
𝑛∈Z

(𝑥𝑡𝑛)𝑧−𝑛−1

for all 𝑥 ∈ 𝔞. We have 𝑋𝑉 𝜅 (𝔞) � 𝔞∗, and, letting 𝐿𝜅 (𝔞) be the unique simple graded quotient of 𝑉 𝜅 (𝔞),
𝑋𝐿𝜅 (𝔞) is a subvariety of 𝔞∗, which is Poisson and conic.

For 𝑀 ∈ O𝑘 on which 𝐿0 acts semisimply, we consider the multivariable character 𝜒𝑀 of M
defined by

𝜒𝑀 (𝜏, 𝑧, 𝑡) = 𝑒2𝜋i𝑘𝑡 tr𝑀 (𝑒2𝜋i𝑧𝑒2𝜋i𝜏 (𝐿0−𝑐/24) ), (𝜏, 𝑧, 𝑡) ∈ H × 𝔥 × C.

We also write, in particular, 𝜒𝐿 (𝜆) (𝜏) = 𝜒𝐿 (𝜆) (𝜏, 0, 0).
For admissible weight 𝜆, a closed form for 𝜒𝐿 (𝜆) (𝜏, 𝑧, 𝑡) was given in [59]. It is convenient to write

𝑣 = 2𝜋i(−𝜏𝐷 + 𝑧 + 𝑡𝐾) ∈ �̃�∗ as in [54]. Then the character formula is
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𝜒𝐿 (𝜆) (𝑣) =
𝐴𝜆+𝜌 (𝑣)
𝐴𝜌 (𝑣)

,

where

𝐴𝜆 (𝑣) = 𝑒−
|𝜆|2

2𝜆(𝐾 ) (𝛿,𝑣)
∑

𝑤 ∈𝑊 (𝜆)

𝜀(𝑤)𝑒 〈𝑤 (𝜆) ,𝑣 〉 .

The complex number k is said to be admissible for �̂� if 𝑘Λ0 is admissible. If this is the case, 𝐿𝑘 (𝔤) is
called a simple admissible affine vertex algebra. By [61, Proposition 1.2], k is admissible if and only if

𝑘 + ℎ∨𝔤 =
𝑝

𝑞
with 𝑝, 𝑞 ∈ Z≥1, (𝑝, 𝑞) = 1, 𝑝 ≥

{
ℎ∨𝔤 if (𝑟∨, 𝑞) = 1
ℎ𝔤 if (𝑟∨, 𝑞) = 𝑟∨,

(9)

where 𝑟∨ is the lacing number3 of 𝔤.
If k is admissible with (𝑟∨, 𝑞) = 1, we say that k is principal. If k is admissible with (𝑟∨, 𝑞) = 𝑟∨, we

say that k is coprincipal.
Theorem 3.2 [10]. Assume that the level 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 is admissible. Then 𝑋𝐿𝑘 (𝔤) = O𝑘 , where O𝑘 is
a certain nilpotent orbit of 𝔤 which only depends on the denominator q.

In particular, the associated variety of an admissible affine vertex algebra is contained in the nilpotent
cone N𝔤 of 𝔤. We note that the converse is not true, and there are affine vertex algebras at non-admissible
levels whose associated variety is contained in N𝔤 [19].

Theorem 3.3 [8]. Let k be admissible, 𝜆 ∈ �̂�∗𝑘 . Then 𝐿(𝜆) is an 𝐿𝑘 (𝔤)-module if and only if 𝜆 is an
admissible weight such that Δ̂ (𝜆) = 𝑦(Δ̂ (𝑘Λ0)) for some 𝑦 ∈ 𝑊 . Moreover, any 𝐿𝑘 (𝔤)-module that lies
inO𝑘 is a direct sum of admissible representations 𝐿(𝜆) of �̂� of level k for𝜆 satisfying Δ̂ (𝜆) = 𝑦(Δ̂ (𝑘Λ0))
for some 𝑦 ∈ 𝑊 .

For a principal admissible number, let Pr𝑘 be the set of admissible weights 𝜆 ∈ �̂�∗𝑘 such that
Δ̂ (𝜆) = 𝑦(Δ̂ (𝑘Λ0)) for some 𝑦 ∈ 𝑊 . Similarly, for a coprincipal admissible number, let CoPr𝑘 be the
set of admissible weights 𝜆 ∈ �̂�∗𝑘 such that Δ̂ (𝜆) = 𝑦(Δ̂ (𝑘Λ0)) for some 𝑦 ∈ 𝑊 . An element of Pr𝑘

(resp. CoPr𝑘 ) is called a principal admissible weight (resp. coprincipal admissible weight) of level k.
Occasionally, we shall use Adm𝑘 to refer to the set Pr𝑘 or CoPr𝑘 , according to whether k is a principal

or coprincipal admissible number.
For 𝜆 ∈ �̂�∗, let us denote by �̄� ∈ 𝔥∗ the restriction of 𝜆 to 𝔥. For 𝜆 ∈ Pr𝑘 (resp. 𝜆 ∈ CoPr𝑘 ), the

primitive ideal 𝐽�̄� is an maximal ideal of 𝑈 (𝔤), and 𝐽�̄� = 𝐽�̄� if and only if �̄� ∈ 𝑊 ◦ �̄� for 𝜆, 𝜇 ∈ Pr𝑘
(resp. for 𝜆, 𝜇 ∈ CoPr𝑘 ) ([12, Proposition 2.4]). Here and throughout, ◦ denotes the ‘dot’ action
𝑤 ◦ 𝜆 = 𝑤(𝜆 + 𝜌) − 𝜌. Set

[Pr𝑘 ] = Pr𝑘/∼, [CoPr𝑘 ] = CoPr𝑘/∼, (10)

where 𝜆 ∼ 𝜇 ⇐⇒ �̄� ∈ 𝑊 ◦ �̄�.
If V is a 1

2Z-graded vertex algebra, we denote by Zhu(𝑉) the Ramond twisted Zhu algebra of V,
briefly recalling its construction from ([34, 83]). Bilinear products ∗𝑛 : 𝑉 ⊗ 𝑉 � 𝑉 are defined by

𝑎 ∗𝑛 𝑏 =
∑
𝑗∈Z≥0

(
Δ (𝑎)
𝑗

)
𝑎 (𝑛+ 𝑗)𝑏,

for a of conformal weight Δ (𝑎), 𝑏 ∈ 𝑉 arbitrary. We write in particular 𝑎∗𝑏 = 𝑎∗−1 𝑏 and 𝑎◦𝑏 = 𝑎∗−2 𝑏.
Then the Zhu algebra is a quotient of V by the subspace 𝑉 ◦𝑉 spanned by all elements of the form 𝑎 ◦ 𝑏

3That is, 𝑟∨ = 1 for the types 𝐴, 𝐷, 𝐸 , 𝑟∨ = 2 for the types 𝐵, 𝐶, 𝐹4, and 𝑟∨ = 3 for the type 𝐺2.
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for 𝑎, 𝑏 ∈ 𝑉 . The operation 𝑎 ⊗ 𝑏 �� 𝑎 ∗ 𝑏 is well defined in the quotient and turns it into an associative
unital algebra with unit [|0〉].

The fundamental property satisfied by Zhu(𝑉) is the existence of a bijection between the set of
irreducible Zhu(𝑉)-modules and the set of irreducible positive energy Ramond twisted V-modules,
sending a V-module M to its lowest graded piece 𝑀low equipped with the Zhu(𝑉)-action [𝑎] ·𝑚 = 𝑎0𝑚
for 𝑎 ∈ 𝑉 and 𝑚 ∈ 𝑀low.

For the simple affine vertex algebra 𝐿𝑘 (𝔤), we have

Zhu(𝐿𝑘 (𝔤)) � 𝑈 (𝔤)/𝐼𝑘 (11)

for some two-sided ideal 𝐼𝑘 of𝑈 (𝔤).
The statement of Theorem 3.3 is strengthened by the following assertion.

Theorem 3.4 [14]. Let k be admissible. We have

Zhu(𝐿𝑘 (𝔤)) �
∏

𝑈 (𝔤)/𝐽�̄�,

where the product is taken over [𝜆] ∈ [Adm𝑘 ].

Theorem 3.5. Let k be admissible, V a conical self-dual conformal vertex algebra, and 𝜑 : 𝑉 𝑘 (𝔤) � 𝑉
a conformal vertex algebra homomorphism. Then 𝜑 factors through an embedding 𝐿𝑘 (𝔤) ↩� 𝑉 . In
particular, V is a direct sum of admissible �̂�-modules.

Proof. It is known [58] that the maximal proper submodule 𝑁 of𝑉 𝑘 (𝔤) is generated by a singular vector
𝑣𝜆 of weight – say, 𝜆. Therefore, 𝑁 = 𝜑(𝑁) is generated as a �̂�-module by 𝜑(𝑣𝜆), and we shall show
that 𝜑(𝑣𝜆) = 0.

Let M be an ordinary V-module. Since 𝜑 is conformal, the restricted dual𝑀∗ =
⊕

𝑑∈C HomC(𝑀𝑑 ,C)
([46]) as a V-module is the same as the restricted dual of M as a 𝑉 𝑘 (𝔤)-module. In particular, V is
self-dual as a 𝑉 𝑘 (𝔤)-module.

Assume that 𝜑(𝑣𝜆) ≠ 0. Then we have a non-splitting exact sequence 0 � 𝑁 � 𝑉 � 𝑉/𝑁 � 0 of
�̂�-modules. By the self-duality of V, this gives a non-splitting exact sequence

0 � (𝑉/𝑁)∗ � 𝑉 � 𝑁∗ � 0 (12)

of 𝑉 𝑘 (𝔤)-modules.
Let 𝑤𝜆 be a weight vector of V of weight 𝜆 that is mapped to the highest weight vector of 𝑁∗. Since

𝑉0 = C|0〉 and (12) is non-split, we have |0〉 ∈ 𝑈 (�̂�)𝑤𝜆. It follows that 𝑤𝜆 is not a singular vector and
also that 𝜑(𝑉 𝑘 (𝔤)) ⊂ 𝑈 (�̂�)𝑤𝜆. Thus, 𝜑(𝑣𝜆) and 𝑤𝜆 are linearly independent vectors of𝑈 (�̂�)𝑤𝜆, which
are both primitive in the sense of [72, 2.6]. This implies that [𝑈 (�̂�)𝑤𝜆 : 𝐿(𝜆)] ≥ 2.

Let 𝑃(𝜆) be the projective cover of 𝐿(𝜆) in O𝑘 and consider the homomorphism 𝑔 : 𝑃(𝜆) �
𝑈 (�̂�)𝑤𝜆 ↩� 𝑉 that sends the generator of 𝑃(𝜆) of weight 𝜆 to 𝑤𝜆. Since 𝜑 is conformal, the uni-
versal Casimir element C of �̃� acts as zero on V. It follows that g factors through a homomorphism
𝑃(𝜆)/𝐶𝑃(𝜆) � 𝑉 . But then Lemma 3.6 below says that the multiplicity of 𝐿(𝜆) in 𝑔(𝑃(𝜆)) � 𝑈 (�̂�)𝑤𝜆
is at most one. Since this is a contradiction, we obtain 𝜑(𝑣𝜆) = 0, as desired. The assertion on complete
reducibility now follows from Theorem 3.3. �

The following assertion is a direct consequence of [16, Lemma 6.9].

Lemma 3.6. Let 𝜇 ∈ �̂�∗𝑘 be dominant, and suppose 𝜆 < 𝜇 and there is no 𝜈 such that 𝜆 < 𝜈 < 𝜇. Then
[𝑃(𝜆)/𝐶𝑃(𝜆) : 𝐿(𝜆)] = 1.

Proof. We have [55] [𝑀 (𝜇) : 𝐿(𝜆)] = 1 and an exact sequence 0 � 𝑀 (𝜇) � 𝑃(𝜆) � 𝑀 (𝜆) � 0; see
the discussion just before [16, Lemma 6.9] for details. Hence, [𝑃(𝜆) : 𝐿(𝜆)] = 2. Let �̃�𝜆 be a generator
of 𝑃(𝜆) of weight 𝜆. By [16, Lemma 6.9], 𝐶𝑃(𝜆) ≠ 0, and hence, 𝐶�̃�𝜆 ≠ 0 because �̃�𝜆 is a generator.
It follows that [𝐶𝑃(𝜆) : 𝐿(𝜆)] = 1, and hence, [𝑃(𝜆)/𝐶𝑃(𝜆) : 𝐿(𝜆)] = 1. �

https://doi.org/10.1017/fms.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.81


Forum of Mathematics, Sigma 15

If 𝐿(𝜆) is an ordinary module over the simple affine vertex algebra 𝐿𝑘 (𝔤) of principal (resp.
coprincipal) admissible level k, then 𝜆 ∈ Pr𝑘

Z
:= {𝜆 ∈ Pr𝑘 : 〈𝜆, 𝛼∨〉 ∈ Z for all 𝛼 ∈ Δ} (resp.

𝜆 ∈ CoPr𝑘
Z

:= {𝜆 ∈ CoPr𝑘 : 〈𝜆, 𝛼∨〉 ∈ Z for all 𝛼 ∈ Δ}). We have Δ̂ (𝜆) = {𝛼 + 𝑛𝑞𝛿 : 𝛼 ∈ Δ , 𝑛 ∈ Z} for
𝜆 ∈ Pr𝑘

Z
, while Δ̂ (𝜆) = {𝛼 + 𝑛𝑞𝛿 : 𝛼 ∈ Δ long, 𝑛 ∈ Z} � {𝛼 + 𝑛𝑞𝛿/𝑟∨ : 𝛼 ∈ Δshort, 𝑛 ∈ Z} for 𝜆 ∈ CoPr𝑘

Z
,

where Δ long is the set of long roots of Δ and Δshort is the set of short roots of Δ . The set of simple roots
of Δ̂ (𝜆), both for 𝜆 ∈ Pr𝑘

Z
and for 𝜆 ∈ CoPr𝑘

Z
, is given by 𝑆 (𝑞) = {𝛾0, 𝛾1, . . . , 𝛾}, where 𝛾𝑖 = 𝛼𝑖 for

𝑖 = 1, . . . , ℓ and

𝛾0 =

{
−𝜃 + 𝑞𝛿 if (𝑟∨, 𝑞) = 1,
−𝜃𝑠 + 𝑞𝛿/𝑟∨ if (𝑟∨, 𝑞) = 𝑟∨,

where 𝜃𝑠 is the highest short root of Δ .
Let 𝜙 : �̃�∗ � �̃�∗ be the isometry defined to act as the identity on the finite part 𝔥∗ and to act by

𝜙(Λ0) = (1/𝑞)Λ0, 𝜙(𝛿) = 𝑞𝛿.

The adjoint 𝜙∗ : �̃� � �̃� acts by

𝜙∗(𝐾) = (1/𝑞)𝐾, 𝜙(𝐷) = 𝑞𝐷.

We have [59]

Pr𝑘 =
⋃
𝑦∈𝑊

𝑦 (𝑆(𝑞) ) ⊂Δ̂ re
+

Pr𝑘𝑦 , Pr𝑘𝑦 = 𝑦𝜙(𝑃𝑝−ℎ∨𝔤
+ + �̂�) − �̂�,

CoPr𝑘 =
⋃
𝑦∈𝑊

𝑦 (𝑆(𝑞) ) ⊂Δ̂ re
+

Pr𝑘𝑦 , CoPr𝑘𝑦 = 𝑦𝜙(◦𝑃𝑝−ℎ𝔤
+ + �̂�) − �̂�.

We have denoted by 𝑃𝑘+ the set of dominant integral weights of �̂� of level k – that is, the set of
weights 𝜆 = 𝑘Λ0 + �̄� such that 〈�̄�, 𝛼∨𝑖 〉 ∈ Z≥0 for 𝑖 = 1, . . . , ℓ, and 〈�̄�,−𝜃∨〉 ≤ 𝑘 . Similarly, 𝑃𝑘++ will
denote the set of regular dominant integral weights, given by 〈�̄�, 𝛼∨𝑖 〉 ∈ Z>0 for 𝑖 = 1, . . . , ℓ, and
〈�̄�,−𝜃∨〉 < 𝑘 . Furthermore, ◦𝑃𝑘+ is defined similarly to 𝑃𝑘+ , the condition 〈�̄�,−𝜃∨〉 ≤ 𝑘 being replaced
by 〈𝜆,−𝜃∨𝑠 + 𝐾〉 ∈ Z≥0. In particular, we have

Pr𝑘Z = Pr𝑘1 = 𝜙(𝑃𝑝−ℎ∨𝔤
+ + �̂�) − �̂�, CoPr𝑘Z = CoPr𝑘1 = 𝜙(◦𝑃𝑝−ℎ𝔤

+ + �̂�) − �̂�.

Proposition 3.7 [59]. Let k be principal admissible of the form (9), and let

𝜆 = 𝑦𝜙(𝜈) − �̂� ∈ Pr𝑘𝑦

with 𝑦 = 𝑡𝛽𝑦, 𝛽 ∈ 𝑃∨, 𝑦 ∈ 𝑊 , and 𝜈 ∈ ◦𝑃𝑝−ℎ∨
+ + �̂�. Let 𝑇 ∈ R>0 and 𝑧 ∈ 𝔥 such that 𝛼(𝑧) ∉ Z for all

𝛼 ∈ Δ . Then as 𝑇 � 0+, one has

𝜒𝐿 (𝜆) (i𝑇,−i𝑇𝑧, 0) ∼ 𝑏(𝜆, 𝑧)𝑒𝜋g/12𝑇 ,
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where

g = dim(𝔤) − 12|𝜌∨|2
𝑝𝑞

=

(
1 −

ℎ∨𝔤

𝑝𝑞

)
dim(𝔤),

and 𝑏(𝜆, 𝑧) = 𝜀(𝑦) |𝑃/𝑝𝑞𝑄 |−
1
2
∏
𝛼∈Δ+

2 sin
𝜋(𝛼 |𝜈)
𝑝

·
sin 𝜋 (𝛼 |𝑧−𝛽)

𝑞

sin 𝜋(𝛼 |𝑧) .

The proof of the proposition below closely follows the arguments of [59], with adaptations to the
coprincipal case.

Proposition 3.8. Let k be coprincipal admissible of the form (9), and let

𝜆 = 𝑦𝜙(𝜈) − �̂� ∈ CoPr𝑘𝑦 ,

with 𝑦 = 𝑡𝛽𝑦, 𝛽 ∈ 𝑃∨, 𝑦 ∈ 𝑊 , and 𝜈 ∈ ◦𝑃𝑝−ℎ∨
+ + �̂�. Let 𝑇 ∈ R>0 and 𝑧 ∈ 𝔥 such that 𝛼(𝑧) ∉ Z for all

𝛼 ∈ Δ . Then as 𝑇 � 0+, we have

𝜒𝐿 (𝜆) (i𝑇,−i𝑇𝑧, 0) ∼ 𝑏(𝜆, 𝑧)𝑒𝜋g/12𝑇 ,

where

g = dim(𝔤) − 12|𝜌∨|2
𝑝𝑞

=

(
1 −

ℎ∨𝐿𝔤𝑟
∨

𝑝𝑞

)
dim(𝔤),

and 𝑏(𝜆, 𝑧) = 𝜀(𝑦) |𝑃∨/𝑝𝑞𝑄 |−
1
2
∏
𝛼∈Δ+

2 sin
𝜋(𝛼∨|𝜈)

𝑝
·

sin 𝜋 (𝛼∨ |𝑧−𝛽)
𝑞

sin 𝜋(𝛼 |𝑧) .

Proof. The denominator of

𝜒𝐿 (𝜆) (𝜏, 𝑧, 𝑡) =
𝐴𝜆+𝜌 (𝜏, 𝑧, 𝑡)
𝐴𝜌 (𝜏, 𝑧, 𝑡)

(13)

is the standard Weyl denominator. Its asymptotic behaviour is well known [54, Proposition 13.13] to be

𝐴𝜌 (i𝑇,−i𝑇𝑧, 0) ∼ 𝑏(𝜌, 𝑧)𝑇−ℓ/2𝑒−𝜋 dim(𝔤)/12𝑇 , (14)

where

𝑏(𝜌, 𝑧) =
∏
𝛼∈Δ+

2 sin 𝜋(𝛼 |𝑧).

We analyse the numerator by writing it in terms of theta functions. Let m be a positive integer for
which the lattice

√
𝑚𝑄 is integral, and let 𝜇 = 𝑚Λ0 + 𝜇 ∈ �̂�∗, where 𝜇 ∈ 𝑃∨. Then we define

Θ𝜇,𝑄 (𝑣) = 𝑒−
|𝜇 |2

2𝜇 (𝐾 ) 〈𝛿,𝑣 〉
∑
𝛼∈𝑄

𝑒 〈𝑡𝛼𝜇,𝑣 〉 .

The modular transformation of these theta functions is given by

Θ𝜇,𝑄 (i𝑇,−i𝑇𝑧, 0) = 𝑇−ℓ/2 |𝑃∨/𝑚𝑄 |−1/2
∑

𝜇′ ∈𝑃∨/𝑚𝑄
𝑒−2𝜋i(𝜇′ |𝜇)/𝑚Θ𝜇′,𝑄

(
− 1

i𝑇
, 𝑧,− i𝑇 (𝑧 |𝑧)

2

)
,

where in the sum, 𝜇′ = 𝑚Λ0 + 𝜇′.
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In the sum defining 𝐴𝜆+𝜌 (𝑣), the action of the Weyl group𝑊 (𝜆) is intertwined with the action of the
group𝑊 (𝑆 (𝑞) ) = 𝑊 � 𝑡𝑞𝑄 via the automorphism y. The numerator of (13) is thus expressed in terms of
theta functions as

𝐴𝜆+𝜌 (𝑣) = 𝑒
2𝜋i𝜏 |𝜆+𝜌|2

2(𝑘+ℎ∨)
∑

𝑢∈𝑊 (𝑆(𝑞) )

𝜀(𝑢)𝑒 〈𝑦𝑢𝜙 (𝜈) ,𝑣 〉

= 𝜀(𝑦)
∑
𝑤 ∈𝑊

𝜀(𝑤)Θ𝑞𝑤 ( �̂�) ,𝑄 ((1/𝑞)𝜙∗𝑡∗𝛽 (𝑣)).

Now we compute the asymptotic behaviour of

𝜀(𝑦)
∑
𝑤 ∈𝑊

𝜀(𝑤)Θ𝑞𝑤 ( �̂�) ,𝑄 (i𝑇,−i𝑇𝑧, 𝑡).

Since 𝜆 is coprincipal, the lattice 𝑝𝑞𝑄 is integral and we may use the modular transformation formula
to write ∑

𝑤 ∈𝑊
𝜀(𝑤)Θ𝑞𝑤 ( �̂�) ,𝑄 (i𝑇,−i𝑇𝑧, 0)

= 𝑇−ℓ/2 |𝑃∨/𝑝𝑞𝑄 |−1/2

×
∑
𝑤 ∈𝑊

∑
𝜇∈𝑃∨/(𝑝𝑞)𝑄

𝜀(𝑤)𝑒−2𝜋i(𝜇′ |𝑞𝑤 (𝜈))/(𝑝𝑞)Θ𝜇,𝑄

(
− 1
𝑖𝑇
, 𝑧,− 𝑖𝑇 (𝑧 |𝑧)

2

)
= 𝑇−ℓ/2 |𝑃∨/𝑝𝑞𝑄 |−1/2𝑒𝜋 (𝑝𝑞)𝑇 (𝑧 |𝑧)

×
∑
𝑤 ∈𝑊

∑
𝜇∈𝑃∨/(𝑝𝑞)𝑄

regular

∑
𝛾∈𝜇/(𝑝𝑞)+𝑄

𝜀(𝑤)𝑒−
2𝜋i
𝑝 (𝑤 (𝜈) |𝜇)𝑒−

𝜋
𝑇 (𝑝𝑞) (𝛾 |𝛾)+2𝜋i(𝑝𝑞) (𝛾 |𝑧) .

(The summands corresponding to nonregular 𝜇 cancel out in the sum over W.) In the limit 𝑇 � 0+, the
dominant terms in the sum above come from the shortest regular 𝜇 ∈ 𝑃∨. Such 𝜇 consist precisely of
the W-orbit of 𝜌∨. We therefore obtain the asymptotic∑

𝑤 ∈𝑊
𝜀(𝑤)Θ𝑞𝑤 ( �̂�) ,𝑄 (𝑖𝑇,−𝑖𝑇𝑧, 0) ∼ 𝑇−ℓ/2 |𝑃∨/(𝑝𝑞)𝑄 |−1/2𝑒−

𝜋
𝑇 · |𝜌

∨ |2
𝑝𝑞

×
∑
𝜎∈𝑊

[ ∑
𝑤 ∈𝑊

𝜀(𝑤)𝑒−
2𝜋i
𝑝 (𝜎𝑤 (𝜈) |𝜌∨)

]
𝑒2𝜋i(𝜌∨ |𝜎 (𝑧)) .

The Weyl denominator formula asserts that∑
𝑤 ∈𝑊

𝜀(𝑤)𝑒 (𝑤 (𝜌∨) |𝜆) =
∏
𝛼∈Δ+

(
𝑒 (𝛼 |𝜆)/2 − 𝑒−(𝛼 |𝜆)/2

)
. (15)

(There is a more standard version of the formula, from which (15) is obtained by applying to the
Langlands dual Lie algebra and noting that the duality exchanges 𝜌 with 𝜌∨ up to a factor of

√
𝑟∨.)

Using (15), we reduce the double sum over W to∏
𝛼∈Δ+

4 sin
𝜋(𝛼∨|𝜈)

𝑝
sin 𝜋(𝛼∨|𝑧).
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To deduce the asymptotic behaviour of 𝐴𝜆+𝜌, we note that

(1/𝑞)𝜙∗𝑡∗𝛽 (2𝜋i(−𝜏𝐷 + 𝑧 + 𝑡𝐾)) = 2𝜋i
(
−𝜏𝐷 + (𝑧 + 𝜏𝜈−1(𝛽))/𝑞 + (𝑡 + 𝜏 |𝛽 |2

2 )𝐾/𝑞2
)
.

It then follows that

𝐴𝜆+𝜌 (i𝑇,−i𝑇𝑧, 0) ∼ 𝜀(𝑦)𝑇−ℓ/2 |𝑃∨/(𝑝𝑞)𝑄 |−1/2𝑒−
𝜋
𝑇 · |𝜌

∨ |2
𝑝𝑞

×
∏
𝛼∈Δ+

4 sin
𝜋(𝛼∨|𝜈)

𝑝
sin

𝜋(𝛼∨|𝑧 − 𝛽)
𝑞

(16)

and, combining with (14), finally

𝜒𝐿 (𝜆) (i𝑇,−i𝑇𝑧, 0) ∼ 𝜀(𝑦) |𝑃∨/(𝑝𝑞)𝑄 |−1/2𝑒
𝜋

12𝑇 ·
(
dim(𝔤)− 12|𝜌∨ |2

𝑝𝑞

)

×
∏
𝛼∈Δ+

2 sin
𝜋(𝛼∨|𝜈)

𝑝
·

sin 𝜋 (𝛼∨ |𝑧−𝛽)
𝑞

sin 𝜋(𝛼 |𝑧) .

The second form for g given in the theorem statement follows from the Freudenthal-de Vries strange
formula and the fact that Langlands duality exchanges 𝜌 and 𝜌∨. �

Corollary 3.9. Let k be an admissible number of the form (9). The admissible affine vertex algebra
𝐿𝑘 (𝔤) admits an asymptotic datum, and so does any simple ordinary representation 𝐿(𝜆) of 𝐿𝑘 (𝔤).

1. For 𝜆 ∈ Pr𝑘
Z
,

g𝐿 (𝜆) =
(
1 −

ℎ∨𝔤

𝑝𝑞

)
dim𝔤, w𝐿 (𝜆) = 0,

A𝐿 (𝜆) =
1

𝑞 |Δ+ | |𝑃/(𝑝𝑞)𝑄∨|
1
2

∏
𝛼∈Δ+

2 sin
𝜋(𝜆 + 𝜌 |𝛼)

𝑝
,

qdim𝐿 (𝑘Λ0) 𝐿(𝜆) =
∏
𝛼∈Δ+

(𝜆 + 𝜌 |𝛼)𝑡
(𝜌 |𝛼)𝑡

,

where 𝑛𝑡 = (𝑡𝑛 − 𝑡−𝑛)/(𝑡 − 𝑡−1), 𝑡 = 𝑒𝜋i/𝑝 .
2. For 𝜆 ∈ CoPr𝑘

Z
,

g𝐿 (𝜆) =
(
1 −

𝑟∨ℎ∨𝐿𝔤

𝑝𝑞

)
dim𝔤, w𝐿 (𝜆) = 0,

A𝐿 (𝜆) =
(𝑟∨𝔤 ) |Δ

short
+ |

𝑞 |Δ+ | |𝑃∨/(𝑝𝑞)𝑄 |
1
2

∏
𝛼∈Δ+

2 sin
𝜋(𝜆 + 𝜌 |𝛼∨)

𝑝
,

qdim𝐿 (𝑘Λ0) 𝐿(𝜆) =
∏
𝛼∈Δ+

(𝜆 + 𝜌 |𝛼∨)𝑡
(𝜌 |𝛼∨)𝑡

.

Proof. The assertion follows from Propositions 3.7 and 3.8 by taking the limit 𝑧 � 0 with 𝛽 = 0 and
�̄� = 1. Let us explain the details for the coprincipal case. The normalised character 𝜒𝐿 (𝜆) (𝜏) is just the
specialization 𝜒𝐿 (𝜆) (𝜏, 0, 0). To prove the first assertion, we therefore apply Proposition 3.8 with 𝛽 = 0,
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Table 1. Some data for simple Lie algebras..

𝔤 𝐴ℓ , ℓ ≥ 1 𝐵ℓ , ℓ ≥ 2 𝐶ℓ , ℓ ≥ 3 𝐷ℓ , ℓ ≥ 4 𝐸6 𝐸7 𝐸8 𝐹4 𝐺2

dim𝔤 ℓ (ℓ + 2) ℓ (2ℓ + 1) ℓ (2ℓ + 1) ℓ (2ℓ − 1) 78 133 248 52 14
ℎ𝔤 ℓ + 1 2ℓ 2ℓ 2ℓ − 2 12 18 30 12 6
ℎ∨𝔤 ℓ + 1 2ℓ − 1 ℓ + 1 2ℓ − 2 12 18 30 9 4

|𝑃∨/𝑄∨ | ℓ + 1 2 2 4 3 2 1 1 1
|𝑃/𝑄∨ | ℓ + 1 4 2ℓ 4 3 2 1 4 3

|𝑃∨/𝑟∨𝑄 | ℓ + 1 2ℓ 4 4 3 2 1 4 3
|Δ+ | ℓ (ℓ+1)

2 ℓ2 ℓ2 ℓ (ℓ − 1) 36 63 120 24 6
|Δshort

+ | ℓ ℓ (ℓ − 1) 12 3

𝑦 = 1, 𝜈 = 𝜆 + 𝜌, and we let z tend to 0 along a ray disjoint from the hyperplanes (𝛼 |𝑧) = 0. Comparing
the definition of the asymptotic dimension A (Definition 2.1 above) with that of 𝑏(𝜆, 𝑧) yields

A𝐿 (𝜆) = lim
𝑧�0

𝑏(𝜆, 𝑧)

= |𝑃∨/𝑝𝑞𝑄 |−1/2
∏
𝛼∈Δ+

2 sin
𝜋(𝛼∨|𝜆 + 𝜌)

𝑝
· |𝛼

∨|/𝑞
|𝛼 |

= |𝑃∨/𝑝𝑞𝑄 |−1/2 (𝑟∨) |Δ
short
+ |

𝑞 |Δ+ |

∏
𝛼∈Δ+

2 sin
𝜋(𝛼∨|𝜌)

𝑝
.

Here, we used l’Hopital’s rule. �

In the above, we have A𝐿 (𝜆) > 0 since 0 < (𝜆 + 𝜌, 𝛼) = (𝛼 |𝛼)
2 (𝜆 + 𝜌 |𝛼∨) < 𝑝 for 𝜆 ∈ Pr𝑘 , 𝛼 ∈ Δ+,

and 0 < (𝜆 + 𝜌, 𝛼∨) < 𝑝 for 𝜆 ∈ CoPr𝑘 , 𝛼 ∈ Δ+.
Note that |𝑃/(𝑝𝑞)𝑄∨| = (𝑝𝑞)ℓ |𝑃/𝑄∨| and |𝑃∨/𝑝𝑞𝑄∨| =

( 𝑝𝑞
𝑟∨

)ℓ |𝑃∨/𝑟∨𝑄 | if 𝑟∨|𝑞. The values of
|𝑃/𝑄∨| and |𝑃∨/𝑟∨𝑄 |, as well as other useful data, are collected in Table 1 for each simple Lie algebra.

Theorem 3.10. Let k be admissible, and let V be a conical self-dual conformal vertex algebra
equipped with a vertex algebra homomorphism 𝜑 : 𝑉 𝑘 (𝔤) � 𝑉 such that 𝜑(𝜔𝑉 𝑘 (𝔤) ) ∈ 𝑉2 and
(𝜔𝑉 )(2)𝜑(𝜔𝑉 𝑘 (𝔤) ) = 0. Assume that V is a quotient of a vertex algebra �̃� that admits an asymptotic
datum such that

w�̃� = 0 and g�̃� = g𝐿𝑘 (𝔤) .

Then 𝜑 factors through a finite extension 𝐿𝑘 (𝔤) ↩� 𝑉 . If moreover,

𝜒�̃� (𝜏) ∼ 𝜒𝐿𝑘 (𝔤) (𝜏), as 𝜏 � 0,

that is,

A�̃� = A𝐿𝑘 (𝔤) , w�̃� = 0 and g�̃� = g𝐿𝑘 (𝔤) .

Then 𝜑 factors through an isomorphism 𝐿𝑘 (𝔤) � 𝑉 .

Proof. By Proposition 2.9, 𝜑 is conformal. Hence, by Theorem 3.5, V is a direct sum of admissible
representations 𝐿(𝜆) with 𝜆 ∈ Pr𝑘

Z
if k is principal (resp. 𝜆 ∈ CoPr𝑘

Z
if k is coprincipal). So we can write

𝑉 =
⊕
𝜆∈Pr𝑘

Z

𝐿(𝜆)⊕𝑚𝜆 , (resp. 𝑉 =
⊕

𝜆∈CoPr𝑘
Z

𝐿(𝜆)⊕𝑚𝜆)
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with 𝑚𝑘Λ0 = 1. In particular, V admits an asymptotic datum with g𝑉 = g𝐿𝑘 (𝔤) = g�̃� , w𝑉 = 0,
A𝑉 =

∑
𝜆∈Pr𝑘

Z
𝑚𝜆A𝐿 (𝜆) (resp. A𝑉 =

∑
𝜆∈CoPr𝑘

Z
𝑚𝜆A𝐿 (𝜆) ). Since A𝑉 ≤ A�̃� and A𝐿 (𝜆) > 0 for all 𝜆 ∈ Pr𝑘

Z

(resp. 𝜆 ∈ CoPr𝑘
Z
), we get the first assertion. If, in addition, A�̃� = A𝐿𝑘 (𝔤) , then A𝑉 ≤ A𝐿𝑘 (𝔤) , which

forces 𝑚𝑘Λ0 = 1 and all others 𝑚𝜆 are zero, whence the statement. �

We now briefly discuss some relationships between primitive ideals, associated varieties and confor-
mal dimensions. For a two-sided ideal I of 𝑈 (𝔤), we denote Var(𝐼) the zero locus of gr 𝐼 ⊂ gr𝑈 (𝔤) =
C[𝔤∗] in 𝔤∗. Now let k be an admissible number with denominator q. We distinguish the following
weight:

𝜆◦ =

{
𝜌/𝑞 − 𝜌 if (𝑞, 𝑟∨) = 1,
𝜌∨/𝑞 − 𝜌 if (𝑞, 𝑟∨) ≠ 1.

(17)

By [15, Proposition 2.4],

𝜆◦,𝑘 := 𝜆𝑜 + 𝑘Λ0 ∈
{

Pr𝑘 if (𝑞, 𝑟∨) = 1,
CoPr𝑘 if (𝑞, 𝑟∨) ≠ 1

(18)

and

Theorem 3.11 [15]. For an admissible number k, we have Var(𝐽𝜆◦ ) = O𝑘 .

Remark 3.12. Let k be an admissible number, and let 𝜆 ∈ 𝔥∗ such that 𝜆 + 𝑘Λ0 ∈ Adm𝑘 . Since
Var(𝐼𝑘 ) = O𝑘 by [9, Theorem 9.5] (recall (11)) and 𝐿𝔤 (𝜆) is a Zhu(𝐿𝑘 (𝔤))-module (Theorem 3.3), we
have

Var(𝐽𝜆) ⊂ O𝑘 .

The connection with conformal dimensions is given by the following:

Proposition 3.13. For an admissible number k, the module 𝐿(𝜆◦,𝑘 ) has the minimal conformal dimen-
sion among the simple 𝐿𝑘 (𝔤)-modules that belong to O𝑘 .

Proof. By [8], a simple 𝐿𝑘 (𝔤)-module which belongs to O𝑘 is an irreducible highest weight module
𝐿(𝜇) of highest weight 𝜇 = 𝜇 + 𝑘Λ0 ∈ Adm𝑘 .

First, we consider the principal admissible case (𝑞, 𝑟∨) = 1. We have, cf. Proposition 3.7 above and
preceding remarks, 𝜇 = 𝑦𝜙(�̂�) − �̂� where �̂� = 𝜈 + 𝑝Λ0 and 𝜈 ∈ 𝑃𝑝

++, where 𝑦 = 𝑦𝑡−𝜂 with 𝜂 ∈ 𝑃∨,𝑞
+ .

The conformal weight of 𝐿(𝜇) is

ℎ𝐿 (𝜇) =
(𝜇 |𝜇 + 2𝜌)
2(𝑘 + ℎ∨𝔤 )

=
|𝜇 + 𝜌 |2 − |𝜌 |2

2(𝑘 + ℎ∨𝔤 )
.

Now we consider

|𝜇 + 𝜌 |2 = |𝑦𝜙(𝜈) |2 = |𝜈 − 𝑝

𝑞
𝜂 |2 =

1
𝑞2 |𝑞𝜈 − 𝑝𝜂 |

2.

We show that 𝑞𝜈− 𝑝𝜂 ∈ 𝑃 is a regular weight. Indeed, suppose
〈
𝑞𝜈 − 𝑝𝜂, 𝛼∨𝑖

〉
= 0 for some 𝑖 = 1, . . . , ℓ

and put 𝑚 =
〈
𝜈, 𝛼∨𝑖

〉
and 𝑛 =

〈
𝜂, 𝛼∨𝑖

〉
. Then 𝑞𝑚 − 𝑝𝑛 = 0 and so p divides m, but this is a contradiction

since 0 < 𝑚 < 𝑝 because 𝜈 is regular.
The regular elements of P of minimal norm are 𝜌 and its images under the finite Weyl group, so

the claim is proved in the principal admissible case. The coprincipal admissible case is similar. Since
(𝑞, 𝑟∨) = 𝑟∨, we have 𝑞𝜈 ∈ 𝑞𝑃 ⊂ 𝑃∨, and hence, 𝑞𝜈 − 𝑝𝜂 ∈ 𝑃∨. The regular elements of 𝑃∨ of minimal
norm are 𝜌∨ and its images under the finite Weyl group, thus proving the claim. �
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Remark 3.14.

1. The weight 𝜆◦,𝑘 is not the unique element of Adm𝑘 that gives the minimal conformal dimension
unless 𝑘 ∈ Z≥0. Indeed, for �̂� = 𝜇 + 𝑘Λ0 ∈ Adm𝑘 , 𝐿( �̂�) has the minimal conformal dimension if
and only if 𝜇 + 𝜌 = 𝑤(𝜆◦ + 𝜌) with 𝑤 ∈ 𝑊 such that 𝑤(𝛼) ∈ Δ+ for 𝛼 ∈ Δ+ with (𝜌, 𝛼∨) ∈ 𝑞Z (resp.
𝜆 + 𝜌 = 𝑤(𝜌∨)/𝑞 with 𝑤 ∈ 𝑊 such that 𝑤(𝛼) ∈ Δ+ for 𝛼 ∈ Δ+ with (𝜌∨, 𝛼∨) ∈ 𝑞Z).

2. The strange formula implies that the asymptotic growth coincides with the effective central charge –
that is,

g𝐿 (𝜆) = 𝑐𝐿𝑘 (𝔤) − 24ℎmin

for all 𝜆 ∈ Adm𝑘 .

4. Asymptotic data of W-algebras

Let f be a nilpotent element of 𝔤. Recall [57] that a 1
2Z-grading

𝔤 =
⊕
𝑗∈ 1

2Z

𝔤 𝑗Γ (19)

is called good for f if 𝑓 ∈ 𝔤−1
Γ , ad 𝑓 : 𝔤 𝑗Γ � 𝔤 𝑗−1

Γ is injective for 𝑗 ≥ 1
2 and surjective for 𝑗 ≤ 1

2 . The
grading is called even if 𝔤 𝑗Γ = 0 for 𝑗 ∉ Z. By the Jacobson-Morosov Theorem, the nilpotent element f
embeds into an 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ), and 𝔤 thereby inherits a 1

2Z-grading induced by the eigenvalues of
ad(ℎ/2). Such a grading is called a Dynkin grading. All Dynkin gradings are good, but not all good
gradings are Dynkin.

Let 𝑥0
Γ be the semisimple element of 𝔤 defining the grading (19) – that is,

𝔤𝑖Γ = {𝑦 ∈ 𝔤 : [𝑥0
Γ, 𝑦] = 𝑖𝑦}.

We can assume that 𝑥0
Γ is contained in the Cartan subalgebra 𝔥 and that 𝛼(𝑥0

Γ) ∈
1
2Z≥0 for all 𝛼 ∈ Δ+.

For 𝑗 ∈ 1
2Z, we set

Δ 𝑗
Γ := {𝛼 ∈ Δ : (𝛼 |𝑥0

Γ) = 𝑗} = {𝛼 ∈ Δ : 𝔤𝛼 ⊂ 𝔤 𝑗Γ},

where 𝔤𝛼 is the 𝛼-root space.
Since the bilinear form (𝑥, 𝑦) �� ( 𝑓 | [𝑥, 𝑦]) is non-degenerate on 𝔤1/2

Γ × 𝔤1/2
Γ , the set Δ1/2

Γ has even
cardinality. We set Δ0

Γ,+ = Δ0
Γ ∩ Δ+. It is a set of positive roots for Δ0

Γ.

Remark 4.1. Unless otherwise specified, Γ will always be the Dynkin grading associated with (𝑒, ℎ, 𝑓 ).
In this case, 𝑥0

Γ is ℎ/2, and we will briefly write 𝑥0, 𝔤 𝑗 , Δ 𝑗 , Δ0
+ for 𝑥0

Γ, 𝔤 𝑗Γ, Δ 𝑗
Γ, Δ0

Γ,+, respectively.
However, in type A, even good gradings always exist [38], and it will be convenient to opt for an even
good grading that is not necessarily the Dynkin grading.

We denote by 𝒲𝑘 (𝔤, 𝑓 ) the universal affine W-algebra associated with 𝔤, 𝑓 at level k and a good
grading 𝔤Γ =

⊕
𝑗∈ 1

2Z
𝔤 𝑗Γ:

𝒲𝑘 (𝔤, 𝑓 ) = 𝐻0
𝐷𝑆, 𝑓 (𝑉

𝑘 (𝔤)),

where 𝐻•
𝐷𝑆, 𝑓 (?) is the BRST cohomology functor of the quantized Drinfeld-Sokolov reduction associ-

ated with 𝔤, 𝑓 ([42, 57]). The BRST complex of a �̂�-module M takes the form

𝐶•(𝑀) = 𝑀 ⊗ 𝐹ch ⊗ 𝐹ne,
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where 𝐹ch denotes the Clifford vertex algebra associated with 𝔤>0
Γ ⊕ (𝔤>0

Γ )∗ and its canonical symmetric
bilinear form, or in the terminology of [57] the charged free fermions vertex algebra associated with
𝔤>0
Γ ⊕ (𝔤>0

Γ )∗ made into a purely odd vector superspace and canonical skew-supersymmetric form, and
𝐹ne denotes the neutral free fermion vertex algebra associated with 𝔤1/2

Γ and bilinear form (𝑥, 𝑦) ��
( 𝑓 | [𝑥, 𝑦]). We omit the detailed definition, referring the reader to ([57]).

The W-algebra 𝒲𝑘 (𝔤, 𝑓 ) is conformal provided that 𝑘 ≠ −ℎ∨𝔤 and its central charge 𝑐𝒲𝑘 (𝔤, 𝑓 ) is
given by

𝑐𝒲𝑘 (𝔤, 𝑓 ) = 𝑐𝑉 𝑘 (𝔤) − dim𝐺. 𝑓 − 3
2

dim𝔤1/2 + 24(𝜌 |𝑥0
Γ) − 12(𝑘 + ℎ∨𝔤 ) |𝑥0

Γ |
2 (20)

= dim𝔤0
Γ −

1
2

dim𝔤1/2
Γ − 12

𝑘 + ℎ∨𝔤
|𝜌 − (𝑘 + ℎ∨𝔤 )𝑥0

Γ |
2 (21)

([57, Theorem 2.2]). Although the vertex algebra structure of 𝒲𝑘 (𝔤, 𝑓 ) does not depend on the choice
of the good grading of 𝔤 ([18, §3.2.5]), its conformal structure does. In general, we denote by 𝒲𝑘 (𝔤, 𝑓 )
the unique simple graded quotient of 𝒲𝑘 (𝔤, 𝑓 ).

Proposition 4.2. The vertex algebra 𝒲𝑘 (𝔤, 𝑓 ) is self-dual if the grading (19) is Dynkin.

Proof. By [14, Proposition 6.1 and Remark 6.2], it suffices to show that (𝑘 + ℎ∨)(ℎ|𝑣) − tr𝔤>0 (ad 𝑣) = 0
for all 𝑣 ∈ 𝔤 𝑓0 . Since (ℎ|𝑣) = ([𝑒, 𝑓 ] |𝑣) = 0 for 𝑣 ∈ 𝔤 𝑓0 , in fact, it is enough to show that tr𝔤>0 (ad 𝑣) = 0.
Note that 𝔤 𝑓0 is the centraliser 𝔤♮ of the 𝔰𝔩2-triple {𝑒, ℎ, 𝑓 } in 𝔤, which is a reductive Lie subalgebra of
𝔤. We clearly have tr𝔤>0 (ad 𝑣) = 0 for 𝑣 ∈ [𝔤♮, 𝔤♮] since 𝔤>0 is a finite-dimensional representation of the
semisimple Lie algebra [𝔤♮, 𝔤♮]. However, Lemma 5.5 below shows that tr𝔤>0 (ad 𝑣) = 0 for an element
v in the centre 𝔷(𝔤♮) of 𝔤♮ as well. �

We now discuss the associated varieties of affine W-algebras. The associated variety 𝑋𝒲𝑘 (𝔤, 𝑓 ) of the
universal W-algebra is isomorphic to the Slodowy slice

S 𝑓 = 𝑓 + 𝔤𝑒,

where 𝔤𝑒 is the centraliser of e in 𝔤 ([31]). There is a natural C∗-action on S 𝑓 that contracts to f ([77]),
and the associated variety 𝑋𝒲𝑘 (𝔤, 𝑓 ) of the simple quotient is a C∗-invariant subvariety of S 𝑓 .

Theorem 4.3 [10].

1. For any 𝑀 ∈ KL𝑘 , we have 𝐻𝑖
𝐷𝑆, 𝑓 (𝑀) = 0 for all 𝑖 ≠ 0. In particular, the functor KL𝑘 �

𝒲𝑘 (𝔤, 𝑓 ) -Mod, 𝑀 �� 𝐻0
𝐷𝑆, 𝑓 (𝑀), is exact.

2. The 𝒲𝑘 (𝔤, 𝑓 )-module 𝐻0
𝐷𝑆, 𝑓 (𝑀) is ordinary for any finitely generated object 𝑀 ∈ KL𝑘 .

3. For any quotient V of 𝑉 𝑘 (𝔤), the vertex algebra 𝐻0
𝐷𝑆, 𝑓 (𝑉) is a quotient of 𝒲𝑘 (𝔤, 𝑓 ) provided that

it is nonzero, and we have

𝑋𝐻 0
𝐷𝑆, 𝑓

(𝑉 ) = 𝑋𝑉 ∩ S 𝑓 ,

which is a C∗-invariant subvariety of S 𝑓 ([10]). In particular,
(a) 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) ≠ 0 if and only if 𝑓 ∈ 𝑋𝐿𝑘 (𝔤) ;
(b) If 𝐺. 𝑓 ⊂ 𝑋𝐿𝑘 (𝔤) ⊂ N , then 𝐻0

𝐷𝑆, 𝑓 (𝑉) is quasi-lisse and so is 𝒲𝑘 (𝔤, 𝑓 );
(c) If 𝑋𝐿𝑘 (𝔤) = 𝐺. 𝑓 , then 𝐻0

𝐷𝑆, 𝑓 (𝑉) is lisse and so is 𝒲𝑘 (𝔤, 𝑓 ).

Regarding the relationship between the simple W-algebra 𝒲𝑘 (𝔤, 𝑓 ) and the reduction 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤))

of which it is a quotient, there is the following natural conjecture.

Conjecture 4.4 [57, 61]. 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) is either zero or isomorphic to 𝒲𝑘 (𝔤, 𝑓 ).
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This has been proved in many cases. Indeed, we have the following:

Theorem 4.5 [14]. Conjecture 4.4 holds if k is an admissible level, 𝑓 ∈ 𝑋𝐿𝑘 (𝔤) = O𝑘 , and f admits an
even good grading.

Let k be an admissible level. By Theorems 3.2 and 4.3, 𝒲𝑘 (𝔤, 𝑓 ) is lisse if 𝑓 ∈ O𝑘 and is quasi-lisse
if 𝑓 ∈ O𝑘 . Moreover, under the hypotheses of Theorem 4.5, the associated variety of 𝒲𝑘 (𝔤, 𝑓 ) is equal
to the nilpotent Slodowy slice

SO𝑘 , 𝑓 := S 𝑓 ∩ O𝑘 . (22)

Conjecture 4.6 [10, 45, 61]. 𝒲𝑘 (𝔤, 𝑓 ) is rational if k is admissible and 𝑓 ∈ O𝑘 .

Conjecture 4.6 has been settled positively by different methods in a number of cases – namely, for
f principal [9], for 𝔤 of type A [14], for 𝔤 of type 𝐴𝐷𝐸 and f subregular [14], for 𝔤 of type 𝐵2 and
f subregular [40], for 𝔤 of type 𝐵𝑛 and f subregular [33], for 𝔤 of type 𝐶𝑛 and f minimal [33]. More
recently, a general proof has been announced in [71].

By [34], the associative algebra Zhu(𝒲𝑘 (𝔤, 𝑓 )) is naturally isomorphic to the finite W-algebra [75]
𝑈 (𝔤, 𝑓 ) associated with (𝔤, 𝑓 ). More generally, we have the following assertion.

Theorem 4.7 [9]. There exists an isomorphism

Zhu(𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � 𝐻

0
𝐷𝑆, 𝑓 (Zhu(𝐿𝑘 (𝔤)),

where on the right-hand side 𝐻0
𝐷𝑆, 𝑓 (?) is the finite-dimensional analogue of the Drinfeld-Sokolov

reduction functor that is denoted by 𝑀 �� 𝑀† in [69].

By [48, 70], see also [9, Section 2], we have the following equivalence:

𝐻0
𝐷𝑆, 𝑓 (𝑈 (𝔤)/𝐼) ≠ 0 ⇐⇒ 𝐺. 𝑓 ⊂ Var(𝐼). (23)

From this, together with Theorems 3.4 and 4.7, we obtain the following:

Corollary 4.8. Let k be an admissible number. We have

Zhu(𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) �

∏
𝐻0
𝐷𝑆, 𝑓 (𝑈 (𝔤)/𝐽�̄�),

where the product is taken over [𝜆] ∈ [Adm𝑘 ] such that 𝐺. 𝑓 ⊂ Var(𝐽�̄�).

The image [𝜔] of the conformal vector of𝒲𝑘 (𝔤, 𝑓 ) in Zhu(𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) acts on𝐻0

𝐷𝑆, 𝑓 (𝑈 (𝔤)/𝐽�̄�)
as the constant multiplication by

ℎ𝜆 =
|𝜆 + 𝜌 |2 − |𝜌 |2

2(𝑘 + ℎ∨𝔤 )
−
𝑘 + ℎ∨𝔤

2
|𝑥0
Γ |

2 + (𝑥0
Γ, 𝜌). (24)

In particular, a simple module of 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) corresponding to a simple module of 𝐻0

𝐷𝑆, 𝑓 (𝑈 (𝔤)/𝐽�̄�)
via Corollary 4.8 has the conformal dimension ℎ𝜆.

For a 𝑉 𝑘 (𝔤)-module M, we consider the character of its reduction – that is, we set

𝜒𝐻 •
𝐷𝑆, 𝑓

(𝑀 ) (𝜏, 𝑧) =
∑
𝑖∈Z

(−1)𝑖tr𝐻 𝑖
𝐷𝑆, 𝑓

(𝑀 ) (𝑒2𝜋i𝑧𝑞𝐿0−𝑐/24), (𝜏, 𝑧) ∈ H × 𝔥 𝑓

when it is well defined. Here,

𝐿0 = 𝐿Sug
0 − (𝑥0

Γ)0 + 𝐿
ch
0 + 𝐿ne

0 .
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Note that 𝜒𝐻 •
𝐷𝑆, 𝑓

(𝐿 (𝜆)) (𝜏, 𝑧) is well defined for finitely generated objects M of KL𝑘 , by Theorem 4.3,
and we have

𝜒𝐻 •
𝐷𝑆, 𝑓

(𝑀 ) (𝜏, 𝑧) = tr𝐻 0
𝐷𝑆, 𝑓

(𝑀 ) (𝑒
2𝜋i𝑧𝑞𝐿0−𝑐/24).

Proposition 4.9. Let 𝑀 ∈ O𝑘 be a 𝑉 𝑘 (𝔤)-module whose character has asymptotic behaviour

𝜒𝑀 (𝜏,−𝜏𝑧, 0) ∼ A𝑀 (𝑧) (−i𝜏)w𝑀 𝑒
𝜋i

12𝜏 g𝑀 ,

and suppose that 𝜒𝐻 •
𝐷𝑆, 𝑓

(𝑀 ) (𝜏, 𝑧) is well defined. Then

𝜒𝐻 •
𝐷𝑆, 𝑓

(𝑀 ) (𝜏,−𝜏𝑧) ∼ A𝐻 •
𝐷𝑆, 𝑓

(𝑀 ) (𝑧) (−i𝜏)w𝑀 𝑒
𝜋i

12𝜏 (g𝑀−dimO 𝑓 ) ,

where

A𝐻 •
𝐷𝑆, 𝑓

(𝑀 ) (𝑧) :=

∏
𝛼∈Δ+

2 sin 𝜋(𝛼 |𝑧 + 𝑥0
Γ)∏

𝛼∈Δ0
Γ,+∪Δ

1/2
Γ,+

2 sin 𝜋(𝛼 |𝑧 + 𝑥0
Γ)

A𝑀 (𝑧 + 𝑥0
Γ).

Proof. Let us write

𝜒𝑀 (𝜏, 𝑧, 𝑡) =
(𝐴𝜌𝜒𝑀 ) (𝜏, 𝑧, 𝑡)
𝐴𝜌 (𝜏, 𝑧, 𝑡)

.

The asymptotic behaviour of 𝐴𝜌 (𝜏, 𝑧, 𝑡) is well known [54, Proposition 13.13] to be

𝐴𝜌 (𝜏,−𝜏𝑧, 0) ∼ 𝑏(𝜌, 𝑧) (−i𝜏)−ℓ/2𝑒−
𝜋i

12𝜏 dim(𝔤) , (25)

where

𝑏(𝜌, 𝑧) =
∏
𝛼∈Δ+

2 sin 𝜋(𝛼 |𝑧).

Hence,

𝜒𝑀 (𝜏,−𝜏𝑧, 0) ∼ A𝑀 (𝑧) (−i𝜏)w𝑀 𝑒
𝜋i

12𝜏 g𝑀 (26)

⇐⇒ (𝐴𝜌𝜒𝑀 ) (𝜏,−𝜏𝑧, 0) ∼ 𝑏(𝜌, 𝑧)𝐴(𝜌, 𝑧) (−i𝜏)w𝑀− ℓ
2 𝑒

𝜋i
12𝜏 (g𝑀−dim𝔤) .

Now by Theorem 4.3 and the Euler-Poincaré principle (see the discussion in [61, Section 2]),

ch𝐻 0
𝐷𝑆, 𝑓

(𝑀 ) (𝜏, 𝑧) = lim
𝜀�0

(I) · (II),

where (I) = tr𝑀 𝑞𝐿
Sug
0 −(𝑥0

Γ)0𝑒2𝜋i(𝑧+𝜀𝑥0
Γ)0

and (II) = str𝐹 ch⊗𝐹ne 𝑞𝐿
ch
0 +𝐿ne

0 𝑒2𝜋i( (𝑧+𝜀𝑥0
Γ)

ch
0 +(𝑧+𝜀𝑥0

Γ)
ne
0 ) .

Here, 𝐿Sug
0 denotes the zero mode of the Sugawara conformal vector in 𝑉 𝑘 (𝔤) while 𝐿ch

0 and 𝐿ne
0 denote

the conformal vectors in 𝐹ch and 𝐹ne given in [57, Section 2.2], or in [61, Section 2.1]. We thus have

𝜒𝐻 0
𝐷𝑆, 𝑓

(𝑀 ) (𝜏, 𝑧) = lim
𝜖�0

(𝐴𝜌 ch𝑀) (𝜏, 𝑧 − 𝜏𝑥0
Γ + 𝜀𝑥

0
Γ, 0)

𝜓(𝜏, 𝑧 − 𝜏𝑥0
Γ + 𝜀𝑥

0
Γ, 0)

, (27)
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in which

𝜓(𝜏, 𝑧, 𝑡) = 𝑒2𝜋iℎ∨𝑡𝜂(𝜏)ℓ
∏

𝛼∈Δ0
Γ,+∪Δ

1/2
Γ,+

𝑓 (𝜏, (𝛼 |𝑧)),

where 𝑓 (𝜏, 𝑠) = 𝑒𝜋i𝜏/6𝑒𝜋i𝑠
∞∏
𝑛=1

(
1 − 𝑒2𝜋i( (𝑛−1)𝜏−𝑠)

) (
1 − 𝑒2𝜋i(𝑛𝜏+𝑠)

)
.

We now describe the proof of (27) briefly, referring the reader to [61, Section 2.2] for details. The
numerator of (27) comes directly from the numerator of the expression (13) for 𝜒𝐿 (𝜆) . The modification
𝑧 �� 𝑧 − 𝜏𝑥0

Γ corresponds to the shift of Virasoro operator 𝐿Sug
0 �� 𝐿

Sug
0 − (𝑥0

Γ)0. The Weyl denominator
is 𝜂(𝜏)ℓ times a product of theta functions indexed by 𝛼 ∈ Δ+. At the level of characters, the effect of
the tensor product with 𝐹ch is to cancel those factors associated with 𝛼 ∈ Δ 𝑗

Γ for 𝑗 > 0. The tensor
product with 𝐹ne reintroduces those factors associated with 𝛼 ∈ Δ1/2

Γ,+ (whose cardinality is half that of
Δ1/2

Γ ). Ultimately, this yields the denominator 𝜓(𝜏, 𝑧 − 𝜏𝑥0
Γ, 𝑡) of (27).

The function 𝜓 satisfies the asymptotic

𝜓(𝜏,−𝜏𝑧, 0) ∼
∏

𝛼∈Δ0
Γ,+∪Δ

1/2
Γ,+

2 sin 𝜋(𝛼 |𝑧) (−i𝜏)−ℓ/2𝑒𝜋i dim(𝔤 𝑓 )/12𝜏 (28)

as 𝜏 � 0. The asymptotic behaviour of the numerator 𝐴𝜈+𝜌 (𝜏, 𝑧 − 𝜏𝑥0
Γ, 𝑡) was established in the proof of

Proposition 3.8. The required asymptotic follows from (26), (27) and (28), together with the fact that

dimO 𝑓 = dim𝔤 − dim𝔤 𝑓 .

�

Proposition 4.10. Let 𝑘 = −ℎ∨𝔤 +
𝑝

𝑞
be an admissible level, and let 𝑓 ∈ 𝑋𝐿𝑘 (𝔤) . Then𝐻0

𝐷𝑆, 𝑓 (𝐿(𝜆)) admits

an asymptotic datum for all simple ordinary 𝐿𝑘 (𝔤)-modules 𝐿(𝜆) with w𝐻 0
𝐷𝑆, 𝑓

(𝐿 (𝜆)) = 0. Moreover,

1. ([61]) For 𝜆 ∈ Pr𝑘
Z
,

g𝐻 0
𝐷𝑆, 𝑓

(𝐿 (𝜆)) = g𝐿𝑘 (𝔤) − dim𝐺. 𝑓 = dim𝔤 𝑓 −
ℎ∨𝔤 dim𝔤

𝑝𝑞
,

A𝐻 0
𝐷𝑆, 𝑓

(𝐿 (𝜆)) =
1

2
|Δ1/2
Γ |
2 𝑞 |Δ

0
Γ,+ | |𝑃/(𝑝𝑞)𝑄∨|

1
2

∏
𝛼∈Δ+

2 sin
𝜋(𝜆 + 𝜌 |𝛼)

𝑝

∏
𝛼∈Δ+\Δ0

Γ,+

2 sin
𝜋(𝑥0

Γ |𝛼)
𝑞

.

2. For 𝜆 ∈ CoPr𝑘
Z
,

g𝐻 0
𝐷𝑆, 𝑓

(𝐿 (𝜆)) = g𝐿𝑘 (𝔤) − dim𝐺. 𝑓 = dim𝔤 𝑓 −
𝑟∨ℎ∨𝐿𝔤 dim𝔤

𝑝𝑞
,

A𝐻 0
𝐷𝑆, 𝑓

(𝐿 (𝜆)) =
(𝑟∨𝔤 ) |Δ

short
+ ∩Δ0

Γ |

2
|Δ1/2
Γ |
2 𝑞 |Δ

0
Γ,+ | |𝑃∨/(𝑝𝑞)𝑄 |

1
2

∏
𝛼∈Δ+

2 sin
𝜋(𝜆 + 𝜌 |𝛼∨)

𝑝

∏
𝛼∈Δ+\Δ0

Γ,+

2 sin
𝜋(𝑥0

Γ |𝛼
∨)

𝑞
.

In particular,

qdim𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) 𝐻
0
𝐷𝑆, 𝑓 (𝐿(𝜆)) = qdim𝐿𝑘 (𝔤) 𝐿(𝜆)

for any simple ordinary 𝐿𝑘 (𝔤)-module 𝐿(𝜆).
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Proof. Let k be coprincipal and let 𝜆 ∈ CoPr𝑘 . By Proposition 3.8 and Proposition 4.9, we have

𝜒𝐻 0
𝐷𝑆, 𝑓

(𝐿 (𝜆)) (i𝑇,−i𝑇𝑧, 0) ∼ 𝜀(𝑦)𝑒−𝜋g𝐿𝑘 (𝔤) /12𝑇

|𝑃∨/(𝑝𝑞)𝑄 |1/2 ·
∏

𝛼∈Δ+ 4 sin 𝜋 (𝛼∨ |𝜈)
𝑝 sin 𝜋 (𝛼∨ |𝑧+𝑥0

Γ−𝛽)
𝑞∏

𝛼∈Δ0
Γ,+∪Δ

1/2
Γ,+

2 sin 𝜋(𝛼 |𝑧 + 𝑥0
Γ),

(29)

where 𝜈, �̄� are related with 𝜆 as in Proposition 3.8.
We are interested in the case 𝜆 ∈ CoPr𝑘

Z
which corresponds to 𝑦 = 1, 𝛽 = 0 and 𝜈 = 𝜆 + �̂�. We now

simplify the products appearing in the asymptotic above to

∏
𝛼∈Δ+

2 sin
𝜋(𝛼∨|𝜆 + 𝜌)

𝑝

∏
𝛼∈Δ1/2

Γ,+

1
2 sin 𝜋(𝛼 |𝑧 + 𝑥0

Γ)

∏
𝛼∈Δ0

Γ,+

2 sin 𝜋 (𝛼∨ |𝑧+𝑥0
Γ)

𝑞

2 sin 𝜋(𝛼 |𝑧 + 𝑥0
Γ)

∏
𝛼∈Δ≥1/2

Γ,+

2 sin
𝜋(𝛼∨|𝑧 + 𝑥0

Γ)
𝑞

.

The second product here becomes simply 2−|Δ
1/2
Γ |/2. In the third product, the terms 𝑥0

Γ are irrelevant
since 𝛼 ∈ Δ0

Γ,+. In the limit 𝑧 � 0, this product reduces, by l’Hopital’s rule, to

∏
𝛼∈Δ0

Γ,+

|𝛼∨|/𝑞
|𝛼 | =

(𝑟∨) |Δ
0
Γ,+∩Δ

short |

𝑞 |Δ
0
Γ,+ |

.

In the fourth product, the limit obtains by simply putting 𝑧 = 0. Thus, we have obtained the stated
formula. �

Theorem 4.11. Let k be admissible, and let 𝑓 ∈ 𝔤 be a nilpotent element that admits an even good
grading.

1. Let 𝑓 ∈ O𝑘 , so that𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) �𝒲𝑘 (𝔤, 𝑓 ) (see Theorem 4.5). Then ℎ𝜆◦ is the minimal conformal

dimension among simple positive energy representations of 𝒲𝑘 (𝔤, 𝑓 ) (see (17) and (24)), and we
have

g𝒲𝑘 (𝔤, 𝑓 ) = 𝑐𝒲𝑘 (𝔤, 𝑓 ) − 24ℎ𝜆◦ .

2. Suppose further that 𝑓 ∈ O𝑘 , so that 𝒲𝑘 (𝔤, 𝑓 ) is lisse. Then there exists a unique simple 𝒲𝑘 (𝔤, 𝑓 )-
module that has the minimal conformal dimension ℎ𝜆◦ .

Proof. First, we treat (1). By Theorem 3.11, Var(𝐽𝜆◦ ) = O𝑘 , which contains the orbit 𝐺. 𝑓 by the
assumption. Hence, 𝐻0

𝐷𝑆, 𝑓 (𝑈 (𝔤)/𝐽𝜆◦ ) is nonzero by (23). It follows from Corollary 4.8 that there
exists a simple 𝒲𝑘 (𝔤, 𝑓 )-module, corresponding to a simple 𝐻0

𝐷𝑆, 𝑓 (𝑈 (𝔤)/𝐽𝜆◦ )-module, which has
the minimal conformal dimension ℎ𝜆◦ among simple positive energy representations of 𝒲𝑘 (𝔤, 𝑓 ) by
Proposition 3.13 and (24). Next, we have

g𝒲𝑘 (𝔤, 𝑓 ) = g𝐿𝑘 (𝔤) − dim𝐺. 𝑓 (Proposition 4.10)

= 𝑐𝑉 𝑘 (𝔤) − 24(ℎ𝜆◦ +
𝑘 + ℎ∨𝔤

2
|𝑥0
Γ |

2 − (𝑥0
Γ |𝜌)) − dim𝐺. 𝑓 (Remark 3.14 and (24)),

where Γ is a good even grading. Hence, the assertion follows from (21) and the fact that dim𝔤1/2 = 0,
which is true by hypothesis.

Now we turn to (2). By [14], each factor 𝐻0
𝐷𝑆, 𝑓 (𝑈 (𝔤)/𝐽�̄�) in Corollary 4.8 is a simple algebra, which

has a unique simple module. Hence, the assertion follows from Remark 3.14. �

In view of Proposition 2.4, Theorem 4.11 gives a supporting evidence for Conjecture 4.6.
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5. Collapsing levels for W-algebras

In general, if 𝔰 is a semisimple Lie algebra, we write 𝜅𝔰 for the Killing form of 𝔰. For now, we assume
that 𝔰 is simple. We denote by ℎ∨𝔰 its dual Coxeter number and by ( | )𝔰 the normalised inner product

1
2ℎ∨𝔰

𝜅𝔰 so that (𝜃 |𝜃) = 2 for 𝜃 the highest positive root of 𝔰.

As in Section 4, we fix an 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) of 𝔤, with related notation. In particular, for 𝑗 ∈ 1
2Z,

recall that

𝔤 𝑗 = {𝑥 ∈ 𝔤 : [ℎ, 𝑥] = 2 𝑗𝑥},

and 𝔤0 is the centraliser of h in 𝔤. The centraliser 𝔤♮ of the 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) in 𝔤 is given by

𝔤♮ = 𝔤0 ∩ 𝔤 𝑓 = 𝔤𝑒 ∩ 𝔤 𝑓 . (30)

The Lie algebra 𝔤♮ is a reductive subalgebra of 𝔤. The centraliser 𝐺♮ of the 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) in G
is a maximal reductive subgroup of the centraliser of f in G whose Lie algebra is 𝔤♮. We can write
𝔤♮ = 𝔤♮0 ⊕ [𝔤♮, 𝔤♮], with 𝔤♮0 the centre of the reductive Lie algebra 𝔤♮. Denoting by 𝔤♮1, . . . , 𝔤

♮
𝑠 the simple

factors of [𝔤♮, 𝔤♮], we get

𝔤♮ =
𝑠⊕
𝑖=0

𝔤♮𝑖 .

More generally, for 𝔤Γ =
⊕

𝑗∈ 1
2Z

𝔤 𝑗Γ a good grading for f, we set

𝔤♮Γ := 𝔤0
Γ ∩ 𝔤 𝑓 . (31)

We note that 𝔤♮Γ is not a reductive Lie algebra in general. In fact, 𝔤♮ is a maximal reductive subalgebra of
𝔤♮Γ. Indeed, by [38, Lemma 1.2], 𝔤♮ is a maximal reductive subalgebra of 𝔤 𝑓 while, on the other hand,
since 𝔤♮ is reductive and contained in

⊕
𝑗≥0 𝔤

𝑗
Γ, we have 𝔤♮ ⊂ 𝔤0

Γ.
Let 𝑖 ∈ {0, . . . , 𝑠}. For any element 𝑥 ∈ 𝔤♮𝑖 ⊂ 𝔤♮Γ, the adjoint action ad 𝑥 restricts to an endomorphism

of 𝔤 𝑗Γ, which we denote 𝜌 𝑗𝑥 , for any j. Setting 𝜅𝔤 𝑗
Γ
(𝑥, 𝑥) = tr(𝜌 𝑗𝑥 ◦ 𝜌

𝑗
𝑥), one defines an invariant bilinear

form on 𝔤♮𝑖 by (see [60, Theorem 2.1] for the case where Γ is the Dynkin grading)

𝜙
♮
Γ,𝑖 (𝑥, 𝑥) := 𝑘 (𝑥 |𝑥)𝔤 +

1
2
(𝜅𝔤 (𝑥, 𝑥) − 𝜅𝔤0

Γ
(𝑥, 𝑥) − 𝜅𝔤1/2

Γ
(𝑥, 𝑥)).

Thus, for 𝑖 ≠ 0, there exists a scalar 𝑘 ♮Γ,𝑖 such that

𝜙
♮
Γ,𝑖 = 𝑘

♮
Γ,𝑖 ( | )𝑖 where ( | )𝑖 := ( | )

𝔤♮𝑖
. (32)

Note that 𝑉 𝜙
♮
Γ,0 (𝔤♮0) � 𝑀 (1)⊗rank 𝜙♮

Γ,0 , where 𝑀 (1) is the Heisenberg vertex algebra of central
charge 1.

Following [30], we say that two good gradings Γ, Γ′ are adjacent if

𝔤 =
⊕

𝑖−≤ 𝑗≤𝑖+
𝔤𝑖Γ ∩ 𝔤 𝑗Γ′ ,

where 𝑖− denotes the largest half-integer strictly smaller than i and 𝑖+ denotes the smallest half-integer
strictly greater than i.
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Lemma 5.1. Let Γ, Γ′ be two good gradings for f. If Γ, Γ′ are adjacent, then 𝜙♮Γ,𝑖 = 𝜙
♮
Γ′,𝑖 for 𝑖 = 0, . . . , 𝑠.

Proof. According to [30, Theorem 2 and Lemma 26], there are Lagrangian subspaces 𝔩Γ and 𝔩Γ′ of 𝔤1/2
Γ

and 𝔤1/2
Γ′ , respectively, with respect to the non-degenerate bilinear form ( 𝑓 | [·, ·]) such that

𝔩Γ ⊕ 𝔤>1/2
Γ = 𝔩Γ′ ⊕ 𝔤>1/2

Γ′ and 𝔩−Γ ⊕ 𝔤<−1/2
Γ = 𝔩−Γ′ ⊕ 𝔤<−1/2

Γ′ ,

where 𝔞− denotes the dual space to the subspace 𝔞 ⊂ 𝔤 with respect to the Killing form of 𝔤. Then for
any 𝑥 ∈ 𝔤♮,

𝜅𝔤 (𝑥, 𝑥) − 𝜅𝔤0
Γ
(𝑥, 𝑥) − 𝜅𝔤1/2

Γ
(𝑥, 𝑥) = 2𝜅𝔩Γ⊕𝔤>1/2

Γ
(𝑥, 𝑥)

= 𝜅𝔤 (𝑥, 𝑥) − 𝜅𝔤0
Γ′
(𝑥, 𝑥) − 𝜅𝔤1/2

Γ′
(𝑥, 𝑥).

Indeed, from the decompositions

𝔤 = (𝔩−Γ ⊕ 𝔤<−1/2
Γ ) ⊕ (𝔨−Γ ⊕ 𝔤0

Γ ⊕ 𝔨Γ) ⊕ (𝔩Γ ⊕ 𝔤>1/2
Γ ),

𝔤 = (𝔩−Γ′ ⊕ 𝔤<−1/2
Γ′ ) ⊕ (𝔨−Γ′ ⊕ 𝔤0

Γ′ ⊕ 𝔨Γ′ ) ⊕ (𝔩Γ′ ⊕ 𝔤>1/2
Γ′ ),

where 𝔨Γ (resp. 𝔨Γ′) is a Lagrangian complement in 𝔤1/2
Γ (resp. 𝔤1/2

Γ′ ) to Γ (resp. 𝔩Γ′), we deduce that

𝜅𝔤1/2
Γ
(𝑥, 𝑥) = 𝜅𝔨Γ⊕𝔨−Γ (𝑥, 𝑥) and 𝜅𝔤1/2

Γ′
(𝑥, 𝑥) = 𝜅𝔨Γ′ ⊕𝔨−Γ′ (𝑥, 𝑥).

This completes the proof. �

Denoting by Γ𝐷 the Dynkin grading, we set

𝜙
♮
𝑖 := 𝜙♮Γ𝐷 ,𝑖 , and 𝑘

♮
𝑖 := 𝑘 ♮Γ𝐷 ,𝑖 for 𝑖 ≠ 0.

Remark 5.2. In type A, according to [30, Lemma 26 and Section 6], there is a chain Γ0, . . . , Γ𝑡 of good
gradings for f such that Γ0 = Γ𝐷 , Γ𝑡 = Γ, and for any 𝑖 ∈ {1, . . . , 𝑡}, Γ𝑖−1 and Γ𝑖 are adjacent, and one
of these good gradings is even. Hence, in type A, we are free to use an even good grading Γ to compute
𝑘
♮
𝑖 , which is convenient (see the proof of Lemma 8.4).

Set

𝑉 𝑘♮ (𝔤♮) := 𝑉 𝜙
♮
0 (𝔤♮0) ⊗

𝑠⊗
𝑖=1

𝑉 𝑘
♮
𝑖 (𝔤♮𝑖 ). (33)

By [60, Theorem 2.1], there exists an embedding

𝜄 : 𝑉 𝑘♮ (𝔤♮) ↩−� 𝒲𝑘 (𝔤, 𝑓 ) (34)

of vertex algebras. We have

𝜄(𝜔
𝑉 𝑘♮ (𝔤♮) ) ∈ 𝒲𝑘 (𝔤, 𝑓 )2, (𝜔𝒲𝑘 (𝔤, 𝑓 ) )(2) 𝜄(𝜔𝑉 𝑘♮ (𝔤♮) ) = 0. (35)

We denote by V 𝑘 (𝔤♮) the image in 𝒲𝑘 (𝔤, 𝑓 ) of the embedding 𝜄, and by V𝑘 (𝔤♮) the image of V 𝑘 (𝔤♮)
by the canonical projection 𝜋 : 𝒲𝑘 (𝔤, 𝑓 ) �𝒲𝑘 (𝔤, 𝑓 ).

Definition 5.3 [3]. If 𝒲𝑘 (𝔤, 𝑓 ) � V𝑘 (𝔤♮), we say that the level k is collapsing.
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Lemma 5.4. The level k is collapsing if and only if

𝒲𝑘 (𝔤, 𝑓 ) � 𝐿𝑘♮ (𝔤♮),

where 𝐿𝑘♮ (𝔤♮) stands for
𝑠⊗
𝑖=0

𝐿
𝑘
♮
𝑖
(𝔤♮𝑖 ). Equivalently, k is collapsing for 𝒲𝑘 (𝔤, 𝑓 ) if and only if there

exists a surjective vertex algebra homomorphism

𝒲𝑘 (𝔤, 𝑓 ) � 𝐿𝑘♮ (𝔤♮).

For example, if 𝒲𝑘 (𝔤, 𝑓 ) � C, then k is collapsing.

Proof. If 𝒲𝑘 (𝔤, 𝑓 ) � V𝑘 (𝔤♮), then 𝒲𝑘 (𝔤, 𝑓 ) is isomorphic to the quotient of
⊗𝑠

𝑖=0𝑉
𝑘
♮
𝑖 (𝔤𝑖) by the

kernel of the composition 𝜋 ◦ 𝜄. Since 𝒲𝑘 (𝔤, 𝑓 ) is simple, we deduce that this quotient is isomorphic
to

⊗𝑠
𝑖=0 𝐿𝑘♮𝑖

(𝔤𝑖) = 𝐿𝑘♮ (𝔤♮). Conversely, if 𝒲𝑘 (𝔤, 𝑓 ) �
⊗𝑠

𝑖=0 𝐿𝑘♮𝑖
(𝔤𝑖), then 𝜋 ◦ 𝜄 factorises through⊗𝑠

𝑖=0 𝐿𝑘♮𝑖
(𝔤𝑖), and so 𝒲𝑘 (𝔤, 𝑓 ) is isomorphic to the image of this induced map, so 𝒲𝑘 (𝔤, 𝑓 ) �

V𝑘 (𝔤♮). �

We close this section with a lemma which is used above in the proof of Proposition 4.2.

Lemma 5.5. The centre 𝔷(𝔤♮) of the reductive Lie algebra 𝔤♮ consists of semisimple elements of 𝔤.
Moreover, for any 𝑥 ∈ 𝔷(𝔤♮), we have tr𝔤 𝑓 (ad 𝑥) = 0 and tr𝔤>0 (ad 𝑥) = 0, where ad𝑥 stands for the
endomorphism of 𝔤 𝑓 (resp. 𝔤>0) induced from the adjoint action of x acting on 𝔤 𝑓 (resp. 𝔤>0).

Proof. As previously mentioned, 𝔤♮ is a maximal reductive subalgebra of 𝔤 𝑓 ([38, Lemma 1.2]). Let 𝔱
be a maximal torus of 𝔤0 = 𝔤ℎ containing a maximal torus of 𝔤♮, and set

𝔱♮ := 𝔱 ∩ 𝔤♮ = 𝔱 ∩ 𝔤 𝑓 .

We intend to show that 𝔷(𝔤♮) is contained in 𝔱♮.
We use the decomposition in 𝔱♮-weight spaces of 𝔤♮ following [30, Section 2]. For 𝛼 ∈ (𝔱♮)∗ and

𝑛 ≥ 0, let 𝐿(𝛼, 𝑛) denote the irreducible 𝔱♮ ⊕ 𝔰-modules of dimension (𝑛 + 1) on which 𝔱♮ acts by the
weight 𝛼, where 𝔰 � 𝔰𝔩2 is the Lie algebra generated by 𝑒, ℎ, 𝑓 . Since each 𝐿(𝛼, 𝑛) contains a nonzero
vector annihilated by f, the set of weights of 𝔱♮ on 𝔤 is also the set of weights of 𝔱♮ on 𝔤 𝑓 . Let Φ 𝑓 ⊂ (𝔱♮)∗
be the set of all nonzero weights of 𝔱♮ on 𝔤 𝑓 . We have the following decomposition:

𝔤 𝑓 = 𝔤𝔱
♮ ∩ 𝔤 𝑓 ⊕

⊕
𝛼∈Φ 𝑓

𝑖≤0

𝔤 𝑓 (𝛼, 𝑖), (36)

where 𝔤𝔱♮ is the centraliser of 𝔱♮ in 𝔤 (it is a Levi subalgebra of 𝔤) and

𝔤 𝑓 (𝛼, 𝑖) = {𝑥 ∈ 𝔤 𝑓 : [ℎ, 𝑥] = 𝑖𝑥 and [𝑡, 𝑥] = 𝛼(𝑡)𝑥 for all 𝑡 ∈ 𝔱♮}.

This decomposition is compatible with the decomposition 𝔤 𝑓 = 𝔤♮ ⊕ 𝔤 𝑓<0, and we have

𝔤♮ = 𝔱♮ ⊕
⊕
𝛼∈Φ◦

𝑓

𝔤 𝑓 (𝛼, 0),

where Φ◦
𝑓 denotes the set of all nonzero element of Φ 𝑓 .
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Let now 𝑥 ∈ 𝔷(𝔤♮) that we write 𝑥 = 𝑥0 +
∑

𝛼∈Φ◦
𝑓
𝑥𝛼 relatively to the above decomposition, with

𝑥0 ∈ 𝔱♮ and 𝑥𝛼 ∈ 𝔤 𝑓 (𝛼, 0) for 𝛼 ∈ Φ◦
𝑓 . Let 𝛼′ ∈ Φ◦

𝑓 and pick 𝑡 ′ ∈ 𝔱♮ such that 𝛼′(𝑡 ′) ≠ 0. From the
equalities

0 = [𝑦, 𝑥] = [𝑦, 𝑥0] +
∑
𝛼∈Φ◦

𝑓

[𝑦, 𝑥𝛼] = 0 +
∑
𝛼∈Φ◦

𝑓

𝛼≠𝛼′

𝛼(𝑡)𝑥𝛼 + 𝛼′(𝑡 ′)𝑥𝛼′ ,

we deduce that 𝑥𝛼′ = 0. Since this is true for each 𝛼 ∈ Φ◦
𝑓 , we get that 𝑥 = 𝑥0 ∈ 𝔱♮. In particular, x is a

semisimple elements of 𝔤.
To show the second assertion, first note that we have the following decomposition:

𝔤 =
⊕
𝛼∈Φ 𝑓

⊕
𝑛≥0

𝑚(𝛼, 𝑛)𝐿(𝛼, 𝑛), (37)

where 𝑚(𝛼, 𝑛) ≠ 0 for all 𝛼 ∈ Φ 𝑓 . Since Φ 𝑓 is a restricted root system in the sense of [30, Section 2],
for 𝛼 ∈ (𝔱♮)∗, 𝛼 ∈ Φ 𝑓 implies that −𝛼 ∈ Φ 𝑓 and the corresponding root vector spaces have the same
dimension. So the second assertion follows from the decompositions (36) and (37). �

6. The main strategy

We describe in this section our general strategy to find new (admissible) collapsing levels using Theo-
rem 3.10. The main difficulty is to find potential candidates for k and f. We explain below our strategy
to achieve this.

6.1. Associated variety

If k is collapsing for 𝒲𝑘 (𝔤, 𝑓 ), then certainly

𝑋𝒲𝑘 (𝔤, 𝑓 ) � 𝑋𝐿
𝑘♮

(𝔤♮) (38)

as Poisson varieties. As we saw in Theorem 4.3, the vertex algebra 𝒲𝑘 (𝔤, 𝑓 ) is quasi-lisse whenever
𝑓 ∈ O𝑘 .

Lemma 6.1. Suppose that 𝒲𝑘 (𝔤, 𝑓 ) is quasi-lisse. If k is collapsing, then 𝜙♮0 is identically zero on 𝔤♮0.
In particular, if k is admissible and 𝑓 ∈ O𝑘 , then k can only be collapsing if 𝜙♮0 = 0.

Our convention is that 𝜙♮0 = 0 when 𝔤♮0 = {0}.

Proof. The associated variety 𝑋𝐿
𝑘♮

(𝔤♮) is a subvariety of (𝔤♮0)
∗ × (𝔤♮1)

∗ × · · · × (𝔤♮𝑠)∗, and the symplectic

leaves of (𝔤♮0)
∗ × (𝔤♮1)

∗ × · · · × (𝔤♮𝑠)∗ are the coadjoint orbits of 𝐺♮
0 × · · · × 𝐺♮

𝑠 , where 𝐺♮
𝑖 is the adjoint

group of 𝔤♮𝑖 . Recall that𝑉 𝜙
♮
0 (𝔤♮0) is a Heisenberg vertex algebra of rank dim𝔤♮0. The associated variety of

its simple quotient is Crank 𝜙♮
0 , provided that 𝜙♮0 ≠ 0. Hence, 𝑋𝐿

𝑘♮
(𝔤♮) has finitely many symplectic leaves

if and only if it is contained in N𝔤1 × · · · ×N𝔤𝑠 , where N𝔤𝑖 is the nilpotent cone of 𝔤♮𝑖 . In particular, we
must have 𝑋

𝐿
𝜙
♮
0
(𝔤♮0)

= {0}. This happens if and only if 𝜙♮0 = 0. �

We are thus led to consider levels k for which 𝜙♮0 = 0 (further conditions on k will appear later).
Now, for each 𝑖 > 0, the bilinear form 𝜙

♮
𝑖 equals the standard form on the simple component 𝔤♮𝑖 , times a

well-defined level 𝑘 ♮𝑖 , as per (32). These levels 𝑘 ♮𝑖 can then be expressed as functions of the level k, as is
done below in Tables 2, 3 and 4 for classical types, and Tables 11–17 for exceptional types. In the tables,
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we also list 𝑘 ♮0 for those cases in which 𝔤♮0 ≠ 0, and since there is no standard normalised form on 𝔤♮0, we
now explain what we mean by this. If the centre 𝔤♮0 is one-dimensional, then we choose nonzero 𝑥 ∈ 𝔤♮0
and set 𝑘 ♮0 = 𝜙

♮
0(𝑥, 𝑥). Then 𝑘 ♮0 is well defined, as a function of k, up to multiplication by a nonzero

scalar. This is sufficient for our purposes since, by Lemma 6.1, we require 𝑘 ♮0 = 0. For the vast majority
of pairs (𝔤, 𝑓 ) relevant for us, we have dim(𝔤♮0) ≤ 1 in fact. Only two exceptions occur (one in type 𝐸6

and one in type 𝐸7), and in both these cases, 𝔤♮ = 𝔤♮0 � C
2. These cases are easily handled separately,

and in the tables, we abuse notation by also writing 𝑘 ♮0 for the value of 𝜙♮0(𝑥, 𝑥) for some nonzero 𝑥 ∈ 𝔤♮0.
We now call 𝑘 ♮ admissible if 𝑘 ♮0 = 0 and 𝑘 ♮𝑖 is admissible for 𝔤♮𝑖 , for each 𝑖 = 1, . . . , 𝑠.

Remark 6.2. It may happen that k is admissible while 𝑘 ♮ is not, even if 𝔤♮0 = 0. For example, for 𝔤 = 𝐺2,
f in the nilpotent orbit labelled �̃�1 (of dimension 8) and 𝑘 = −4 + 4/7 which is a principal admissible
level for𝐺2, then 𝑘 ♮ = 𝑘 +3/2 = −2+1/14 is not admissible for 𝔤♮ � 𝔰𝔩2 (see Table 11). However, under
additional conditions on f and k, we expect that 𝑘 ♮ is admissible if k is admissible. See Conjecture 6.4
below.

Recall

SO𝑘 , 𝑓 = S 𝑓 ∩ O𝑘 ,

the nilpotent Slodowy slice. Now we assume k and 𝑘 ♮ are both admissible, where 𝑓 ∈ O𝑘 , and we assume
that 𝒲𝑘 (𝔤, 𝑓 ) = 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) (verified if f has a good even grading, and in general if Conjecture 4.4
holds). Then according to Theorem 3.2 and Theorem 4.3,

SO𝑘 , 𝑓 = O
𝑘
♮
1
× · · · × O

𝑘
♮
𝑠
, (39)

where O
𝑘
♮
1
, . . . ,O

𝑘
♮
𝑠

are nilpotent orbits in 𝔤♮1, . . . , 𝔤
♮
𝑠 , respectively. This motivates the following

definition:
Definition 6.3. We say that a nilpotent Slodowy slice SO, 𝑓 is collapsing if SO, 𝑓 is isomorphic to a
product of nilpotent orbit closures in 𝔤♮.

Based on the above analysis, we consider pairs (O,O′) such that
1. O = O𝑘 is the associated variety of some simple admissible affine vertex algebra 𝐿𝑘 (𝔤),
2. O′ ⊂ O,
3. for 𝑓 ∈ O′, SO, 𝑓 is a collapsing nilpotent Slodowy slice which is the associated variety X of the

simple admissible affine vertex algebra 𝐿𝑘♮ (𝔤♮). (In particular, X is a product of nilpotent orbit
closures in 𝔤♮.)
The nilpotent orbitO𝑘 , for admissible 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞, is given by [10, Tables 2–10] and depends only

on the denominator q: it is described in terms of the corresponding partition of n for 𝔤 simple of classical
type – that is, 𝔤 = 𝔰𝔩𝑛, 𝔰𝔭𝑛 or 𝔰𝔬𝑛 – and in the Bala-Carter classification for 𝔤 simple of exceptional type.

Motivated by the determination of generic singularities of the nilpotent closures O in simple Lie
algebras𝔤 of classical types, Kraft and Procesi [64, 66] described the smooth equivalences of singularities
between Slodowy slices SO1 , 𝑓1 and SO2 , 𝑓2 , where SO2 , 𝑓2 is obtained from SO1 , 𝑓1 by the row/column
removal rule (see Lemmas 8.2 and 9.2). It turns out that these smooth equivalences actually yield
isomorphisms of varieties; see [68, Proposition 7.3.2].4 Thus, the row/column removal rule, combined
with [10], yields many pairs (O,O′) satisfying the conditions above in classical types. We consider all
such pairs.

For the simple Lie algebras of exceptional types, the authors of [47] determine the isomorphism type
of most of the Slodowy slices SO, 𝑓 for which 𝐺. 𝑓 is a minimal degeneration of O (i.e., those for which

4This is also mentioned without detail in [47, §1.8.1].
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𝐺. 𝑓 is a maximal orbit in O \ O) and also for some of the Slodowy slices for which it is not a minimal
degeneration. For the remaining cases, they obtain some weaker information. From their work, together
with [10], one possibility would be to proceed by finding pairs (O,O′) satisfying the above conditions,
as in the classical cases.

In fact, our work is more exhaustive in a sense since in exceptional types, we are able to directly
exploit the description of the 𝑘 ♮𝑖 in Tables 11–17 and the central charge (see §6.2 below) to detect all
possible collapsing levels. In this way, we find many nontrivial isomorphisms between a Slodowy slice
SO, 𝑓 and a product of nilpotent orbit closures in 𝔤♮. Many of these were observed in [47] already, though
others seem to be new. However, of course, many of isomorphisms between Slodowy slices obtained in
[47] do not correspond to collapsing levels and so do not appear in our work.

We remark that all the isomorphisms between nilpotent orbits and nilpotent Slodowy slices that we
obtain from collapsing levels are automatically isomorphisms of Poisson varieties.

Roughly speaking, a collapsing Slodowy slice will yield a collapsing level if the asymptotic data of
the vertex algebras corresponding to the two sides of (39) can be shown to coincide. In fact, asymptotic
data is rather difficult to compute, so the next step in our strategy is to rule out spurious cases by
comparing central charges. This is described in §6.2 below.

We close this subsection with a discussion of admissibility of the levels 𝑘 ♮𝑖 .

Conjecture 6.4. If k is admissible and if 𝑓 ∈ O𝑘 is such that SO𝑘 , 𝑓 is collapsing, then 𝑘 ♮ is admissible,
provided that 𝑘 ♮0 = 0.

We will verify the conjecture in the classical cases in the cases where SO𝑘 , 𝑓 is collapsing and
the isomorphism between SO𝑘 , 𝑓 and a product of nilpotent orbit closures in 𝔤♮ is obtained from the
row/column removal rule of Kraft-Procesi (see Lemma 8.4 and Lemma 9.5). We feel that these cases
exhaust all possible cases of collapsing nilpotent Slodowy slices so that, together with Lemma 6.5 below,
it would complete the proof of the conjecture.

Lemma 6.5. Conjecture 6.4 is true if 𝔤 is simple of exceptional type.

Proof. Assume that k is admissible. It is known that SO𝑘 , 𝑓 is equidimensional of dimension dimO𝑘 −
dim𝐺. 𝑓 ([48, Corollary 1.3.8]). Moreover, by the main result of [21], SO𝑘 , 𝑓 is irreducible since k is
admissible.

If SO𝑘 , 𝑓 is collapsing, then, in particular, it is contained in the nilpotent cone N𝔤♮ of 𝔤♮, and so
dimSO, 𝑓 ≤ dimN𝔤♮ = dim𝔤♮ − rk 𝔤♮.

The semisimple type of 𝔤♮ and the values of the 𝑘 ♮𝑖 ’s are computed in Tables 11–17. Hence, fixing f,
we first consider nilpotent orbitsO containing𝐺. 𝑓 such that dimO−dim𝐺. 𝑓 ≤ dim𝔤♮ − rk 𝔤♮ and such
thatO = O𝑘 for some admissible level k for 𝔤. This heavily restricts the possibilities for the denominator
q of k. Then we can ask whether for such q, the corresponding level 𝑘 ♮ is admissible for 𝔤♮. Let us
illustrate with an example.

Assume that 𝔤 = 𝐹4 and that f belongs to the nilpotent orbit labelled 𝐵3 in the Bala-Carter classi-
fication (dimension 42). According to Table 12, 𝔤♮ � 𝐴1. Hence, dimSO, 𝑓 ≤ dim 𝐴1 − rk 𝐴1 = 2, so
42 ≤ dimO𝑘 ≤ 44 from which we see that O𝑘 must be 𝐵3, 𝐶3 or 𝐹4 (𝑎2).

Recall that 𝑘 = −9 + 𝑝/𝑞 with (𝑝, 𝑞) = 1 and 𝑝 ≥ 9 if q is odd, and 𝑝 ≥ 12 if q is even. By [10], if
O𝑘 = 𝐵3, then 𝑞 = 8, if O𝑘 = 𝐹4 (𝑎2), then 𝑞 = 7 or 𝑞 = 10, and finally the orbit 𝐶3 cannot occur as O𝑘 .
Now we examine admissibility of

𝑘 ♮ = 8𝑘 + 60 = −2 + 2(4𝑝 − 5𝑞)
𝑞

in each case.
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* If 𝑞 = 7, then 2(4𝑝 − 5𝑞) ≥ 2(4 × 9 − 5 × 7) = 2, so 𝑘 ♮ is admissible.
* If 𝑞 = 8, then 2(4𝑝 − 5𝑞)/𝑞 = (4𝑝 − 5× 8)/4 and 4𝑝 − 5𝑞 ≥ 4× 13− 5× 8 = 12 so 𝑘 ♮ is admissible.
* If 𝑞 = 10, then 2(4𝑝−5𝑞)/𝑞 = (4𝑝−5×10)/5 and 4𝑝−5𝑞 ≥ 4×13−5×10 = 2 so 𝑘 ♮ is admissible.

In most cases, considerations of orbit dimension, like those above, suffice to reach the desired
conclusion. In some cases, however, a more detailed analysis of the Hasse diagrams of 𝔤 and 𝔤♮ is
necessary (we use the diagrams of [47]). This is the case, for example, for the minimal nilpotent orbits
of 𝐹4 and 𝐸7. We explain the verification for these two cases.

Let us first consider the minimal nilpotent orbit of 𝐹4 (dimension 16). In this case, 𝔤♮ � 𝐶3. Since the
nilpotent cone of 𝐶3 has dimension 18, we have 16 ≤ dimO𝑘 ≤ 34. These inequalities are satisfied by 6
nilpotent orbits, but of these, only the orbits 𝐴1 (the minimal orbit itself) and 𝐴2 + 𝐴1 can occur as O𝑘 .

If O𝑘 = 𝐴2 + �̃�1, then 𝑞 = 4 (here, 𝑘 = −9 + 𝑝/𝑞 as above), and if O𝑘 = 𝐴1, then 𝑞 = 2. Now we
examine admissibility of the level

𝑘 ♮ = 𝑘 + 5/2 = −4 + 2𝑝 − 5𝑞
2𝑞

in each case.

* If 𝑞 = 2, then (2𝑝 − 5𝑞)/(2𝑞) = (𝑝 − 5)/2 and 𝑝 − 5 ≥ 13 − 5 = 8 ≥ 6 = ℎ𝐶3 so 𝑘 ♮ is admissible.
* If 𝑞 = 4, then (2𝑝 − 5𝑞)/(2𝑞) = (𝑝 − 10)/4, but 𝑝 ≥ 13 gives us only 𝑝 − 10 ≥ 3, not 𝑝 − 10 ≥ 6 as

required for admissibility.

To exclude the second case, we observe instead that dimO𝐴2+�̃�1
− dimO𝐴1 = 18. So if SO𝐴2+�̃�1

,𝐴1 were
collapsing, then necessarily SO𝐴2+�̃�1

,𝐴1 would be isomorphic to the nilpotent cone N𝐶3 of 𝐶3 since it
is irreducible. In particular, it should contain a nilpotent 𝐺♮-orbit of dimension 16 (corresponding to
the subregular nilpotent orbit of 𝐶3 � 𝔰𝔭6). Here, 𝐺♮ denotes the centraliser in 𝐹4 of the 𝔰𝔩2-triple
associated with f in the minimal nilpotent orbit 𝐴1 of 𝐹4 whose Lie algebra is 𝔤♮. But from the Hasse
diagram of the 𝐹4, we see that this is not possible. Indeed, the Hasse diagram of the 𝐺♮-action on
SO𝐴2+�̃�1

,𝐴1 is just the interval between the orbits labelled 𝐴2 + �̃�1 and 𝐴1 in the Hasse diagram of 𝐹4,
and the dimension of the corresponding 𝐺♮-orbits would be 18, 14, 12, 6, 0. Since it does not coincide
with the Hasse diagram of N𝐶3 , this case is ruled out.

Consider now the minimal nilpotent orbit 𝐴1 of 𝐸7 (dimension 34). In this case, 𝔤♮ � 𝐷6. Since the
nilpotent cone of 𝐷6 has dimension 60, we have 34 ≤ dimO𝑘 ≤ 94. Only the orbits 4𝐴1 and 2𝐴2 + 𝐴1
can satisfy this conditions and occur as O𝑘 .

If O𝑘 = 4𝐴1, then 𝑞 = 2 (here, 𝑘 = −18 + 𝑝/𝑞), and if O𝑘 = 2𝐴2 + 𝐴1, then 𝑞 = 3. Now we examine
admissibility of the level

𝑘 ♮ = 𝑘 + 4 = −10 + (𝑝 − 4𝑞)/𝑞

in each case.

* If 𝑞 = 2, then (𝑝 − 4𝑞)/𝑞 = (𝑝 − 8)/2 and 𝑝 − 8 ≥ 19 − 8 = 11 ≥ 19 = ℎ∨𝐷6
so 𝑘 ♮ is admissible.

* If 𝑞 = 3, then (𝑝 − 4𝑞)/𝑞 = (𝑝 − 12)/3, but 𝑝 ≥ 19 gives us only 𝑝 − 12 ≥ 7, not 𝑝 − 12 ≥ 10 as
required for admissibility.

To exclude the second case, we observe instead that dimO2𝐴2+𝐴1 − dimO𝐴1 = 56. In N𝐷6 , there are
exactly two nilpotent orbits of dimension 56: there are associated with the partition (7, 5) and (9, 13). So
if SO𝐴2+�̃�1

,𝐴1 were collapsing, then necessarily SO𝐴2+�̃�1
,𝐴1 would be isomorphic to one of the nilpotent

orbit closures of 𝐷6 of dimension 56 since it is irreducible. Both of them contain the nilpotent 𝐺♮-orbit
of dimension 54, associated with the partition (7, 3, 12) while, looking at the Hasse diagram of the
𝐺♮-action on SO2𝐴2+𝐴1 ,𝐴1 in 𝐸7, we see that this is not possible.

The rest of the verifications are left to the reader. �

https://doi.org/10.1017/fms.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.81


34 T. Arakawa, J. van Ekeren and A. Moreau

6.2. Central charge

Let k be an admissible level for 𝔤. We recall (1) that the nilpotent orbit 𝑋𝐿𝑘 (𝔤) ⊂ N𝔤 completely
determines the denominator q of the level 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 (cf. Theorem 3.2), and (2) that the 𝑘 ♮𝑖 , defined
by (32) are all polynomials of degree one in k or, equivalently, in p.

Assume that both k and 𝑘 ♮ are admissible. Then both 𝐿𝑘♮ (𝔤♮) and 𝒲𝑘 (𝔤, 𝑓 ) are conformal vertex
algebra since admissible levels are never critical. Denoting by 𝑐𝑉 the central charge of a conformal
vertex algebra V, we recall that

𝑐𝐿𝑘 (𝔤) =
𝑘 dim𝔤
𝑘 + ℎ∨𝔤

.

If 𝔤♮0 = 0, then obviously,

𝑐𝐿
𝑘♮

(𝔤♮) =
𝑠∑
𝑖=1
𝑐
𝐿
𝑘
♮
𝑖

(𝔤♮𝑖 )
. (40)

In this case, the possible values of the numerator p of 𝑘 + ℎ∨𝔤 for admissible k are determined as solutions
of

𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) = 𝑐𝐿𝑘♮
(𝔤♮) , (41)

considered as an equation in an unknown p. Recall that 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) is given in equation (21). If there
are no solutions in p to the equation (41), then k is not collapsing. If there are solutions (with 𝑝 ≥ ℎ𝔤 or
𝑝 ≥ ℎ∨𝔤 so as to ensure that 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 is admissible), then we proceed to the next step (§6.3).

If 𝔤♮0 ≠ 0, then, by Lemma 6.1, the level k can only be collapsing if 𝜙♮0 = 0. In particular, 𝑐𝐿
𝑘♮

(𝔤♮)

continues to be given by (40). Now the condition 𝜙♮0 = 0 entirely determines k, and the equation (41),
rather than determining p, is simply either true or false. If it is false, then k is not collapsing. If it is true,
then we proceed to the next step (§6.3) as before.

The data needed to compute the levels 𝑘 ♮𝑖 in term of k, for 𝑖 = 0, . . . , 𝑠, are collected in Tables 2–4
for the classical types, and in Tables 11–17 for the exceptional types. The data for the exceptional types
have been obtained using the software GAP4.

6.3. Asymptotic growth and asymptotic dimension

The first and second steps (§6.1 and §6.2) allow us to detect possible values for admissible k and 𝑘 ♮. As
this point, we apply Theorem 3.10, or rather, the following powerful consequence of it.

Proposition 6.6. Let k and 𝑘 ♮ be admissible, 𝑓 ∈ O𝑘 . Suppose that

g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) = g𝐿
𝑘♮

(𝔤♮) =
𝑠∑
𝑖=1

g𝐿𝑘𝑖 (𝔤𝑖) ,

A𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) = A𝐿
𝑘♮

(𝔤♮) =
𝑠∏
𝑖=1

A𝐿𝑘𝑖 (𝔤𝑖) .

Then k is collapsing.

Proof. The assertion follows immediately by applying Theorem 3.10, taking for �̃� � 𝑉 the map
𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � 𝒲𝑘 (𝔤, 𝑓 ). Thus, 𝐿𝑘♮ (𝔤♮) � 𝒲𝑘 (𝔤, 𝑓 ), and we conclude that k is collapsing as

required. �
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This proposition ensures that it is enough to compare the asymptotic growths and the asymptotic
dimension of the vertex algebras 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) and 𝐿𝑘♮ (𝔤♮) that we compute using Corollary 3.9. This
is the goal of next sections. In the classical cases, we sometimes directly use the asymptotic growths
(when f admits an even good grading) to detect possible values of k instead of the central charge
argument because the equation given by the central charge is often difficult to solve.

Remark 6.7. In Proposition 6.6, suppose further that 𝑓 ∈ O𝑘 so that 𝒲𝑘 (𝔤, 𝑓 ) is lisse. Then we get that

𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤))

without the assumption that f admits an even good grading. Indeed, 𝑓 ∈ O𝑘 implies that 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤))

is lisse by Theorem 4.3. Hence, 𝐿𝑘♮ (𝔤♮) must be integrable, and the homomorphism 𝜑 of Theorem 3.10
must factor through the embedding 𝐿𝑘♮ (𝔤♮) ↩� 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) ([37]). In particular, 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) is a

direct sum of integrable representations of the affine Kac-Moody algebra associated with 𝔤♮. It follows
that the proof of Theorem 3.10 goes through to obtain that 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � 𝐿𝑘♮ (𝔤
♮).

If the isomorphism 𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) holds, which is the case when f admits an even good

grading, Proposition 6.6 gives a necessary and sufficient condition for admissible k to be collapsing.
Unfortunately, in general, it gives only a sufficient condition.

The following proposition will be useful to obtain explicit decompositions of finite extensions of
admissible simple affine vertex algebras.

Proposition 6.8. Let k and 𝑘 ♮ be admissible, 𝑓 ∈ O𝑘 . Suppose that the associated varieties of
𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) and 𝐿𝑘♮ (𝔤♮) have the same dimension and are not isomorphic. Then k is not collapsing.

Proof. The assumption ensures that 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) is nonzero. Hence, 𝒲𝑘 (𝔤, 𝑓 ) is a quotient of

𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)), and its associated variety is a Zariski closed subvariety of that of 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)). How-
ever, since k is admissible, the associated variety of 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) is irreducible, O𝑘 being unibranch
(see [21]). If k were collapsing, then the associated variety of 𝒲𝑘 (𝔤, 𝑓 ) would be isomorphic to the
(irreducible) variety 𝑋𝐿

𝑘♮
(𝔤♮) and so would have the same dimension as 𝑋𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) by the hypothe-

sis. Then it would be isomorphic to the variety 𝑋𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) since 𝑋𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) is irreducible. This
contradicts the non-isomorphism hypothesis. �

7. Some useful product formulas

We recall the well-known identity

𝑛−1∏
𝑗=1

2 sin
𝑗𝜋

𝑛
= 𝑛 (42)

and its immediate consequence

𝑛∏
𝑗=1

2 sin
( 𝑗 − 1/2)𝜋

𝑛
= 2. (43)

In this section, we record some further identities similar to these which will be very helpful when we
come to apply Corollary 3.9.
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First, from (42), we deduce

𝑛−1∏
𝑗=1

(
2 sin

𝑗𝜋

𝑛

)𝑛− 𝑗
=
�� 
� 𝑛−1

2 �∏
𝑗=1

2 sin
𝑗𝜋

𝑛

!"#
𝑛

=
�� 
𝑛−1∏
𝑗=1

2 sin
𝑗𝜋

𝑛

!"#
𝑛
2

= 𝑛
𝑛
2 . (44)

Next, we have the following identities.

Lemma 7.1 [54, 56].

1. We have
∏
𝛼∈Δ+

2 sin
𝜋(𝜌 |𝛼)
ℎ∨𝔤

= |𝑃/𝑄∨|
1
2
(
ℎ∨𝔤

) ℓ
2
.

2. For 𝔤 simple, not of type 𝐶ℓ , 𝐺2, 𝐹4, we have
∏
𝛼∈Δ+

2 sin
𝜋(𝜌 |𝛼)
ℎ∨𝔤 + 1

=
(
ℎ∨𝔤 + 1

) ℓ
2
.

3. We have
∏
𝛼∈Δ+

2 sin
𝜋(𝜌 |𝛼∨)
ℎ𝔤

=
∏
𝛼∈Δ+

2 sin
𝜋(𝜌∨|𝛼)
ℎ𝔤

= |𝑃∨/𝑄∨|
1
2 (ℎ𝔤)

ℓ
2 .

4. We have
∏
𝛼∈Δ+

2 sin
𝜋(𝜌 |𝛼∨)
ℎ𝔤 + 1

=
∏
𝛼∈Δ+

2 sin
𝜋(𝜌∨|𝛼)
ℎ𝔤 + 1

=
(
ℎ𝔤 + 1

) ℓ
2 .

The lemma is probably known. We provide a proof for the convenience of the reader, and to clear up
an ambiguity from [56] (see Remark 7.2).

Proof. As a rule, in this proof, we write 𝜌𝔤 (resp. 𝜌∨𝔤 ) for the half-sum of positive roots (resp. coroots)
of 𝔤. For 𝑝 ∈ Z>0, set

𝛱𝔤 (𝑝) :=
∏
𝛼∈Δ+

2 sin
𝜋(𝜌𝔤 |𝛼)

𝑝
, 𝛱∨

𝔤 (𝑝) :=
∏
𝛼∈Δ+

2 sin
𝜋(𝜌𝔤 |𝛼∨)

𝑝
.

Since {ht(𝛼) : 𝛼 ∈ Δ+} = {ht(𝛼∨) : 𝛼 ∈ Δ+}, note that for any 𝑝 ≥ ℎ𝔤,

𝛱∨
𝔤 (𝑝) =

∏
𝛼∈Δ+

2 sin
𝜋(𝜌∨𝔤 |𝛼)

𝑝
.

We use the data of Table 1.
(1) The identity is established in [54, Chapter 13, (13.8.1)] using modular invariance properties. It

can also be checked using a case-by-case argument exploiting identities (42) and (44).
(2) We check the identity using a case-by-case argument.
∗ Type 𝐴ℓ . We have ℎ∨𝐴ℓ

+ 1 = ℓ + 2. Since (𝜌𝐴ℓ |𝛼) = ht(𝛼), we see easily that

𝛱𝐴ℓ (ℓ + 2) = 𝛱𝐴ℓ+1 (ℓ + 2)�� 
ℓ+1∏
𝑗=1

2 sin
𝑗𝜋

ℓ + 2
!"#
−1

.

So by (1) applied to 𝐴ℓ+1, we obtain the expected statement, 𝛱𝐴ℓ (ℓ + 2) = (ℓ + 2)ℓ/2, using the identity
(42).

∗ Type 𝐵ℓ and 𝐷ℓ . We have ℎ∨𝐵ℓ
= 2ℓ − 1 and ℎ∨𝐷ℓ

+ 1 = 2ℓ − 1. We first show the statement for 𝐷ℓ .
We have to show that

𝛱𝐷ℓ (2ℓ − 1) = (2ℓ − 1)ℓ/2.
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By (1) applied to 𝐵ℓ , we have

𝛱𝐵ℓ (2ℓ − 1) = 2(2ℓ − 1)ℓ/2.

So it suffices to show that the ratio
𝛱𝐵ℓ (2ℓ − 1)
𝛱𝐷ℓ (2ℓ − 1) equals 2. Observing that (𝜌𝐷ℓ |𝛼) = ht(𝛼), we get that

𝛱𝐷ℓ (2ℓ − 1) =
ℓ−1∏
𝑗=1

(
2 sin

𝑗𝜋

2ℓ − 1

)ℓ− 𝑗
×

ℓ−1∏
𝑗=1

2 sin
𝑗𝜋

2ℓ − 1
×

ℓ−2∏
𝑖=1

ℓ+(𝑖−1)∏
𝑗=2𝑖+1

2 sin
𝑗𝜋

2ℓ − 1
.

However, observing that (𝜌𝐵ℓ |𝛼) = ht(𝛼) if 𝛼 is long and (𝜌𝐵ℓ |𝛼) = 1
2 ht(𝛼) if 𝛼 is short, we get that

𝛱𝐵ℓ (2ℓ − 1) =
ℓ∏
𝑗=1

2 sin
(2 𝑗 − 1)𝜋
2(2ℓ − 1) ×

ℓ−1∏
𝑗=1

(
2 sin

𝑗𝜋

2ℓ − 1

)ℓ− 𝑗
×

ℓ−1∏
𝑖=1

ℓ+(𝑖−1)∏
𝑗=2𝑖

2 sin
𝑗𝜋

2ℓ − 1
.

Using the identity (42), we show that

ℓ∏
𝑗=1

2 sin
(2 𝑗 − 1)𝜋
2(2ℓ − 1) = 2,

ℓ−1∏
𝑗=1

2 sin
𝑗𝜋

2ℓ − 1
=

ℓ−1∏
𝑗=1

2 sin
2 𝑗𝜋

2ℓ − 1
= (2ℓ − 1)1/2.

From this, we obtain that
𝛱𝐵ℓ (2ℓ − 1)
𝛱𝐷ℓ (2ℓ − 1) = 2, as desired.

We now turn to the statement for 𝐵ℓ . We have to show that

𝛱𝐵ℓ (2ℓ) = (2ℓ)ℓ/2.

By (1) applied to 𝐷ℓ+1, we have

𝛱𝐷ℓ+1 (2ℓ) = 2(2ℓ) (ℓ+1)/2.

So it suffices to show that the ratio
𝛱𝐷ℓ+1 (2ℓ)
𝛱𝐵ℓ (2ℓ)

equals 2(2ℓ)1/2. As before, computing the heights of

roots, we obtain that

𝛱𝐷ℓ+1 (2ℓ)
𝛱𝐵ℓ (2ℓ)

=
ℓ∏
𝑗=1

2 sin
𝑗𝜋

2ℓ
�� 

ℓ∏
𝑗=1

2 sin
(2 𝑗 − 1)𝜋

4ℓ
!"#
−1

ℓ∏
𝑗=1

2 sin
(2 𝑗 − 1)𝜋

2ℓ
.

Using (42), we show that

ℓ∏
𝑗=1

2 sin
𝑗𝜋

2ℓ
= 2ℓ1/2,

ℓ∏
𝑗=1

2 sin
(2 𝑗 − 1)𝜋

4ℓ
= 21/2,

ℓ∏
𝑗=1

2 sin
(2 𝑗 − 1)𝜋

2ℓ
= 2,

whence
𝛱𝐷ℓ+1 (2ℓ)
𝛱𝐵ℓ (2ℓ)

= 2(2ℓ)1/2, as desired.

∗ Types 𝐸6, 𝐸7, 𝐸8. By direct calculations, we easily obtain that

𝛱𝐸6 (13) =
6∏
𝑘=1

(
2 sin

𝑘𝜋

13

)6
=

( 12∏
𝑘=1

2 sin
𝑘𝜋

19

)6/2

= 133.
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Similarly, we get

𝛱𝐸7 (19) = 197/2, 𝛱𝐸8 (31) = 314.

(3) and (4). We prove both identities together.
By (2), it suffices to check the statement for the non-simply laced cases. We easily check that

𝛱∨
𝐺2

(6) = 6, 𝛱∨
𝐺2

(7) = 7, 𝛱∨
𝐹4
(12) = 122, 𝛱∨

𝐹4
(13) = 132.

It remains to consider the cases where 𝔤 has type 𝐵ℓ or 𝐶ℓ .
∗ Type 𝐵ℓ . Let us first prove the identity (4). By (1) applied to 𝐵ℓ+1, we have

𝛱𝐵ℓ+1 (2ℓ + 1) = 2(2ℓ + 1) (ℓ+1)/2.

Hence, it suffices to show that

𝛱𝐵ℓ+1 (2ℓ + 1)
𝛱∨
𝐵ℓ
(2ℓ + 1) = 2(2ℓ + 1)1/2.

Using the computations of (2) and the identity (42), we easily obtain the expected equality.
Let us now prove the identity (3) for 𝐵ℓ . By (2) applied to 𝐵ℓ , we have

𝛱𝐵ℓ (2ℓ) = (2ℓ)1/2.

Hence, it suffices to show that

𝛱∨
𝐵ℓ
(2ℓ)

𝛱𝐵ℓ (2ℓ)
= 21/2

since |𝑃∨/𝑄∨| = 2 for the type 𝐵ℓ . Using (42) and the computations of (2), we easily obtain the expected
equality.

∗ Type 𝐶ℓ . Notice that ℎ𝐶ℓ = ℎ𝐵ℓ = 2ℓ. Hence, it suffices to show that

𝛱∨
𝐵ℓ
(2ℓ)

𝛱∨
𝐶ℓ

(2ℓ) = 1 and
𝛱∨
𝐵ℓ
(2ℓ + 1)

𝛱∨
𝐶ℓ

(2ℓ + 1) = 1

since |𝑃∨/𝑄∨| = 2 for the types 𝐵ℓ and 𝐶ℓ . Again using (42), we easily obtain the expected equalities.
This concludes the proof of the lemma. �

Remark 7.2. The identities of the lemma are also stated in [56, Proposition 4.30]. However, contrary
to what should follow from (4.30.2) of [56], identity (2) does not hold for the types 𝐶ℓ , ℓ ≥ 3, 𝐺2 and

𝐹4. For these types, it seems that there is no pleasant formula for
∏

𝛼∈Δ+ (𝐶ℓ )
2 sin

𝜋(𝜌 |𝛼)
ℎ∨𝔤 + 1

.

In the next two sections, we study collapsing levels in the classical cases, implementing the strategy
described in Section 6.

8. Collapsing levels for type 𝔰𝔩𝑛
Let 𝑛 ∈ Z>0. In this section, it is assumed that 𝔤 is the simple Lie algebra 𝔰𝔩𝑛, the Lie algebra of traceless
𝑛 × 𝑛 matrices with coefficients in C. The Killing form of 𝔤 = 𝔰𝔩𝑛 is given by 𝜅𝔤 (𝑥, 𝑦) = 2𝑛tr(𝑥𝑦) and
(𝑥 |𝑦)𝔤 = tr(𝑥𝑦).
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Figure 1. Left-adjusted, Dynkin and right-adjusted pyramids of shape 𝝀 = (32, 2).

Denote by 𝒫(𝑛) the set of partitions of n. As a rule, unless otherwise specified, we write an element
𝝀 of 𝒫(𝑛) as a decreasing sequence 𝝀 = (𝜆1, . . . , 𝜆𝑟 ) omitting zeroes. Thus,

𝜆1 ≥ · · · ≥ 𝜆𝑟 ≥ 1 and 𝜆1 + · · · + 𝜆𝑟 = 𝑛.

Let us denote by ≥ the partial order on 𝒫(𝑛) relative to dominance. More precisely, given 𝝀 =
(𝜆1, · · · , 𝜆𝑟 ), 𝝁 = (𝜇1, . . . , 𝜇𝑠) ∈ 𝒫(𝑛), we have 𝝀 � 𝝁 if

∑𝑘
𝑖=1 𝜆𝑖 �

∑𝑘
𝑖=1 𝜇𝑖 for 1 � 𝑘 � min(𝑟, 𝑠).

By [32, Theorem 5.1.1], nilpotent orbits of 𝔰𝔩𝑛 are parametrised by 𝒫(𝑛). For 𝝀 ∈ 𝒫(𝑛), we shall
denote by O𝝀 the corresponding nilpotent orbit of 𝔰𝔩𝑛. If 𝝀, 𝝁 ∈ 𝒫(𝑛), then O𝝁 ⊂ O𝝀 if and only if
𝝁 � 𝝀.

Definition 8.1. Let 𝝀 ∈ 𝒫(𝑛). A degeneration of 𝝀 is an element 𝝁 ∈ 𝒫(𝑛) such that O𝝁 � O𝝀 – that
is, 𝝁 < 𝝀. A degeneration 𝝁 of 𝝀 is said to be minimal if O𝝁 is open in O𝝀 \ O𝝀 .

Fix 𝝀 ∈ 𝒫(𝑛). As proved in [38], the set of good gradings for 𝑓 ∈ O𝝀 is in bijection with the set
of pyramids of shape 𝝀. We refer to [30] for the precise construction of pyramids associated with good
gradings.

For our purpose, let us just recall that a pyramid is a diagram consisting of n boxes each of size 2
units by 2 units drawn in the upper half of the 𝑥𝑦-place, with midpoints having integer coordinates. By
the coordinates of the box i, we mean the coordinates of its midpoint. We will also speak of the row
number of a box, by which we mean its y-coordinate, and the column number of a box, meaning its
x-coordinate. A pyramid of shape 𝝀 consists of r rows, with the 𝑖th row consisting of 𝜆𝑖 horizontally
consecutive boxes. The rows are positioned so that the boxes of the first row are centred on the y-axis and
have y-coordinate 1, the boxes of the second row have y-coordinate 3, etc. In addition, no box of row i is
permitted to have its x-coordinate smaller than the minimal x-coordinate of the boxes in row 𝑖 − 1, nor
may its x-coordinate be greater than the maximal x-coordinates of the boxes in row 𝑖 − 1. We obtain the
Dynkin pyramid (corresponding to the Dynkin grading) when the boxes of any row are centred around
the y-axis. Note that a good grading is even if and only if the x-coordinates of all boxes have the same
parity. This is always the case for the left-adjusted and the right-adjusted pyramids of shape 𝝀. For the
Dynkin pyramid, this happens if and only if all parts 𝜆𝑖 have the same parity.

We number the boxes of the pyramid from top right to bottom left and so that col(1) ≥ col(2) ≥
. . . ≥ col(𝑛). Then one can choose a representative f in O𝜆 as follows. Set 𝑓 =

∑
𝑖, 𝑗 𝑒𝑖, 𝑗 , where the sum

is over all 𝑖, 𝑗 ∈ {1, . . . , 𝑛} such that row(𝑖) = row( 𝑗) and col( 𝑗) = col(𝑖) + 2. Set

𝑥0
Γ = 𝜀𝐼𝑛 + 𝑥0

Γ,

where 𝑥0
Γ =

∑𝑛
𝑖=1

1
2 col(𝑖)𝑒𝑖,𝑖 and 𝜀 is chosen so that tr(𝑥0

Γ) = 0. Here, 𝑒𝑖, 𝑗 stands for the (𝑖, 𝑗)-matrix
unit. Then 𝑓 ∈ O𝝀 and

𝔤𝑖Γ := {𝑥 ∈ 𝔤 : [𝑥0
Γ, 𝑥] = 𝑖𝑥}

yields a good grading 𝔤 =
⊕
𝑗∈Z

𝔤 𝑗Γ for f (see [38] or [30, §6]).

As an example, we represent in Figure 1 the left-adjusted, the Dynkin and the right-adjusted pyramids
for the partition 𝝀 = (32, 2).

The following lemma is a refinement of [65, Propositions 4.4 and 5.4]. We refer to [68, Propositions
7.3.1 and 7.3.2] for a proof.
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Figure 2. Row removal rule for 𝝀 = (33, 1) and 𝝁 = (32, 14).

Lemma 8.2 (row/column removal rule in 𝔰𝔩𝑛). Let 𝝀 ∈ 𝒫(𝑛) and 𝝁 a degeneration of 𝝀. Assume that
the first l rows and the first m columns of 𝝀 and 𝝁 coincide. Denote by 𝝀′ and 𝝁′ the partitions obtained
by erasing these l common rows and m common columns. Then

SO𝝀 , 𝑓 � SO𝝀′ , 𝑓 ′ ,

as algebraic varieties, with 𝑓 ∈ O𝝁 and 𝑓 ′ ∈ O𝝁′ . In particular, if 𝑓 ′ = 0, then SO𝝀 , 𝑓 � O𝝀′ .

By [10], if k is an admissible level for 𝔰𝔩𝑛, we have O𝑘 = O𝝀 , where

𝝀 = (𝑞�̃�, �̃�), 0 ≤ �̃� ≤ 𝑞 − 1. (45)

Lemma 8.3. Let 𝝁 be a partition of n such that O𝝁 ⊂ O𝝀 . Let 𝝀′ and 𝝁′ be the partitions obtained
from 𝝀 and 𝝁 by erasing all common rows and columns of 𝝀 and 𝝁. Then, 𝝁′ corresponds to the zero
nilpotent orbit of 𝔰𝔩 |𝝁′ | – that is, 𝝁′ = (1 |𝝁′ | ) if and only if 𝝁 is of one of the following types:

(a) 𝝁 = (𝑞�̃�, �̃�) = 𝝀,
(b) 𝝁 = (𝑞𝑚, 1𝑠) with 0 ≤ 𝑚 ≤ 𝑚 and 𝑠 ≥ 0,
(c) 𝝁 = (𝑞�̃�−1, (𝑞 − 1)2) and �̃� = 𝑞 − 2.

Here, |𝝁′ | stands for the sum of the parts of 𝝁′.

Proof. Since O𝝁 ⊂ O𝝀 = O𝑘 , one can write 𝝁 = (𝑞𝑚, 𝝂), with 0 ≤ 𝑚 ≤ 𝑚 and 𝝂 = (𝜈1, . . . , 𝜈𝑡 ) with
𝜈1 < 𝑞. Assume that 𝝁 ≠ 𝝀, the case 𝝁 = 𝝀 being obvious.

Let 𝝀′′ and 𝝁′′ be the partitions obtained from (𝑞�̃�, �̃�) and 𝝁 by erasing all common rows of
𝝀 = (𝑞�̃�, �̃�) and 𝝁. Then 𝝀′′ = (𝑞�̃�−𝑚, �̃�) and 𝝁′′ = 𝝂. The partition 𝝁′′ corresponds to the zero
nilpotent orbit of 𝔰𝔩 |𝝁′′ | if and only if 𝝂 = (1 |𝝂 | ). This leads to the partitions of type (b). We illustrate in
Figures 2 the row removal rule in the case where 𝝀 = (33, 1) and 𝝁 = (32, 14) is of type (b).

Consider now the common columns of 𝝀 and 𝝁. Observe that 𝝀 = (𝑞�̃�, �̃�) and 𝝁 = (𝑞𝑚, 𝜈1, . . . , 𝜈𝑡 )
have at least one common column if and only if 𝑚 + 1 = 𝑚 + 𝑡 – that is,

𝑡 = 𝑚 − 𝑚 + 1.

Assume that this condition holds.
We illustrate in Figures 3 and 4 the row/column removal rule in the case where 𝝀 = (53, 2),

𝝁 = (52, 4, 3), and in the case where 𝝀 = (53, 3), 𝝁 = (52, 42).
We obtain that 𝝀′ = ((𝑞 − �̃�)�̃�−𝑚) and 𝝁′ = (𝜈1 − �̃�, . . . , 𝜈𝑡 − �̃�). Furthermore, 𝝁′ corresponds

to the zero nilpotent orbit of 𝔰𝔩 |𝝁′ | if and only if 𝜈1 − �̃� = · · · = 𝜈𝑡 − �̃� = 1. If so, then necessarily,
(𝑚 − 𝑚) (𝑞 − �̃�) = 𝑡 since 𝝀′ and 𝝁′ are partitions of the same integer, whence

(𝑚 − 𝑚) (𝑞 − �̃� − 1) = 1 (46)

using 𝑡 = 𝑚 − 𝑚 + 1. But condition (46) holds if and only if 𝑞 − �̃� − 1 = 1 and 𝑚 − 𝑚 = 1. This leads to
the partitions of type (c).
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Figure 3. Row/column removal rule for 𝝀 = (53, 2) and 𝝁 = (52, 4, 3).

Figure 4. Row/column removal rule for 𝝀 = (53, 3) and 𝝁 = (52, 42).

Table 2. Centralisers of some 𝔰𝔩2-triples (𝑒, ℎ, 𝑓 ) in 𝔰𝔩𝑛, with 𝑓 ∈ O𝝁 ..

𝝁 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖 Conditions

(𝑞𝑚, 𝑠) C × 𝔰𝔩𝑚 𝑘
♮
0 = 𝑞𝑘 + 𝑞𝑛 − 𝑛 1 ≤ 𝑠 ≤ 𝑞 − 1
𝑘
♮
1 = 𝑞𝑘 + 𝑞𝑛 − 𝑛

(𝑞𝑚) 𝔰𝔩𝑚 𝑘
♮
1 = 𝑞𝑘 + 𝑞𝑛 − 𝑛

(𝑞𝑚, 1𝑠) C × 𝔰𝔩𝑚 × 𝔰𝔩𝑠 𝑘
♮
0 = 𝑞𝑘 + 𝑞𝑛 − 𝑛 𝑠 > 0
𝑘
♮
1 = 𝑞𝑘 + 𝑞𝑛 − 𝑛

𝑘
♮
2 = 𝑘 + 𝑞𝑚 −𝑚

(𝑞𝑚, (𝑞 − 1)2) C × 𝔰𝔩𝑚 × 𝔰𝔩2 𝑘
♮
0 = 𝑞𝑘 + 𝑞𝑛 − 𝑛

𝑘
♮
1 = 𝑞𝑘 + 𝑞𝑛 − 𝑛

𝑘
♮
2 = (𝑞 − 1) (𝑘 + 𝑛 −𝑚 − 2)

Conversely, it is easy to verify that if 𝝁 is of type (a), (b) or (c), then 𝝁′ corresponds to the zero
nilpotent orbit of 𝔰𝔩 |𝝁′ | . �

In view of Lemma 8.3, we describe the centraliser 𝔤♮ and the values of the 𝑘 ♮𝑖 ’s for particular 𝔰𝔩2-
triples (𝑒, ℎ, 𝑓 ) of 𝔰𝔩𝑛.

Lemma 8.4. Let f be a nilpotent element of 𝔰𝔩𝑛 associated with 𝝁 ∈ 𝒫(𝑛), with 𝝁 as in the first column
of Table 2. Then the centraliser 𝔤♮ of an 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) and the values of the 𝑘 ♮𝑖 ’s are given by
Table 2. Moreover, if k is admissible, then so is 𝑘 ♮, provided that 𝑘 ♮0 = 0.

In Table 2, the numbering of the levels 𝑘 ♮𝑖 ’s follows the order in which the simple factors of𝔤♮ appears.

Proof. By Lemma 5.1 and Remark 5.2, in order to describe 𝔤♮ and compute the 𝑘 ♮𝑖 ’s, one can use the
left-adjusted pyramid of shape 𝝁. This pyramid always corresponds to an even good grading for f.

(1) Consider first the case 𝝁 = (𝑞𝑚, 1𝑠), with s possibly zero. The pyramid consists of a 𝑞 × 𝑚
rectangle surmounted by a vertical strip of dimension 1 × 𝑠 on the left as in Figure 5. For example, for
𝝁 = (53, 14), we get the pyramid as in Figure 6.

From the pyramid, we easily see that

𝔤0
Γ =

{
diag(𝑥1, . . . , 𝑥𝑞−1, 𝑦) ∈ 𝔰𝔩𝑛 : 𝑥𝑖 ∈ 𝔤𝔩𝑚, 𝑦 ∈ 𝔤𝔩𝑚+𝑠

}
� C𝑞−1 × (𝔰𝔩𝑚)𝑞−1 × 𝔰𝔩𝑚+𝑠 ,
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Figure 5. Pyramid for (𝑞𝑚, 1𝑠).

Figure 6. Pyramid for (53, 14).

and

𝔤♮ = {diag(𝑥, . . . , 𝑥, 𝑦) ∈ 𝔰𝔩𝑛 : 𝑥 ∈ 𝔤𝔩𝑚, 𝑦 = diag(𝑥, 𝑥 ′), 𝑥 ′ ∈ 𝔤𝔩𝑠} ⊂ 𝔤0
Γ

�

{
C × 𝔰𝔩𝑚 × 𝔰𝔩𝑠 if 𝑠 ≠ 0,
𝔰𝔩𝑚 if 𝑠 = 0.

First, pick 𝑡 = diag(𝑥, . . . , 𝑥, 𝑦) ∈ 𝔤♮1 � 𝔰𝔩𝑚, with 𝑥 = diag(1,−1, 0, . . . , 0) ∈ 𝔤𝔩𝑚 and 𝑦 = diag(𝑥, 𝑥 ′) ∈
𝔤𝔩𝑚+𝑠 with 𝑥 ′ = 0. We have

𝑘 (𝑡 |𝑡)𝔤 + (𝜅𝔤 (𝑡, 𝑡) − 𝜅𝔤0
Γ
(𝑡, 𝑡))/2 = 2𝑞𝑘 + 2(𝑞𝑛 − 𝑞𝑚 − 𝑠),

and (𝑡 |𝑡)♮1 = 2, whence 𝑘 ♮1 = 𝑞𝑘 + 𝑞𝑛 − 𝑛. This terminates the case 𝑠 = 0.
Assume now 𝑠 ≠ 0. Pick 𝑡 = diag(𝑥, . . . , 𝑥, 𝑦) ∈ 𝔤♮0, with 𝑥 = diag(−𝑠, . . . ,−𝑠) ∈ 𝔤𝔩𝑚 and

𝑦 = diag(𝑥, 𝑥 ′) ∈ 𝔤𝔩𝑚+𝑠 with 𝑥 ′ = diag(𝑞𝑚, . . . , 𝑞𝑚). The projection of t onto the semisimple part of
𝔤0
Γ is diag(0, . . . , 0, 𝑧) with

𝑧 = diag
(
− 𝑠𝑛

𝑚 + 𝑠 , . . . ,−
𝑠𝑛

𝑚 + 𝑠 ,
𝑚𝑛

𝑚 + 𝑠 , . . . ,
𝑚𝑛

𝑚 + 𝑠

)
∈ 𝔰𝔩𝑚+𝑠 .

From this, we get

𝑘 (𝑡 |𝑡)𝔤 + (𝜅𝔤 (𝑡, 𝑡) − 𝜅𝔤0
Γ
(𝑡, 𝑡))/2 = 𝑠𝑚𝑛(𝑞𝑘 + 𝑞𝑛 − 𝑛).

Choose ( | )0 so that (𝑡 |𝑡)0 = 𝑠𝑚𝑛, whence 𝑘 ♮0 = 𝑞𝑘 + 𝑞𝑛 − 𝑛.
Pick finally 𝑡 = diag(𝑥, . . . , 𝑥, 𝑦) ∈ 𝔤♮2 � 𝔰𝔩𝑠 , where 𝑥 = 0 ∈ 𝔤𝔩𝑚 and 𝑦 = diag(𝑥, 𝑥 ′) ∈ 𝔤𝔩𝑚+𝑠 with

𝑥 ′ = diag(1,−1, 0, . . . , 0). We have

𝑘 (𝑡 |𝑡)𝔤 + (𝜅𝔤 (𝑡, 𝑡) − 𝜅𝔤0
Γ
(𝑡, 𝑡))/2 = 2𝑘 + (4𝑛 − 4(𝑚 + 𝑠))/2

and (𝑡 |𝑡)♮2 = 2, whence 𝑘 ♮2 = 𝑘 + 𝑞𝑚 − 𝑚.
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(2) Assume now that 𝝁 = (𝑞𝑚, (𝑞 − 1)2). Here, we easily see that the embedding 𝔤♮ ↩� 𝔤0
Γ is as

follows. We have

𝔤0
Γ =

{
diag(𝑥, 𝑦1, . . . , 𝑦𝑞−1) ∈ 𝔰𝔩𝑛 : 𝑥 ∈ 𝔤𝔩𝑚, 𝑦𝑖 ∈ 𝔤𝔩𝑚+2

}
� C𝑞−1 � (𝔰𝔩𝑚) × (𝔰𝔩𝑚+2)𝑞−1,

𝔤♮ = {diag(𝑥, 𝑦, . . . , 𝑦) ∈ 𝔰𝔩𝑛 : 𝑥 ∈ 𝔤𝔩𝑚, 𝑦 = diag(𝑧, 𝑥) ∈ 𝔤𝔩𝑚+2, 𝑧 ∈ 𝔤𝔩2 ∈}
� C × 𝔰𝔩𝑚 × 𝔰𝔩2.

We compute 𝑘 ♮0, 𝑘
♮
1, 𝑘

♮
2 similarly as the previous case. So we omit the details.

(3) Finally, assume that 𝝁 = (𝑞𝑚, 𝑠), with 𝑚 ≥ 0 and 0 < 𝑠 ≤ 𝑞 − 1. Here, we easily see that the
embedding 𝔤♮ ↩� 𝔤0

Γ is as follows. We have

𝔤0
Γ =

{
diag(𝑥1, . . . , 𝑥𝑠 , 𝑦1, . . . , 𝑦𝑞−𝑠) ∈ 𝔰𝔩𝑛 : 𝑥𝑖 ∈ 𝔤𝔩𝑚+1, 𝑦 𝑗 ∈ 𝔤𝔩𝑚

}
� (𝔤𝔩𝑚+1)𝑠 × (𝔤𝔩𝑚)𝑞−𝑠

and

𝔤♮ = {diag(𝑥, . . . , 𝑥, 𝑦, . . . , 𝑦) ∈ 𝔰𝔩𝑛 : 𝑦 ∈ 𝔤𝔩𝑚, 𝑥 = diag(𝜆, 𝑦) ∈ 𝔤𝔩𝑚+1}
� C × 𝔰𝔩𝑚.

We compute 𝑘 ♮0, 𝑘
♮
1 as in the first case. So we omit the details.

The last assertion of the lemma is then easy to verify. Indeed, the condition 𝑘 ♮0 = 0 (when 𝑘 ♮0 appears)
implies 𝑝 = 𝑛. Then 𝑘 ♮1 = 0 and 𝑘 ♮2 = −𝑠 + 𝑠/𝑞 (when 𝑘 ♮2 appears), which is admissible for 𝔰𝔩𝑠 . If 𝔤♮0 = 0,
then 𝝁 = (𝑞𝑚) and 𝑘 ♮1 = 𝑝−𝑛 = −𝑚 + 𝑝−𝑚(𝑞−1), which is admissible for 𝔰𝔩𝑚 since 𝑝−𝑚(𝑞−1) ≥ 𝑚
is equivalent to the condition 𝑝 ≥ 𝑛. �

Remark 8.5. Besides 𝔤, f and k, the construction of 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) takes an auxiliary choice of good

grading on 𝔤 compatible with f. For all types other than 𝔰𝔩𝑛, we use the Dynkin grading, but in this
section, we sometimes work with good gradings different than the Dynkin grading. While it is known
that 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)), as a vertex algebra, is independent of the choice of good grading, its conformal
structure, and therefore in principle its asymptotic datum, can depend on this choice. Since Theorem 3.10
requires self-duality, and by Proposition 4.2 self-duality holds for the Dynkin grading, it is important
to verify that the asymptotic datum is independent of the choice of good grading in the cases relevant
for us. For g, this is evident from the formula (see Proposition 4.10). As for A, for the pairs (𝑘, 𝑓 ) that
arise in our search for collapsing levels for 𝔰𝔩𝑛, the relationship between the orbits O𝑘 and 𝐺. 𝑓 is such
that the independence of A on the choice of good grading can be seen via combinatorial arguments.
Namely, we have the following lemma.
Lemma 8.6. Assume that 𝝁 is a partition of type (a), (b), (c) as in Lemma 8.3, and pick 𝑓 ∈ O𝝁 ⊂ O𝑘 .
Then the expression given for A𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) in Proposition 4.10 is independent of the choice of good

grading Γ.
Proof. The expression in question is the product of a term manifestly independent of Γ with

A′ =
1

2
|Δ1/2
Γ |
2 𝑞 |Δ

0
Γ,+ |

∏
𝛼∈Δ+\Δ0

Γ,+

2 sin
𝜋(𝑥0

Γ |𝛼)
𝑞

. (47)

Now we consider 𝑘 = −𝑛 + 𝑝/𝑞 an admissible level for 𝔤 = 𝔰𝔩𝑛 and the Hamiltonian reduction
𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) for some 𝑓 ∈ O𝑘 .
We first consider the partitions (𝑞𝑚, 𝑠) of n.
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Figure 7. An even good grading.

Figure 8. An odd good grading.

The pyramids associated with 𝝀 = (𝑞𝑚, 𝑠) all consist of a 𝑞×𝑚 rectangle surmounted by a horizontal
strip of dimension 𝑠 × 1. In Figures 7 and 8, we illustrate two pyramids associated with 𝑛 = 16, 𝑞 = 5.
In general, there are 2(𝑞 − 𝑠) + 1 distinct pyramids associated with 𝝀.

We rewrite (47) as

A′ =
∏
𝑖< 𝑗
𝑥𝑖=𝑥 𝑗

1
𝑞
·

∏
𝑖< 𝑗

|𝑥𝑖−𝑥 𝑗 |=1

1
21/2 ·

∏
𝑖< 𝑗

|𝑥𝑖−𝑥 𝑗 | ≥1

2 sin
𝜋 |𝑥𝑖 − 𝑥 𝑗 |

𝑞
.

To show that A′ is independent of Γ, we first note that if boxes i and j lie both in the 𝑞 × 𝑚 rectangle or
else both in the 𝑠 × 1 horizontal strip, then the contribution of the pair (𝑖, 𝑗) to the product above is the
same for all choices of Γ. So we may ignore the contributions of such pairs.

Now we let i be a box in the 𝑠 × 1 strip, and we consider the contribution to the product as j runs
along one of the rows of the 𝑞 × 𝑚 rectangle. In the configurations depicted by Figures 7 and 8, this
contribution is, respectively,

1
𝑞

𝑛−1∏
𝑗=1

2 sin
𝑗𝜋

𝑞
or

1
2

𝑛∏
𝑗=1

2 sin
( 𝑗 − 1/2)𝜋

𝑛
.

Indeed, for any of the q possible positions of box i aligned with the 𝑞 × 𝑚 rectangle, we obtain the first
of these products simply because sin ((𝑞 − 𝑗)𝜋/𝑞) = sin ( 𝑗𝜋/𝑞). Similarly, all remaining positions of
box i yield the second product. But finally both products are equal to 1 due to identities (42) and (43),
and so all products are equal. Therefore, the value of A′ does not depend on Γ.

Similar arguments establish independence of A on Γ for nilpotent elements associated with partitions
of type (𝑞𝑚, 1𝑠) or (𝑞𝑚, (𝑞 − 1)2). �

We are now in a position to state our results on collapsing levels for 𝔰𝔩𝑛. We have

𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) (48)

for an admissible level k and 𝑓 ∈ O𝑘 since any nilpotent element of 𝔰𝔩𝑛 admits an even good grading.
Moreover, 𝒲𝑘 (𝔤, 𝑓 ) is rational if 𝑓 ∈ O𝑘 ([14]).

First, we consider the case when 𝒲𝑘 (𝔤, 𝑓 ) is rational.

Theorem 8.7. Assume that 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 = −𝑛 + 𝑝/𝑞 is admissible for 𝔤 = 𝔰𝔩𝑛. Pick a nilpotent
element 𝑓 ∈ O𝑘 so that 𝒲𝑘 (𝔤, 𝑓 ) is rational. Then k is collapsing if and only if 𝑛 ≡ 0,±1(mod )𝑞 and

𝑝 =

{
ℎ∨𝔤 if 𝑛 ≡ ±1 (mod )𝑞
ℎ∨𝔤 + 1 if 𝑛 ≡ 0 (mod )𝑞.

Furthermore,
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1. If 𝑛 ≡ ±1 (mod 𝑞), then

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � C.

2. If 𝑛 ≡ 0 (mod 𝑞),

𝒲−𝑛+(𝑛+1)/𝑞 (𝔰𝔩𝑛, 𝑓 ) � 𝐿1 (𝔰𝔩�̃�),

where 𝑚 is defined by (45).

Proof. Fix a nilpotent element 𝑓 ∈ O𝑘 = O(𝑞𝑚 ,𝑠) , with 𝑚 := 𝑚 and 𝑠 := �̃� in the notation of (45).
(a) Case 𝑠 ≠ 0.
According to Table 2, we have 𝔤♮ � C × 𝔰𝔩𝑚, and 𝑘 ♮0 = 𝑘 ♮1 = 𝑞𝑘 + 𝑞𝑛 − 𝑛 = 𝑝 − 𝑛. If k is collapsing,

then necessarily 𝑘 ♮0 = 0, whence 𝑝 = 𝑛. Assume from now that 𝑝 = 0, whence 𝑘 ♮0 = 𝑘 ♮1 = 0. By (48), if
k is collapsing, then 𝒲𝑘 (𝔰𝔩𝑛, 𝑓 ) � C and the asymptotic growth g𝒲𝑘 (𝔰𝔩𝑛 , 𝑓 ) = g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔩𝑛) must be 0.

By Corollary 3.9, we have g𝐿
𝑘♮

(𝔤♮)) = 0, while by Proposition 4.10,

g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔩𝑛)) = dim𝔤 𝑓 −
ℎ∨𝔤 dim𝔰𝔩𝑛

𝑝𝑞
= (𝑠 − 1)

(
𝑞 − (𝑠 + 1)

𝑞

)
since dim𝔤 𝑓 = 𝑚2 (𝑞− 𝑠) + (𝑚+1)2𝑠−1. Therefore, g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔩𝑛)) = 0 if and only if 𝑠 = 1 or 𝑠 = 𝑞−1.

The case 𝑠 = 1 will be dealt with in Theorem 8.8 with 𝑠 = 1. We consider here only the case 𝑠 = 𝑞 − 1.
Our aim is to show that 𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � C, for f corresponding to the partition (𝑞𝑚, 𝑞 − 1).

By Proposition 6.6 and the above computation, it suffices to show that the asymptotic dimension of
𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔰𝔩𝑛)) is 1.
Let 𝔤 =

⊕
𝑖 𝔤

𝑖
Γ be the even good grading for f corresponding to the left-adjusted pyramid of shape

(𝑞𝑚, 𝑠) as in the proof of Lemma 8.4. By Proposition 4.10 and Lemma 7.1 (1), we get

A𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔩𝑛)) =
1

𝑞 |Δ
+
Γ,0 |𝑞

𝑛−1
2

∏
𝛼∈Δ+\Δ0

Γ,+

2 sin
𝜋(𝑥0

Γ |𝛼)
𝑞

, (49)

with 𝑛 = 𝑞𝑚 + 𝑞 − 1 and |Δ+
Γ,0 | =

𝑚(𝑛 − 1)
2

. Indeed, by Lemma 8.6, the asymptotic dimension does not
depend on the good grading for such an f. For 𝑖 ∈ {1, . . . , 𝑛 − 1}, let 𝑥𝑖 be the x-coordinate of the box
labelled i in the pyramid. Note that for 𝑗 ∈ Z, we have

#{𝛼 ∈ Δ+ : (𝑥0
Γ |𝛼) = 𝑗} = #{(𝑖, 𝑙) ∈ {1, . . . , 𝑛 − 1} : 𝑖 ≤ 𝑙, |𝑥𝑖 − 𝑥𝑙 |/2 = 𝑗}. (50)

In this way, using (50) and the identity (44), we obtain that

∏
𝛼∈Δ+\Δ0

Γ,+

2 sin
𝜋(𝑥0

Γ |𝛼)
𝑞

=
𝑞−1∏
𝑗=1

(
2 sin

𝑗𝜋

𝑞

) (𝑚+1) (𝑛− 𝑗 (𝑚+1))
= 𝑞

𝑞 (𝑚+1)2
2 −(𝑚+1) .

Combining this with (49), we verify that A𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔩𝑛) = 1, as desired. This concludes this case.
(b) Case 𝑠 = 0.
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According to Table 2, we have 𝔤♮ � 𝔰𝔩𝑚 and 𝑘 ♮ = 𝑞𝑘 + 𝑞𝑛 − 𝑛. If k is collapsing, then by (48), we
must have g𝐿

𝑘♮
(𝔰𝔩𝑚) = g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔩𝑛)) . We have

g𝐿
𝑘♮

(𝔰𝔩𝑚) = (𝑚2 − 1)
(
1 − 𝑚

𝑝 − 𝑚(𝑞 − 1)

)
,

g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔩𝑛)) = 𝑞𝑚
2 − 1 − 𝑛(𝑛

2 − 1)
𝑝𝑞

since dim𝔤 𝑓 = 𝑚2𝑞 − 1. Solving the equation

(𝑚2 − 1)
(
1 − 𝑚

𝑝 − 𝑚(𝑞 − 1)

)
= 𝑞𝑚2 − 1 − 𝑛(𝑛

2 − 1)
𝑝𝑞

with unknown p, we obtain that p must be either equal to 𝑛 + 1 or 𝑛 − 1. Only the case 𝑝 = 𝑛 + 1 is
greater than ℎ∨𝔤 = 𝑛.

From now, it is assumed that 𝑝 = 𝑛 + 1, whence 𝑘 ♮1 = 1 = −𝑚 + (𝑚 + 1)/1. We apply Proposition 6.6
to prove that k is collapsing. It is enough to show that 𝐿1 (𝔰𝔩𝑚) and 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔰𝔩𝑛)) share the same
asymptotic dimension. By Corollary 3.9 and Lemma 7.1 (2),

A𝐿1 (𝔰𝔩𝑚) =
1
√
𝑚
. (51)

However, by Proposition 4.10 and Lemma 7.1 (2),

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+(𝑛+1)/𝑞 (𝔰𝔩𝑛)) =
1

𝑞 |Δ
0
Γ,+ |𝑞

𝑛−1
2 𝑛

1
2

∏
𝛼∈Δ+\Δ0

Γ,+

2 sin
𝜋(𝑥0

Γ |𝛼)
𝑞

, (52)

with 𝑛 = 𝑞𝑚 and |Δ0
Γ,+| = 𝑞𝑚(𝑚 − 1)/2. Moreover, computing the cardinality of the sets {𝛼 ∈

Δ+ : (𝑥0
Γ |𝛼) = 𝑗} as in the previous case, we obtain by (44) that∏

𝛼∈Δ+\Δ0
Γ,+

2 sin
𝜋(𝑥0

Γ |𝛼)
𝑞

= 𝑞𝑞𝑚
2/2.

Combining this with (52), we get that A𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+(𝑛+1)/𝑞 (𝔰𝔩𝑛)) = 1√
𝑚

, as expected. This completes the
proof. �

We now consider the partitions 𝝁 ∈ 𝒫(𝑛) as in Lemma 9.3 of type (b) and (c). This leads us to the
following results.

Theorem 8.8. Assume that 𝑘 = −𝑛 + 𝑝/𝑞 is admissible for 𝔤 = 𝔰𝔩𝑛.

1. Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 1𝑠), with 𝑚 ≥ 0 and 𝑠 > 0.
Then k is collapsing if and only if 𝑝 = 𝑛 = ℎ∨𝔰𝔩𝑛 . Moreover,

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � 𝐿−𝑠+𝑠/𝑞 (𝔰𝔩𝑠).

2. Assume that �̃� = 𝑞 − 2, and pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition
(𝑞𝑚, (𝑞 − 1)2), with 𝑚 = 𝑚 − 1 in the notation of (45). Then k is collapsing if and only if 𝑝 = 𝑛 = ℎ∨𝔤 .
Moreover,

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � 𝐿−2+2/𝑞 (𝔰𝔩2).
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Remark 8.9. For 𝑠 = 1 in (1), the formula has to be understood as

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � C.

Since for 𝑠 = 1, g𝐿−𝑠+𝑠/𝑞 (𝔰𝔩𝑠) =
(𝑞−1) (𝑠2−1)

𝑞 = 0 and A𝐿−𝑠+𝑠/𝑞 (𝔰𝔩𝑠) = 𝑞
−(𝑠2−1)/2 = 1 (see the below proof),

the formulas make sense and are compatible with Theorem 8.7

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � C.

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � 𝐿−2+2/𝑞 (𝔰𝔩2).

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � C.

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) � 𝐿−2+2/𝑞 (𝔰𝔩2).

Proof. As in the proof of Theorem 8.7, we let 𝔤 =
⊕

𝑖 𝔤
𝑖
Γ be the even good grading for f corresponding

to the left-adjusted pyramid associated with the partition of f.
(1) Fix a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 1𝑠). According to Table 2,

we have 𝔤♮ � C × 𝔰𝔩𝑚 × 𝔰𝔩𝑠 , 𝑘 ♮0 = 𝑘 ♮1 = 𝑝 − 𝑛 and 𝑘 ♮2 = 𝑘 + 𝑞𝑚 − 𝑚. If k is collapsing, then necessarily
𝑘
♮
0 = 0 – that is, 𝑝 = 𝑛. We assume from now on that 𝑝 = 𝑛. Hence 𝑘 ♮2 = 𝑘 + 𝑞𝑚 −𝑚 = −𝑠 + 𝑠/𝑞, which

is an admissible level for 𝔰𝔩𝑠 . By Proposition 4.10, we get

g𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+𝑛/𝑞 (𝔰𝔩𝑛)) =

(
1 − 1

𝑞

)
(𝑠2 − 1) = g𝐿−𝑠+𝑠/𝑞 (𝔰𝔩𝑠)

since dim𝔤 𝑓 = (𝑚 + 𝑠)2 + (𝑞 − 1)𝑚2 − 1. By Corollary 3.9 and Lemma 7.1 (1), we have

A𝐿−𝑠+𝑠/𝑞 (𝔰𝔩𝑠) =
1

𝑞𝑠 (𝑠−1)/2𝑞 (𝑠−1)/2 =
1

𝑞 (𝑠2−1)/2
.

However, by Proposition 4.10, we have

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+𝑛/𝑞 (𝔰𝔩𝑛)) =
1

𝑞 |Δ
0
Γ,+ |𝑞 (𝑛−1)/2

∏
𝛼∈Δ+\Δ0

Γ,+

2 sin

(
𝜋(𝑥0

Γ |𝛼)
𝑞

)
, (53)

with |Δ0
Γ,+ | =

(𝑚+𝑠) (𝑚+𝑠−1)
2 + 𝑚(𝑞−1) (𝑚−1)

2 . Indeed, by Lemma 8.6, the asymptotic dimension does not
depend on the good grading for such an f. Using the left-adjusted pyramid of shape (𝑞𝑚, 1𝑠), we easily
see that ∏

𝛼∈Δ+\Δ0
Γ,+

2 sin

(
𝜋(𝑥0

Γ |𝛼)
𝑞

)
=
𝑞−1∏
𝑗=1

(
2 sin

𝑗𝜋

𝑞

)𝑚2 (𝑞− 𝑗)+𝑠𝑚
= 𝑞𝑞𝑚

2/2+𝑠𝑚 (54)

using (44). Combining (53) and (54), we conclude that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+𝑛/𝑞 (𝔰𝔩𝑛)) =
1

𝑞 (𝑠2−1)/2
= A𝐿−𝑠+𝑠/𝑞 (𝔰𝔩𝑠) ,

as desired. By Proposition 6.6, it follows that k is collapsing.
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(2) Fix a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, (𝑞 − 1)2). According to
Table 2, we have 𝔤♮ � C × 𝔰𝔩𝑚 × 𝔰𝔩2, 𝑘 ♮0 = 𝑘

♮
1 = 𝑝 − 𝑛 and 𝑘 ♮2 = (𝑞 − 1) (𝑘 + 𝑛 − 𝑚 − 2). If k is

collapsing, then necessarily 𝑘 ♮0 = 0 – that is, 𝑝 = 𝑛. We assume from now on that 𝑝 = 𝑛. Hence,
𝑘
♮
2 = (𝑞 − 1) (𝑛/𝑞 − 𝑚 − 2) = −2 + 2/𝑞, which is an admissible level for 𝔰𝔩2. Note that q is odd since
(𝑞, 𝑛) = 1 and 𝑛 = 𝑞𝑚 + 2(𝑞 − 1). By Proposition 4.10, we get

g𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+𝑛/𝑞 (𝔰𝔩𝑛)) = 3
(
1 − 1

𝑞

)
= g𝐿−2+2/𝑞 (𝔰𝔩2)

since dim𝔤 𝑓 = 𝑚2 + (𝑚 + 2)2(𝑞 − 1) − 1. Moreover, from (1), we know that

A𝐿−2+2/𝑞 (𝔰𝔩2) =
1
𝑞3/2 .

However, by Proposition 4.10 and Lemma 8.6, we have

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+𝑛/𝑞 (𝔰𝔩𝑛)) =
1

𝑞 |Δ
0
Γ,+ |𝑞 (𝑛−1)/2

∏
𝛼∈Δ+\Δ0

+

2 sin

(
𝜋(𝑥0

Γ |𝛼)
𝑞

)
,

with |Δ0
Γ,+ | =

𝑚(𝑚−1)
2 + (𝑚+1) (𝑚+2) (𝑞−1)

2 . Using the left-adjusted pyramid of shape (𝑞𝑚, (𝑞 − 1)2), we
easily see that ∏

𝛼∈Δ+\Δ0
+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
=
𝑞−1∏
𝑗=1

(
2 sin

𝑗𝜋

𝑞

)𝑚(𝑚+2)+(𝑚+2)2 (𝑞− 𝑗−1)
.

As in the previous cases, we conclude using (42) and (44) that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−𝑛+𝑛/𝑞 (𝔰𝔩𝑛)) = A𝐿−2+2/𝑞 (𝔰𝔩2) ,

as desired. By Proposition 6.6, it follows that k is collapsing. �

Remark 8.10. As has been observed in the above proof, if k is collapsing for 𝑓 ∈ O(𝑞𝑚) , with 𝑛 = 𝑞𝑚,
then necessarily 𝑘 = −𝑛 + (𝑛 + 1)/𝑞 or 𝑘 = −𝑛 + (𝑛 − 1)/𝑞. Only the first case leads to an admissible
level. However, one may ask whether the following holds:5

𝒲−𝑛+(𝑛−1)/𝑞 (𝔰𝔩𝑛, 𝑓 ) � 𝐿−1(𝔰𝔩𝑚).

(The two above vertex algebras have the same central charge.)
We propose the following conjectural extension of Theorem 8.8.

Conjecture 8.11. Let 𝑓 ∈ 𝔰𝔩𝑛 be a nilpotent element associated with a partition (𝑞𝑚, 𝝂), where
1 < 𝑚 ≤ 𝑚 in the notation of (45), and 𝝂 = (𝜈1, . . . , 𝜈𝑡 ) is a partition of 𝑠 := 𝑛 − 𝑞𝑚 such that 𝜈1 < 𝑞.
Then

𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) �𝒲−𝑠+𝑠/𝑞 (𝔰𝔩𝑠 , 𝑓 ′),

where 𝑓 ′ is a nilpotent element in 𝔰𝔩𝑠 associated with the partition 𝝂.
Note that Conjecture 8.11 has been proven in the special case where 𝑛 = 7, 𝑞 = 3 and 𝑠 = 4 by

Francesco Allegra [6]. This case is, in fact, a particular case of Theorem 8.8 used with f corresponding
to the partitions (32, 1), (3, 22) and (3, 14). It seems that this conjecture has been stated in [81].

5This statement has been recently established in [5].
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The associated variety of 𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) is SO(𝑞�̃�,�̃�) , 𝑓
, while the associated variety of

𝒲−𝑠+𝑠/𝑞 (𝔰𝔩𝑠 , 𝑓 ′) is SO(𝑞�̃�−𝑚,�̃�) , 𝑓
′ . These two nilpotent Slodowy slices are isomorphic by Lemma 8.2.

The following proposition gives further evidence for Conjecture 8.11.

Proposition 8.12. In the above notations, the vertex algebras 𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛, 𝑓 ) and 𝒲−𝑠+𝑠/𝑞 (𝔰𝔩𝑠 , 𝑓 ′)
have the same asymptotic growth.

Proof. Write 𝝁 = (𝜇1, . . . , 𝜇𝑟 ) the partition (𝑞𝑚, 𝝂) corresponding to f. Notice that g𝒲−𝑛+𝑛/𝑞 (𝔰𝔩𝑛 , 𝑓 ) =

dim𝔤 𝑓 − 𝑛
𝑛𝑞 dim𝔰𝔩𝑛 =

∑𝑞
𝑖=1 (𝜇

∗
𝑖 )2 − 1 − (𝑛2−1)

𝑞 and g𝒲−𝑠+𝑠/𝑞 (𝔰𝔩𝑠 , 𝑓 ′) = dim𝔤 𝑓 − 𝑠
𝑠𝑞 dim𝔰𝔩𝑠 =

∑𝑞
𝑖=1(𝜇

∗
𝑖 −

𝑚)2 − 1 − (𝑠2−1)
𝑞 , where (𝜇∗1, . . . , 𝜇

∗
𝑞) is the dual partition to 𝝁. But we readily verify from the values

of the 𝜇𝑖’s that the following identity holds:
∑𝑞
𝑖=1(𝜇

∗
𝑖 )2 − (𝑛2−1)

𝑞 =
∑𝑞
𝑖=1 (𝜇

∗
𝑖 − 𝑚)2 − (𝑠2−1)

𝑞 , whence the
lemma. �

9. Collapsing levels for types 𝔰𝔭𝑛 and 𝔰𝔬𝑛

Let 𝑛 ∈ Z>0. We study in this section collapsing levels for 𝔰𝔭𝑛 and 𝔰𝔬𝑛.

Notations for 𝔰𝔭𝑛
We realise 𝔤 = 𝔰𝔭𝑛 as the set of n-size square matrices x such that 𝑥𝑇 𝐽𝑛 + 𝐽𝑛𝑥 = 0, where 𝐽𝑛 is the
anti-diagonal matrix given by

𝐽𝑛 :=
(

0 𝑈𝑛/2
−𝑈𝑛/2 0

)
,

where for 𝑚 ∈ Z≥0,𝑈𝑚 stands for the m-size square matrix with unit on the anti-diagonal. For an m-size
square matrix x, we write �̂� for the matrix𝑈𝑚𝑥

𝑇𝑈𝑚, where 𝑥𝑇 is the transpose matrix of x. Thus,

𝔰𝔭𝑛 =

{(
𝑎 𝑏
𝑐 −�̂�

)
: 𝑎, 𝑏, 𝑐 ∈ 𝔤𝔩𝑛/2, 𝑏 = �̂�, 𝑐 = 𝑐

}
.

Writing 𝑒𝑖, 𝑗 for the 𝑖, 𝑗-matrix unit as in the 𝔰𝔩𝑛 case, the following matrices give a Chevalley basis for 𝔤:

{𝑒𝑖, 𝑗 − 𝑒− 𝑗 ,−𝑖}1≤𝑖, 𝑗≤𝑛/2 ∪ {𝑒𝑖,− 𝑗 + 𝑒 𝑗 ,−𝑖 , 𝑒−𝑖, 𝑗 + 𝑒− 𝑗 ,𝑖}1≤𝑖< 𝑗≤𝑛/2

∪ {𝑒𝑘,−𝑘 , 𝑒−𝑘,𝑘 }1≤𝑘≤𝑛/2.

Let 𝜎𝑖, 𝑗 ∈ {±1} denote the 𝑒𝑖, 𝑗 -coefficient of the unique element in the above basis that involves 𝑒𝑖, 𝑗 .
The Killing form of 𝔤 = 𝔰𝔭𝑛 is given by 𝜅𝔤 (𝑥, 𝑦) = (𝑛 + 2)tr(𝑥𝑦) and (𝑥 |𝑦)𝔤 = tr(𝑥𝑦).

Set

𝒫−1 (𝑛) := {𝝀 ∈ 𝒫(𝑛) : number of parts of size𝜆is even, for each odd number𝜆}.

By [32, Theorem 5.1.3], nilpotent orbits of 𝔰𝔭𝑛 are parametrised by 𝒫−1 (𝑛). For 𝝀 = (𝜆1, . . . , 𝜆𝑟 ) ∈
𝒫−1 (𝑛), we shall denote by O−1;𝝀 , or simply by O𝝀 when there is no possible confusion, the corre-
sponding nilpotent orbit of 𝔰𝔭𝑛. As in the case of 𝔰𝔩𝑛, if 𝝀, 𝝁 ∈ 𝒫−1 (𝑛), then O−1;𝝁 ⊂ O−1;𝝀 if and only
if 𝝁 � 𝝀.

Given 𝝀 ∈ 𝒫(𝑛), there exists a unique 𝝀− ∈ 𝒫−1 (𝑛) such that 𝝀− ≤ 𝝀, and if 𝝁 ∈ 𝒫−1 (𝑛) verifies
𝝁 ≤ 𝝀, then 𝝁 ≤ 𝝀−.
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Notations for 𝔰𝔬𝑛
We realise 𝔰𝔬𝑛 as the set of n-size square matrices x such that 𝑥𝑇 𝐾𝑛 + 𝐾𝑛𝑥 = 0, where 𝐾𝑛 is the
anti-diagonal matrix given by

𝐾𝑛 := �� 
0 0 𝑈𝑛/2
0 2 0

𝑈𝑛/2 0 0

!"# if 𝑛 is odd, 𝐾𝑛 :=
(

0 𝑈𝑛/2
𝑈𝑛/2 0

)
if 𝑛 is even.

Thus, we get that

𝔰𝔬𝑛 =

⎧⎪⎪⎨⎪⎪⎩�� 
𝑎 𝑢 𝑏
𝑣 0 −�̂�
𝑐 −�̂� −�̂�

!"# : 𝑎, 𝑏, 𝑐 ∈ 𝔤𝔩𝑛/2, 𝑏 = −�̂�, 𝑐 = −𝑐
⎫⎪⎪⎬⎪⎪⎭ if 𝑛 is odd,

𝔰𝔬𝑛 =

{(
𝑎 𝑏
𝑐 −�̂�

)
: 𝑎, 𝑏, 𝑐 ∈ 𝔤𝔩𝑛/2, 𝑏 = −�̂�, 𝑐 = −𝑐

}
if 𝑛 is even.

Writing 𝑒𝑖, 𝑗 for the 𝑖, 𝑗-matrix unit as in the 𝔰𝔩𝑛 case, we see that the following matrices give a Chevalley
basis for 𝔤 (omitting the last family if n is even):

{𝑒𝑖, 𝑗 − 𝑒− 𝑗 ,−𝑖}1≤𝑖, 𝑗≤𝑛/2 ∪ {𝑒𝑖,− 𝑗 − 𝑒 𝑗 ,−𝑖 , 𝑒− 𝑗 ,𝑖 − 𝑒−𝑖, 𝑗 }1≤𝑖< 𝑗≤𝑛/2

∪{2𝑒𝑘,0 − 𝑒0,−𝑘 , 𝑒0,𝑘 − 2𝑒−𝑘,0}1≤𝑘≤𝑛/2.

As in the 𝔰𝔭𝑛 case, let 𝜎𝑖, 𝑗 ∈ {±1} denote the 𝑒𝑖, 𝑗 -coefficient of the unique element in the above basis
that involves 𝑒𝑖, 𝑗 .

The Killing form of 𝔤 = 𝔰𝔬𝑛 is given by 𝜅𝔤 (𝑥, 𝑦) = (𝑛 − 2)tr(𝑥𝑦) and (𝑥 |𝑦)𝔤 = tr(𝑥𝑦)/2. Set

𝒫1 (𝑛) := {𝝀 ∈ 𝒫(𝑛) : number of parts of size𝜆is even, for each even𝜆}.

By [32, Theorems 5.1.2 and 5.1.4], nilpotent orbits of 𝔰𝔬𝑛 are parametrised by 𝒫1(𝑛), with the exception
that each very even partition 𝝀 ∈ 𝒫1(𝑛) (i.e., 𝝀 has only even parts) corresponds to two nilpotent orbits.
For 𝝀 ∈ 𝒫1 (𝑛), not very even, we shall denote by O1;𝝀 , or simply by O𝝀 when there is no possible
confusion, the corresponding nilpotent orbit of 𝔰𝔬𝑛. For very even 𝝀 ∈ 𝒫1 (𝑛), we shall denote by O𝐼1;𝝀
and O𝐼𝐼1;𝝀 the two corresponding nilpotent orbits of 𝔰𝔬𝑛. In fact, their union forms a single 𝑂 (𝑛)-orbit.
Thus, nilpotent orbits of 𝔬𝑛 are parametrised by 𝒫1(𝑛).

If 𝝀, 𝝁 ∈ 𝒫1(𝑛), then O
•
1;𝝁 � O

•
1;𝝀 if and only if 𝝁 < 𝝀, where O•

1;𝝀 is either O1;𝝀 , O𝐼1;𝝀 or O𝐼 𝐼1;𝝀
according to whether 𝝀 is very even or not.

Given 𝝀 ∈ 𝒫(𝑛), there exists a unique 𝝀+ ∈ 𝒫1(𝑛) such that 𝝀+ ≤ 𝝀, and if 𝝁 ∈ 𝒫1(𝑛) verifies
𝝁 ≤ 𝝀, then 𝝁 ≤ 𝝀+.

Definition 9.1. Assume that 𝝀 ∈ 𝒫𝜀 (𝑛), for 𝜀 ∈ {±1}. An 𝜀-degeneration of 𝝀 is an element 𝝁 ∈ 𝒫𝜀 (𝑛)
such that O𝜀;𝝁 � O𝜀;𝝀 – that is, 𝝁 < 𝝀. A 𝜀-degeneration 𝝁 of 𝝀 is said to be minimal if O𝜀;𝝁 is open
in O𝜀;𝝀 \ O𝜀;𝝀 .

9.1. Symplectic and orthogonal pyramids

As in the 𝔰𝔩𝑛 case, there is a bijection between the set of good gradings of 𝔰𝔭𝑛 or 𝔰𝔬𝑛 compatible with
a given nilpotent element and the set of some pyramids of shape the corresponding partition of 𝒫𝜀 (𝑛),
with 𝜀 ∈ {±1}. Such pyramids are called symplectic pyramids for 𝔰𝔭𝑛 (𝜀 = −1) and orthogonal pyramids
for 𝔰𝔬𝑛 (𝜀 = 1). For 𝔰𝔭𝑛 and 𝔰𝔬𝑛, we will be only using symplectic or orthogonal Dynkin pyramids.
This is a diagram consisting of n boxes each of size 2 units by 2 units drawn in the 𝑥𝑦-plane. As in the
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Figure 9. Symplectic Dynkin pyramid of shape (52, 12).

Figure 10. Symplectic Dynkin pyramid of shape (52, 4, 2).

Figure 11. Orthogonal Dynkin pyramid of shape (42, 12).

𝔰𝔩𝑛 case, the coordinates of a box are the coordinates of its midpoint, and the row and column numbers
of a box mean its y- and x-coordinate, respectively, but there are a few differences.

Let us first explain what are the symplectic Dynkin pyramids of shape 𝝀 ∈ 𝒫−1(𝑛). The parts of
𝝀 indicate the number of boxes in each row, and the rows are added to the diagram so that we get a
symmetric pyramid with respect to the point (0, 0). The only complication is that if some (necessarily
even) part 𝜆𝑖 of 𝝀 has odd multiplicity, then the first time a row of this length is added to the diagram,
it is split into two halves, the right half is added to the next free row in the upper half plane in columns
1, 3, . . . , 𝜆𝑖 − 1 and the left half is added to the lower half plane in a centrally symmetric way. We
refer the exceptional rows arising in this way to as skew rows. The missing boxes in skew rows are
drawn as a box with a cross through it. We number the boxes of the symplectic Dynkin pyramid with
labels 1, . . . , 𝑛/2,−𝑛/2, . . . ,−1 in such a way that i and −𝑖 appear in centrally symmetric boxes, for
𝑖 = 1, . . . , 𝑛/2. As a rule, we will number the first 𝑛/2 boxes of symplectic Dynkin pyramids from top
right to bottom left.

For example, we represent in Figure 9 and Figure 10 the numbered symplectic Dynkin pyramids of
shape 𝝀 = (52, 12) and 𝝀 = (52, 4, 2), respectively.

Let us now explain what are the orthogonal Dynkin pyramids of shape 𝝀 ∈ 𝒫1 (𝑛). Assume to start
with that n is even. Then the orthogonal Dynkin pyramid is constructed as in the symplectic case,
adding rows of lengths determined by the parts of 𝝀 working outwards from the x-axis starting with
the largest part, in a centrally symmetric way. The only difficulty is if some (necessarily odd) part of
𝝀 appears with odd multiplicity. As n is even, the number of distinct parts having odd multiplicity is
even. Choose 𝑖1 < 𝑗1 < · · · < 𝑖𝑟 < 𝑗𝑟 such that 𝜆𝑖1 > 𝜆 𝑗1 > · · · > 𝜆𝑖𝑟 > 𝜆 𝑗𝑟 are representatives
for all the distinct odd parts of 𝝀 having odd multiplicity. Then the first time the part 𝜆𝑖𝑠 needs to be
added to the diagram, the part 𝜆 𝑗𝑠 is also added at the same time, so that the parts 𝜆𝑖𝑠 and 𝜆 𝑗𝑠 of 𝝀
contribute two centrally symmetric rows to the diagram, one row in the upper half plane with boxes in
columns 1 − 𝜆 𝑗𝑠 , 3 − 𝜆 𝑗𝑠 , . . . , 𝜆𝑖𝑠 − 1 and the other row in the lower half plane with boxes in columns
1 − 𝜆𝑖𝑠 , 3 − 𝜆𝑖𝑠 , . . . , 𝜆 𝑗𝑠 − 1. We will refer to the exceptional rows arising in this way as skew rows. We
number the boxes exactly as in the symplectic case.

For example, we represent in Figure 11 and Figure 12 the numbered orthogonal Dynkin pyramids of
shape 𝝀 = (42, 12) and 𝝀 = (3, 13), respectively.

If n is odd, there is one additional consideration. There must be some odd part appearing with
odd multiplicity. Let 𝜆𝑖 be the largest such part, and put 𝜆𝑖 boxes into the zeroth row in columns
1 − 𝜆𝑖 , 3 − 𝜆𝑖 , . . . , 𝜆𝑖 − 1; we also treat this zeroth row as a skew row. Now remove the part 𝜆𝑖
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Figure 12. Orthogonal Dynkin pyramid of shape (3, 13).

Figure 13. Orthogonal Dynkin pyramid of shape (53, 12).

Figure 14. Orthogonal Dynkin pyramid of shape (42, 3).

from 𝝀 to obtain a partition of an even number. The remaining parts are then added to the diagram
exactly as in the case n even. We number the boxes exactly as in the symplectic Dynkin pyramid with
labels 1, . . . , 𝑛/2, 0,−𝑛/2, . . . ,−1 in such a way that i and −𝑖 appear in centrally symmetric boxes, for
𝑖 = 1, . . . , 𝑛/2, except that there is here a box numbered 0.

We represent in Figure 13 and Figure 14 two more examples: the numbered orthogonal Dynkin
pyramids of shape 𝝀 = (53, 12) and 𝝀 = (42, 3), respectively.

We can now fix a choice of an 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) such that 𝑓 ∈ O−1;𝝀 by setting 𝑓 =
∑
𝑖, 𝑗 𝜎𝑖, 𝑗𝑒𝑖, 𝑗 for

all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where the sum of over all pairs 𝑖, 𝑗 of boxes such in the Dynkin pyramid such that

either col( 𝑗) = col(𝑖) + 2 and row(𝑖) = row( 𝑗),
or col( 𝑗) = 1, col(𝑖) = −1 and row(𝑖) = −row( 𝑗)

is a skew-row in the upper half plane,

and ℎ =
∑𝑛
𝑖=1 col(𝑖)𝑒𝑖,𝑖 (so 𝑥0 =

∑𝑛
𝑖=1

1
2 col(𝑖)𝑒𝑖,𝑖).

The following lemma is a refinement of [66, Theorem 12.3]. We refer to [68, Propositions 8.5.1 and
8.5.2] for a proof.

Lemma 9.2 (row/column removal rule for 𝔰𝔭𝑛 and 𝔰𝔬𝑛). Let 𝝀 ∈ 𝒫𝜀 (𝑛), for 𝜀 ∈ {±1}, and 𝝁 a
degeneration of 𝝀. Assume that the first l rows and the first m columns of 𝝀 and 𝝁 coincide, and denote
by 𝝀′ and 𝝁′ the partitions obtained by erasing these l common rows and common m columns. Then

SO𝜀;𝝀 , 𝑓 � SO𝜀;𝝀′ , 𝑓 ′ ,

as algebraic varieties, with 𝑓 ∈ O𝜀;𝝁 and 𝑓 ′ ∈ O𝜀;𝝁′ . In particular, if 𝑓 ′ = 0, then SO𝜀;𝝀 , 𝑓 � O𝜀;𝝀′ .

By [10, Tables 2 and 3], the nilpotent orbit O𝑘 , for k admissible for 𝔤 = 𝔰𝔭𝑛 or 𝔤 = 𝔰𝔬𝑛, is described
as follows:

◦ If k is a principal admissible level for 𝔰𝔭𝑛 (that is, q is odd), then O𝑘 = O−1;˜𝝀
− , where ˜𝝀 = (𝑞�̃�, �̃�) ∈

𝒫(𝑛), with 0 ≤ �̃� ≤ 𝑞 − 1.
◦ If k is a coprincipal admissible level for 𝔰𝔭𝑛 (that is, q is even), then O𝑘 = O−1;˜𝝀

− , where ˜𝝀 =

( 𝑞2 + 1, ( 𝑞2 )
�̃�, �̃�) ∈ 𝒫(𝑛), with 0 ≤ �̃� ≤ 𝑞

2 − 1.
◦ If k is a principal admissible level for 𝔰𝔬𝑛 (that is, either n is even, or both n and q are odd), then
O𝑘 = O1;˜𝝀

+ , where ˜𝝀 = (𝑞 + 1, 𝑞�̃�, �̃�) ∈ 𝒫(𝑛), with 0 ≤ �̃� ≤ 𝑞 − 1.
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◦ If k is a coprincipal admissible level for 𝔰𝔬𝑛 (that is, n is odd and q is even), then O𝑘 = O1;˜𝝀
+ , where

˜𝝀 = (𝑞�̃�, �̃�) ∈ 𝒫(𝑛), with 0 ≤ �̃� ≤ 𝑞 − 1.

The following lemma is the analog of Lemma 8.3 for 𝔰𝔭𝑛.

Lemma 9.3 (Case 𝔰𝔭𝑛). Let 𝝀 ∈ 𝒫−1 (𝑛) be such that O𝑘 = O−1,𝝀 . Fix a partition 𝝁 ∈ 𝒫−1 (𝑛) of n such
that O𝝁 ⊂ O𝝀 . Let 𝝀′ and 𝝁′ be the partitions obtained from 𝝀 and 𝝁 by erasing all common rows and
columns of 𝝀 and 𝝁. Then, 𝝁′ corresponds to the zero nilpotent orbit of 𝔰𝔭 |𝝁′ | – that is, 𝝁′ = (1 |𝝁′ | ) if
and only if 𝝁 is of one of the following types:

(a) 𝝁 = 𝝀,
(b) 𝝁 = (𝑞𝑚, 1𝑠), with q odd, m even, 𝑠 ≥ 0,
(c) 𝝁 = (𝑞�̃�−1, 𝑞 − 1, 1�̃�+1), with q odd,
(d) 𝝁 = (𝑞�̃�−1, (𝑞 − 2)2) and �̃� = 𝑞 − 4, with q odd,
(e) 𝝁 = (( 𝑞2 )

𝑚, 1𝑠), with q even, 𝑞
2 , 𝑠 even, m odd or even.

(f) 𝝁 = (( 𝑞2 )
�̃�, ( 𝑞2 − 1)2) and �̃� = 𝑞

2 − 4, with q even, 𝑞
2 even,

(g) 𝝁 = ( 𝑞2 + 1, ( 𝑞2 )
𝑚, 1𝑠), with q even, 𝑞

2 odd, 𝑚, 𝑠 even,
(h) 𝝁 = (( 𝑞2 )

�̃�+2, �̃�), with q even, 𝑞
2 odd.

(i) 𝝁 = ( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑞2 − 1, 1𝑠), with q even, 𝑞

2 odd, 𝑚, 𝑠 even,
(j) 𝝁 = ( 𝑞2 + 1, ( 𝑞2 )

�̃�−1, ( 𝑞2 − 2)2), and �̃� = 𝑞
2 − 4, with q even, 𝑞

2 odd,
(k) 𝝁 = (( 𝑞2 − 1)2), 𝑚 = 0 and �̃� = 𝑞

2 − 3, with q even, 𝑞
2 odd.

Here, |𝝁′ | stands for the sum of the parts of 𝝁′.

Proof. We argue as in the proof of Lemma 8.3. One can assume that 𝝁 ≠ 𝝀, the case where 𝝁 = 𝝀 being
obvious. According to the above description of O𝑘 , five types of partitions for 𝝀 can be distinguished.
We consider the different types.

(1) 𝝀 = (𝑞�̃�, �̃�), with q odd, 𝑚 even and 0 ≤ �̃� ≤ 𝑞 − 1. This case is very similar to that of 𝔰𝔩𝑛. This
leads to the partitions of type (b), the case that 𝝁 is of type (𝑞�̃�−1, (𝑞 − 1)2) being excluded since q and
𝑚 − 2 are odd.

(2) 𝝀 = (𝑞�̃�−1, 𝑞 − 1, �̃� + 1), with q odd, 𝑚 − 1 even, 2 ≤ �̃� + 1 ≤ 𝑞 − 1. Assume first that
𝝁 = (𝑞�̃�−1, 𝑞 − 1, 𝝂), with 𝝂 = (𝜈𝑡 , . . . , 𝜈𝑡 ) and 𝜈1 ≤ 𝑞 − 1. Then 𝝀′ = ( �̃� + 1) and 𝝁′ = 𝝂. So the only
possibility for that 𝝁′ corresponds to the zero orbit is that 𝜈𝑖 = 1 for any i – that is, 𝝁 is of the form (c).

Assume now that 𝝁 = (𝑞𝑚, 𝝂), with 0 ≤ 𝑚 ≤ 𝑚−1 even, 𝝂 = (𝜈𝑡 , . . . , 𝜈𝑡 ) and 𝜈1 ≤ 𝑞−1. Let 𝝀′′ and
𝝁′′ be the partitions obtained by erasing all common rows of 𝝀 and 𝝁. Then 𝝀′′ = (𝑞�̃�−1−𝑚, 𝑞 − 1, �̃� + 1)
and 𝝁′′ = 𝝂. If 𝜈𝑖 = 1 for all i, then we get a partition of type (b). Otherwise, observe that 𝝀′′

and 𝝁′ have at least one common column if and only if 𝑡 = 𝑚 − 𝑚 + 1. If so, then 𝜈𝑡 > �̃� + 1 and
𝝀′ = ((𝑞 − �̃� − 1)�̃�−1−𝑚, 𝑞 − 2 − �̃�), 𝝁′ = (𝜈1 − �̃� − 1, . . . , 𝜈𝑡 − �̃� − 1). The partition 𝝁′ corresponds to
the zero orbit if and only if 𝜈𝑖 − �̃� − 1 = 1 for all i. Then

𝑚 − 𝑚 + 1 = (𝑚 − 1 − 𝑚) (𝑞 − �̃� − 1) + 𝑞 − 2 − �̃�.

That is,

2 = (𝑚 − 𝑚) (𝑞 − �̃� − 2).

Since 𝑚 − 𝑚 is odd, the only possibility is that 𝑚 − 𝑚 = 1 – that is, 𝑚 = 𝑚 − 1 and 𝑞 − �̃� − 2 = 2; that
is, �̃� = 𝑞 − 4. Hence, 𝑡 = 2 and 𝜈1 = 𝜈2 = 𝑞 − 2. So 𝝁 of the form (d).

(3) 𝝀 = (( 𝑞2 )
�̃�+1, �̃� + 1), with q even, 𝑞

2 even, 𝑚 odd or even and 0 ≤ �̃� + 1 ≤ 𝑞
2 − 1. This case is very

similar to the 𝔰𝔩𝑛 one. So we conclude similarly. This leads to the partitions of type (e) or (f).
(4) 𝝀 = ( 𝑞2 + 1, ( 𝑞2 )

�̃�, �̃�), with q even, 𝑞
2 odd, 𝑚 even and 1 ≤ �̃� ≤ 𝑞

2 − 1. Assume first that
𝝁 = ( 𝑞2 +1, ( 𝑞2 )

𝑚, 𝝂), with 0 ≤ 𝑚 ≤ 𝑚, 𝝂 = (𝜈𝑡 , . . . , 𝜈𝑡 ) and 𝜈1 ≤ 𝑞
2 −1. Let 𝝀′′ and 𝝁′′ be the partitions

obtained by erasing all common rows of 𝝀 and 𝝁. Then 𝝀′′ = (𝑞�̃�−𝑚, �̃�) and 𝝁′′ = 𝝂. So we are led to
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the case (3), but the partition 𝝁 = ( 𝑞2 + 1, ( 𝑞2 )
�̃�−1, ( 𝑞2 − 1)2) is excluded since both 𝑞

2 and 𝑚 − 1 are odd.
So we get only the type (g).

Assume now that 𝝁 = (( 𝑞2 )
𝑚, 𝝂), with 0 ≤ 𝑚 ≤ 𝑚+2, 𝝂 = (𝜈𝑡 , . . . , 𝜈𝑡 ) and 𝜈1 ≤ 𝑞

2 −1. Then 𝝀 and 𝝁
have no common rows. Moreover, 𝝀 and 𝝁 have at least one common column if and only if𝑚+ 𝑡 = 𝑚+2.
If so, then 𝜈𝑡 > �̃�, and we have 𝝀′ = ( 𝑞2 + 1− �̃�, ( 𝑞2 − �̃�)�̃�), 𝝁′ = (( 𝑞2 − �̃�)𝑚, 𝜈1 − �̃�, . . . , 𝜈𝑡 − �̃�). The later
corresponds to the zero orbit if and only if either 𝑞

2 − �̃� = 1 and 𝜈𝑖 − �̃� = 1 for all i, whence 𝑚 + 𝑡 = 𝑚 + 2
and �̃� = 𝑞

2 − 1 and, necessarily, 𝝁 has type (h) with �̃� = 0. Or 𝑚 = 0 and 𝜈𝑖 − �̃� = 1 for all i, whence

𝑚 + 2 = 𝑚
( 𝑞

2
− �̃�

)
+ 𝑞

2
− 1 − �̃�.

That is,

2 = (𝑚 + 1)
( 𝑞

2
− 1 − �̃�

)
.

Hence, for parity reasons, we get that 𝑚 = 0, 𝝀 = ( 𝑞2 + 1, 𝑞2 − 3) and 𝝁 = (( 𝑞2 − 1)2). This yields to the
partition of type (k).

(5) 𝝀 = ( 𝑞2 + 1, ( 𝑞2 )
�̃�−1, 𝑞2 − 1, �̃� + 1), with q even, 𝑞

2 odd, 𝑚 − 1 even and 2 ≤ �̃� + 1 ≤ 𝑞
2 − 1.

Assume first that the first row of 𝝁 if 𝑞
2 + 1. By erasing the first (common) row of 𝝀 and 𝝁, we go to

the situation (3) with 𝑞
2 is place of q. So we get partitions of types (g), (i) or (j).

Assume now that 𝝁 = (( 𝑞2 )
𝑚, 𝝂), with 0 ≤ 𝑚 ≤ 𝑚 + 1, 𝝂 = (𝜈𝑡 , . . . , 𝜈𝑡 ) and 𝜈1 ≤ 𝑞

2 − 1.
Then 𝝀 and 𝝁 have no common rows. Moreover, 𝝀 and 𝝁 have at least one common column only if
𝑚 + 𝑡 = 𝑚 + 2. If so, either 𝜈𝑡 = �̃� + 1 and then necessarily 𝝁 is of the type (h), or 𝜈𝑡 > �̃� + 1 and we have
𝝀′ = ( 𝑞2 − �̃�, ( 𝑞2 − �̃� − 1)�̃�−1, 𝑞2 − 2 − �̃�) and 𝝁′ = (( 𝑞2 − �̃� − 1)𝑚, 𝜈1 − �̃� − 1, . . . , 𝜈𝑡 − �̃� − 1). The later
corresponds to the zero nilpotent orbit if and only if either 𝑞

2 − �̃� − 1 = 1 and 𝜈𝑖 − �̃� − 1 = 1 for all i,
whence 𝑚 + 𝑡 = 𝑚 + 1 and �̃� + 1 = 𝑞

2 − 1, and 𝝁 has type (h) with �̃� = 𝑞
2 − 2, or 𝑚 = 0 and 𝜈𝑖 − �̃� − 1 = 1

for all i, whence

𝑚 + 1 = (𝑚 + 1) 𝑞
2
+ �̃� + 1.

That is,

0 = (𝑚 + 1)
( 𝑞

2
− 1

)
+ �̃� + 1,

whence, 𝑞
2 = 1 and �̃� + 1 = 0, which is impossible.

Conversely, we easily that all the partitions of type (a)–(k) verify the desired conditions. �

We now state the analog of Lemma 8.3 for 𝔰𝔬𝑛.

Lemma 9.4 (Case 𝔰𝔬𝑛). Let 𝝀 ∈ 𝒫1(𝑛) be such that O𝑘 = O1;𝝀 . Fix a partition 𝝁 of n such that
O𝝁 ⊂ O𝝀 . Let 𝝀′ and 𝝁′ be the partitions obtained from 𝝀 and 𝝁 by erasing all common rows and
columns of 𝝀 and 𝝁. Then, 𝝁′ corresponds to the zero nilpotent orbit of 𝔰𝔭 |𝝁′ | – that is, 𝝁′ = (1 |𝝁′ | ) if
and only if 𝝁 ∈ 𝒫1 (𝑛) is of one of the following types:

(a) 𝝁 = 𝝀,
(b) 𝝁 = (𝑞𝑚, 1𝑠), with q odd or even, m odd or even, 𝑠 ≥ 0,
(c) 𝝁 = (𝑞�̃�, (𝑞 − 1)2), �̃� = 𝑞 − 3 and 𝑚 odd, with q odd,
(d) 𝝁 = (3�̃�−1, 24), 𝑞 = 3, �̃� = 1 and 𝑚 even,
(e) 𝝁 = (𝑞�̃�+1, 22), �̃� = 3 and 𝑚 + 1 odd, with q odd,
(f) 𝝁 = (𝑞�̃�, (𝑞 − 1)2, 1), �̃� = 𝑞 − 2 and 𝑚 even, with q odd,
(g) 𝝁 = (𝑞�̃�−1, 𝑞 − 1, 1𝑠), with q even, 𝑠 ≥ 0,
(h) 𝝁 = (𝑞�̃�−1, 𝑞 − 1, 22) and �̃� = 3, with q even,
(i) 𝝁 = (𝑞�̃�−1, (𝑞 − 2)2, 1) and �̃� = 𝑞 − 3, with q even,
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Table 3. Centralisers of some 𝔰𝔩2-triples (𝑒, ℎ, 𝑓 ) in 𝔰𝔭𝑛, with 𝑓 ∈ O−1;𝝁 ..

𝝁 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖 Conditions

(𝑞𝑚, 𝑠) 𝔰𝔭𝑚 𝑘
♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − ( 𝑛2 + 1) q odd, m even, 0 ≤ 𝑠 ≤ 𝑞 − 1 even

(𝑞𝑚, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔭𝑠 𝑘
♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − ( 𝑛2 + 1) q odd, m even, 𝑠 ≥ 0 even
𝑘
♮
2 = 𝑘 + 𝑛

2 − 𝑚
2 − 𝑠

2
(𝑞𝑚, 𝑞 − 1, 𝑠) 𝔰𝔭𝑚 𝑘

♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − ( 𝑛2 + 1) q odd, m even, 0 ≤ 𝑠 ≤ 𝑞 − 1 even

(𝑞𝑚, 𝑞 − 1, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔭𝑠 𝑘
♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − ( 𝑛2 + 1) q odd, m even, 𝑠 ≥ 0 even
𝑘
♮
2 = 𝑘 + 𝑛

2 − 𝑚
2 − 𝑠

2 − 1
2

(𝑞𝑚, (𝑞 − 2)2) 𝔰𝔭𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − ( 𝑛2 + 1) q odd, m even
𝑘
♮
2 = (𝑞 − 2) (𝑘 + 𝑛

2 − 𝑚
2 ) − 1

( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑠) 𝔰𝔭𝑚 𝑘

♮
1 = 𝑞

2 𝑘 + 𝑞
2 ( 𝑛2 + 1) − 𝑛+1

2 q even, 𝑞
2 odd, 𝑚 even, 0 ≤ 𝑠 ≤ 𝑞 − 1 even

( 𝑞2 + 1, ( 𝑞2 )
𝑚, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔭𝑠 𝑘

♮
1 = 𝑞

2 𝑘 + 𝑞
2 ( 𝑛2 + 1) − 𝑛+1

2 q even, 𝑞
2 odd, m even, 𝑠 ≥ 0 even

𝑘
♮
2 = 𝑘 + 𝑛

2 − 𝑚
2 − 𝑠

2 − 1
2

( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑞

2 − 1, 𝑠) 𝔰𝔭𝑚 𝑘
♮
1 = 𝑞

2 𝑘 + 𝑞
2 ( 𝑛2 + 1) − 𝑛+1

2 q even, 𝑞
2 odd, 𝑚 even, 2 ≤ 𝑠 ≤ 𝑞 − 1 even

( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑞

2 − 1, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔭𝑠 𝑘
♮
1 = 𝑞

2 𝑘 + 𝑞
2 ( 𝑛2 + 1) − 𝑛+1

2 q even, 𝑞
2 odd, m even, 𝑠 ≥ 0 even

𝑘
♮
2 = 𝑘 + 𝑛

2 − 𝑚
2 − 𝑠

2 − 1
( 𝑞2 + 1, ( 𝑞2 )

𝑚, ( 𝑞2 − 2)2) 𝔰𝔭𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞

2 𝑘 + 𝑞
2 ( 𝑛2 + 1) − 𝑛+1

2 q even, 𝑞
2 odd, m even

𝑘
♮
2 = ( 𝑞2 − 2) (𝑘 + 𝑛

2 − 𝑚
2 − 1

2 ) − 1
( ( 𝑞2 )

𝑚, 𝑠) 𝔰𝔬𝑚 𝑘
♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − 𝑛 q even, 𝑞

2 even, m odd or even, 0 ≤ 𝑠 ≤ 𝑞 − 1 even
( ( 𝑞2 )

𝑚, 1𝑠) 𝔰𝔬𝑚 × 𝔰𝔭𝑠 𝑘
♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − 𝑛 q even, 𝑞

2 even, 𝑠 ≥ 0 even
𝑘
♮
2 = 𝑘 + 𝑛

2 − 𝑚
2 − 𝑠

2
( ( 𝑞2 )

𝑚, ( 𝑞2 − 1)2) 𝔰𝔬𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘 + 𝑞 ( 𝑛2 + 1) − 𝑛 q even, 𝑞

2 even, m odd or even
𝑘
♮
2 = ( 𝑞2 − 1) (𝑘 + 𝑛

2 − 𝑚
2 ) − 1

(j) 𝝁 = (𝑞 + 1, 𝑞𝑚, 1𝑠), with 𝑞, 𝑚 even and 𝑠 ≥ 0,
(k) 𝝁 = (𝑞 + 1, 𝑞𝑚, 𝑞 − 1, 1𝑠), with 𝑞, 𝑚 even and 𝑠 ≥ 0,
(l) 𝝁 = (𝑞 + 1, 𝑞�̃�−1, 𝑞 − 1, 22) and �̃� = 3, with q even,

(m) 𝝁 = (𝑞 + 1, 𝑞�̃�−1, (𝑞 − 2)2, 1) and �̃� = 𝑞 − 3, with q even,
(n) 𝝁 = (𝑞�̃�+1, 𝑞 − 1, 1) and �̃� = 𝑞 − 1, with q even.

Here, |𝝁′ | stands for the sum of the parts of 𝝁′.

Proof. The proof is very similar to that of Lemma 9.3. The details are left to the reader. �

In particular, by Lemma 9.2, if 𝝁 is a partition of n as in Lemma 9.3 (resp. Lemma 9.4), the nilpotent
Slodowy slice SO𝑘 , 𝑓 is isomorphic to a nilpotent orbit closure in 𝔰𝔭𝑠 (resp. 𝔰𝔬𝑠) for 𝑓 ∈ O𝜀;𝝁 with
𝜀 = −1 (resp. 𝜀 = 1) and 𝑠 := |𝝁′ |. If 𝝁 is of type (a), note that SO𝑘 , 𝑓 � { 𝑓 }.

In view of Lemmas 9.3 and 9.4, we describe the centraliser 𝔤♮ and the values of the 𝑘 ♮𝑖 ’s for particular
𝔰𝔩2-triples (𝑒, ℎ, 𝑓 ) of 𝔰𝔭𝑛 and 𝔰𝔬𝑛.

Lemma 9.5. Let 𝜀 = −1 (resp. 𝜀 = 1), and 𝑓 ∈ O𝜀;𝝁 a nilpotent element of 𝔰𝔭𝑛 (resp. 𝔰𝔬𝑛) with 𝝁 as in
the first column of Table 3 (resp. Table 4). Then the centraliser 𝔤♮ of an 𝔰𝔩2-triple (𝑒, ℎ, 𝑓 ) and the 𝑘 ♮𝑖 ’s
are given by Table 3 (resp. Table 4). Moreover, if k is admissible, then so is 𝑘 ♮, provided that 𝑘 ♮0 = 0.

In Tables 3 and Table 4, the numbering of the levels 𝑘 ♮𝑖 ’s follows the order in which the simple factors
of 𝔤♮ appear.

Remark 9.6. In Tables 3 and Table 4, the conclusions for small s or m remain valid, up to possible
changes of numbering for the factors 𝔤♮𝑖 . More specifically, if the factor 𝔤♮𝑖 for some i is isomorphic to
𝔰𝔬𝑚 with 𝑚 = 2, then 𝔤♮𝑖 � C, so i must be replaced by 0 and the value of 𝑘 ♮𝑖 remains valid.
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Table 4. Centralisers of some 𝔰𝔩2-triples (𝑒, ℎ, 𝑓 ) in 𝔰𝔬𝑛, with 𝑓 ∈ O1;𝝁 ..

𝝁 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖 Conditions

(𝑞𝑚, 𝑠) 𝔰𝔬𝑚 𝑘
♮
1 = 𝑞𝑘 + 𝑞 (𝑛 − 2) − (𝑛 − 2) q odd, m odd or even, 1 ≤ 𝑠 ≤ 𝑞 − 1 odd

(𝑞𝑚, 1𝑠) 𝔰𝔬𝑚 × 𝔰𝔬𝑠 𝑘
♮
1 = 𝑞𝑘 + 𝑞 (𝑛 − 2) − (𝑛 − 2) q odd, m odd or even, 𝑠 ≥ 1
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 𝑠

(𝑞𝑚, (𝑞 − 1)2) 𝔰𝔬𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘 + 𝑞 (𝑛 − 2) − (𝑛 − 2) q odd, m odd or even
𝑘
♮
2 = 𝑞−1

2 (𝑘 + 𝑛 −𝑚 − 4)
(𝑞𝑚, (𝑞 − 1)2 , 1) 𝔰𝔬𝑚 × 𝔰𝔩2 𝑘

♮
1 = 𝑞𝑘 + 𝑞 (𝑛 − 2) − (𝑛 − 2) q odd, m even
𝑘
♮
2 = 𝑞−1

2 (𝑘 + 𝑛 −𝑚 − 4)
(𝑞𝑚, 𝑠, 1) 𝔰𝔬𝑚 𝑘

♮
1 = 𝑞𝑘 + 𝑞 (𝑛 − 2) − (𝑛 − 2) q odd, m odd or even, 3 ≤ 𝑠 ≤ 𝑞 − 1 odd

(𝑞𝑚, 22) 𝔰𝔬𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘 + 𝑞 (𝑛 − 2) − (𝑛 − 2) q odd, m odd or even
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 4

(3𝑚, 24) 𝔰𝔬𝑚 × 𝔰𝔭4 𝑘
♮
1 = 3𝑘 + 3(𝑛 − 2) − (𝑛 − 2) m odd
𝑘
♮
2 = 𝑘 + 2𝑚 + 2

(𝑞 + 1, 𝑞𝑚, 𝑠) 𝔰𝔭𝑚 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − (𝑛−1)

2 q even, m even, 1 ≤ 𝑠 ≤ 𝑞 − 1 odd
(𝑞 + 1, 𝑞𝑚, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔬𝑠 𝑘

♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − (𝑛−1)

2 q even, m even, 𝑠 ≥ 1 odd
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 𝑠 − 1

(𝑞 + 1, 𝑞𝑚, 𝑞 − 1, 𝑠, 1) 𝔰𝔭𝑚 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − (𝑛−1)

2 q even, m even, 3 ≤ 𝑠 ≤ 𝑞 − 1 odd
(𝑞 + 1, 𝑞𝑚, 𝑞 − 1, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔬𝑠 𝑘

♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − (𝑛−1)

2 q even, m even, 𝑠 ≥ 2 even
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 𝑠 − 2

(𝑞 + 1, 𝑞𝑚, 𝑞 − 1, 22) 𝔰𝔭𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − (𝑛−1)

2 q even, m even
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 6

(𝑞 + 1, 𝑞𝑚, (𝑞 − 2)2, 1) 𝔰𝔭𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − (𝑛−1)

2 q even, m even
𝑘
♮
2 = 𝑞−2

2 (𝑘 + 𝑛 −𝑚 − 5) − 1
2

(𝑞𝑚, 𝑠) 𝔰𝔭𝑚 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − 𝑛

2 q even, m even, 1 ≤ 𝑠 ≤ 𝑞 − 1 odd
(𝑞𝑚, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔬𝑠 𝑘

♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − 𝑛

2 q even, m even, 𝑠 ≥ 0
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 𝑠

(𝑞𝑚, 𝑞 − 1, 𝑠, 1) 𝔰𝔭𝑚 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − 𝑛

2 q even, m even, 3 ≤ 𝑠 ≤ 𝑞 − 1 odd
(𝑞𝑚, 𝑞 − 1, 1𝑠) 𝔰𝔭𝑚 × 𝔰𝔬𝑠 𝑘

♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − 𝑛

2 q even, m even, 𝑠 ≥ 0
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 𝑠 − 1

(𝑞𝑚, 𝑞 − 1, 22) 𝔰𝔭𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − 𝑛

2 q even, m even
𝑘
♮
2 = 𝑘 + 𝑛 −𝑚 − 1

(𝑞𝑚, (𝑞 − 1)2 , 1) 𝔰𝔭𝑚 × 𝔰𝔩2 𝑘
♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − 𝑛

2 q even, m even
𝑘
♮
2 = 𝑞−1

2 (𝑘 + 𝑛 −𝑚 − 4)
(𝑞𝑚, (𝑞 − 2)2 , 1) 𝔰𝔭𝑚 × 𝔰𝔩2 𝑘

♮
1 = 𝑞𝑘

2 + 𝑞 (𝑛−2)
2 − 𝑛

2 q even, m even
𝑘
♮
2 = 𝑞−2

2 (𝑘 + 𝑛 −𝑚 − 4) − 1
2

If the factor 𝔤♮𝑖 for some i – let’s say 𝑖 = 1 – is isomorphic to 𝔰𝔬𝑚 with 𝑚 = 4, then 𝔤♮1 is not simple
and has to replaced by 𝔤♮1 ×𝔤♮2, with 𝔤♮1 � 𝔰𝔩2, 𝔤♮2 � 𝔰𝔩2. Moreover, we have to read 𝑘 ♮2 = 𝑘 ♮1 = · · · instead
of 𝑘 ♮1 = · · · , and the value of 𝑘 ♮1 remains valid.

If the factor 𝔤♮𝑖 for some i is isomorphic to 𝔰𝔬𝑚 or 𝔰𝔩𝑚 with 𝑚 = 1, then this factor does not appear
(we use the convention that 𝔰𝔩1 = 𝔰𝔬1 = 0), and we just forget about 𝑘 ♮𝑖 .

Finally, if the factor 𝔤♮𝑖 for some i is isomorphic to 𝔰𝔬3 � 𝔰𝔩2, 𝔰𝔬6 � 𝔰𝔩3 or 𝔰𝔭2 � 𝔰𝔩2, then the
conclusions remain valid without any change.

Proof. We proceed as in Lemma 8.4. In order to describe 𝔤♮, we use the symplectic (resp. orthogonal)
Dynkin pyramid of shape 𝝁. Indeed, as explained in §9.1, such a pyramid allows to construct an 𝔰𝔩2-triple
(𝑒, ℎ, 𝑓 ) with 𝑓 ∈ O𝝁 . One easily can compute 𝔤0 = 𝔤ℎ from the pyramid, and hence, 𝔤♮ = 𝔤0 ∩ 𝔤 𝑓 .

Case 𝔰𝔭𝑛. We detail the proof for 𝝁 = (𝑞𝑚, 1𝑠) ∈ 𝒫−1(𝑛). The other cases are dealt with similarly, and
the verifications are left to the reader. There are two cases.
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(1) 𝝁 = (𝑞𝑚, 1𝑠) ∈ 𝒫−1 (𝑛), with q odd, m even, s even. In this case, the orbit O−1;𝝁 is even, and the
symplectic Dynkin pyramid associated with the partition 𝝁 is as in Figure 9 if 𝑞 = 5, 𝑚 = 𝑠 = 2. From
the pyramid, we obtain that

𝔤0 =
{
diag(𝑥1, . . . , 𝑥 (𝑞−1)/2, 𝑦,−/𝑥 (𝑞−1)/2, . . . , 𝑥1 : 𝑥𝑖 ∈ 𝔤𝔩𝑚, 𝑦 ∈ 𝔰𝔭𝑚+𝑠

}
� (𝔤𝔩𝑚) (𝑞−1)/2 × 𝔰𝔭𝑚+𝑠 ,

𝔤♮ = {diag(𝑥, . . . , 𝑥, 𝑦,−�̂�, . . . ,−�̂�) :

𝑥 =

(
𝑎 𝑏
𝑐 −�̂�

)
, 𝑦 =

�� 
𝑎 0 𝑏
0 𝑧 0
𝑐 0 −�̂�

!"#, 𝑏 = �̂�, 𝑐 = 𝑐, 𝑧 ∈ 𝔰𝔭𝑠

⎫⎪⎪⎬⎪⎪⎭⊂𝔤0

� 𝔰𝔭𝑚 × 𝔰𝔭𝑠 .

To compute 𝑘 ♮1, pick 𝑡 ∈ 𝔤♮ with 𝑎 = diag(1, . . . , 0), 𝑏 = 𝑐 = 0 and 𝑧 = 0 in the above description
of 𝔤♮. We obtain that (𝑡 |𝑡)♮1 = 2, (𝑡 |𝑡)𝔤 = 2𝑞, 𝜅𝔤 (𝑡, 𝑡) = 4𝑞

(
𝑛
2 + 1

)
, 𝜅𝔤0 (𝑡, 𝑡) = 2𝑚(𝑞 − 1) + 4

(
𝑚+𝑠

2 + 1
)
.

Therefore, 𝑘 ♮1 = 𝑞𝑘 + 𝑞
(
𝑛
2 + 1

)
−

(
𝑛
2 + 1

)
. To compute 𝑘 ♮2, pick 𝑡 ∈ 𝔤♮ with 𝑧 = diag(1, 0, . . . , 0,−1)

and 𝑥 = 0 in the above description of 𝔤♮. We obtain that (𝑡 |𝑡)♮1 = 2, (𝑡 |𝑡)𝔤 = 2, 𝜅𝔤 (𝑡, 𝑡) = 4
(
𝑛
2 + 1

)
,

𝜅𝔤0 (𝑡, 𝑡) = 4
(
𝑚+𝑠

2 + 1
)
. Therefore, 𝑘 ♮2 = 𝑘 +

(
𝑛
2 + 1

)
−

(
𝑚+𝑠

2 + 1
)
.

(2) 𝝁 = (𝑞𝑚, 1𝑠), with q even, m odd or even, s even. The orbit O−1;𝝁 is odd, and we have

𝔤0 =
{
diag(𝑥1, . . . , 𝑥𝑞/2, 𝑦,−𝑥𝑞/2, . . . , 𝑥1 : 𝑥𝑖 ∈ 𝔤𝔩𝑚, 𝑦 ∈ 𝔰𝔭𝑠

}
� (𝔤𝔩𝑚)𝑞/2 × 𝔰𝔭𝑠 ,

𝔤♮ = {diag(𝑥, . . . , 𝑥, 𝑦,−�̂�, . . . , �̂� : 𝑥 ∈ 𝔰𝔬𝑚, 𝑦 ∈ 𝔰𝔭𝑠} ⊂ 𝔤0

� 𝔰𝔬𝑚 × 𝔰𝔭𝑠 .

If 𝑚 = 2 or 𝑚 > 4, we compute 𝑘 ♮1 by picking 𝑡 ∈ 𝔤♮ with 𝑥 = diag(1, 0, . . . , 0,−1) and 𝑦 = 0 in the
above description of 𝔤♮. We obtain that (𝑡 |𝑡)♮1 = 1, (𝑡 |𝑡)𝔤 = 2𝑞, 𝜅𝔤 (𝑡, 𝑡) = 4𝑞

(
𝑛
2 + 1

)
, 𝜅𝔤0 (𝑡, 𝑡) = 2𝑚𝑞,

𝜅1/2 (𝑡, 𝑡) = 2𝑠. Therefore, 𝑘 ♮1 = 2𝑞𝑘 + 2𝑞
(
𝑛
2 + 1

)
− 𝑛, whence the expected result. To compute 𝑘 ♮2,

pick 𝑡 ∈ 𝔤♮ with 𝑥 = 0 and 𝑦 = diag(1, 0, . . . , 0,−1) in the above description of 𝔤♮. We obtain
that (𝑡 |𝑡)♮2 = 2, (𝑡 |𝑡)𝔤 = 2, 𝜅𝔤 (𝑡, 𝑡) = 4

(
𝑛
2 + 1

)
, 𝜅𝔤0 (𝑡, 𝑡) = 4

( 𝑠
2
+ 1

)
, 𝜅1/2(𝑡, 𝑡) = 2𝑚. Therefore,

𝑘
♮
2 = 𝑘 +

(
𝑛
2 + 1

)
−

(𝑚
2
+ 𝑚

2
+ 1

)
, whence the expected result.

Assume 𝑚 = 4. The isomorphism

𝔰𝔬4 � 𝔰𝔩2 × 𝔰𝔩2 (55)

is obtained through the assignments

𝑡1 = diag(1, 1,−1,−1) �� ℎ1, 𝑡2 = diag(1,−1, 1,−1) �� ℎ2,

𝑒1,2 − 𝑒−2,−1 �� 𝑒1, 𝑒1,−2 − 𝑒2,−1 �� 𝑒2, 𝑒2,1 − 𝑒−1,−2 �� 𝑓1, 𝑒−2,1 − 𝑒−1,2 �� 𝑓2,

with span(ℎ𝑖 , 𝑒𝑖 , 𝑓𝑖) � 𝔰𝔩2. To compute 𝑘 ♮1, choose 𝑡 ∈ 𝔤♮ such that 𝑥 = diag(1, 1,−1,−1) and 𝑦 = 0 in
the above description of 𝔤♮. We obtain that 𝑘 ♮1 = 2𝑞𝑘 + 2𝑞

(
𝑛
2 + 1

)
− 𝑛. To compute 𝑘 ♮2, choose 𝑡 ∈ 𝔤♮

such that 𝑥 = diag(1,−1, 1,−1) and 𝑦 = 0 in the above description of 𝔤♮. In the same way, we obtain
that 𝑘 ♮2 = 2𝑞𝑘 + 2𝑞

(
𝑛
2 + 1

)
− 𝑛. The computation of 𝑘 ♮3 in this case works as in the case 𝑚 > 4 for 𝑘 ♮2.

This terminates this case following Remark 9.6.
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Figure 15. Orthogonal Dynkin Pyramid for (73, 14).

Case 𝔰𝔬𝑛. As for the 𝔰𝔭𝑛, we detail the proof only for 𝝁 = (𝑞𝑚, 1𝑠) ∈ 𝒫1 (𝑛). The other cases are
dealt with similarly, and the verifications are left to the reader. There are two cases.

(1) 𝝁 = (𝑞𝑚, 1𝑠) with q odd.
(a) Assume first that m is even. Then the orbitO1;𝝁 is even, and from the pyramid, we easily obtain that

𝔤0 =
{
diag(𝑥1, . . . , 𝑥 (𝑞−1)/2, 𝑦,−/𝑥 (𝑞−1)/2, . . . ,−𝑥1) : 𝑥𝑖 ∈ 𝔤𝔩𝑚, 𝑦 ∈ 𝔰𝔬𝑚+𝑠

}
� (𝔤𝔩𝑚) (𝑞−1)/2 × 𝔰𝔬𝑚+𝑠 ,

𝔤♮ =

{
diag(𝑥, . . . , 𝑥, 𝑦,−�̂�, . . . ,−�̂�) : 𝑥 =

(
𝑎 𝑏
𝑐 −�̂�

)
, 𝑏 = −�̂�, 𝑐 = −�̂�,

𝑦 =
�� 
𝑎 0 𝑏
0 𝑧 0
𝑐 0 −�̂�

!"# 𝑧 ∈ 𝔰𝔬𝑠

⎫⎪⎪⎬⎪⎪⎭ ⊂ 𝔤0

� 𝔰𝔬𝑚×𝔰𝔬𝑠 .

Assume 𝑚 = 2 or 𝑚 > 4. In order to compute 𝑘 ♮1, pick 𝑡 ∈ 𝔤♮ with 𝑎 = diag(1, 0, . . . , 0) and
𝑏 = 𝑐 = 0, 𝑧 = 0 in the above description of 𝔤♮. Then (𝑡 |𝑡)♮1 = 1, (𝑡 |𝑡)𝔤 = 𝑞, 𝜅𝔤 (𝑡, 𝑡) = 2𝑞(𝑛 − 2) and
𝜅𝔤0 (𝑡, 𝑡) = 2𝑚(𝑞−1)+2(𝑚+𝑠−2). Therefore, 𝑘 ♮1 = 𝑞𝑘+𝑞(𝑛−2)−(𝑛−2). In order to compute 𝑘 ♮2, choose
𝑡 ∈ 𝔤♮ such that 𝑧 = diag(1, . . . ,−1) and 𝑎 = 𝑏 = 𝑐 = 0 in the above description of 𝔤♮. Then (𝑡 |𝑡)♮1 = 1,
(𝑡 |𝑡)𝔤 = 1, 𝜅𝔤 (𝑡, 𝑡) = 2(𝑛− 2) and 𝜅𝔤0 (𝑡, 𝑡) = 2(𝑚 + 𝑠− 2). Therefore, 𝑘 ♮2 = 𝑘 + 𝑛−𝑚 − 𝑠. If 𝑚 = 4, using
the isomorphism (55) as in the 𝔰𝔭𝑛 case, we easily verify that 𝑘 ♮1 = 𝑘 ♮2 = 𝑞𝑘 + 𝑞(𝑛 − 2) − (𝑛 − 2) and
𝑘
♮
3 = 𝑘 + 𝑛 − 𝑚 − 𝑠. So the same conclusions hold following Remark 9.6.

(b) Assume now that m is odd. Two cases have to be distinguished.
∗ If s is even, then the orbit O1;𝝁 is even and the Dynkin pyramid is as in Figure 15 if 𝑞 = 7, 𝑚 = 3

and 𝑠 = 2.
From the pyramid, we obtain that

𝔤0 =
{
diag(𝑥1, . . . , 𝑥 (𝑞−1)/2, 𝑦,−/𝑥 (𝑞−1)/2, . . . ,−𝑥1) : 𝑥𝑖 ∈ 𝔤𝔩𝑚, 𝑦 ∈ 𝔰𝔬𝑚+𝑠

}
� (𝔤𝔩𝑚) (𝑞−1)/2×𝔰𝔬𝑚+𝑠 ,

𝔤♮ =

⎧⎪⎪⎨⎪⎪⎩diag(𝑥, . . . , 𝑥, 𝑦,−�̂�, . . . ,−�̂�) : 𝑥 = �� 
𝑎 𝑢 𝑏
𝑣 0 −�̂�
𝑐 −�̂� −�̂�

!"# ∈ 𝔰𝔬𝑚, 𝑎, 𝑏, 𝑐 ∈ 𝔤𝔩 (𝑚−1)/2,

𝑏 = −�̂�, 𝑐 = −�̂�, 𝑦 =

������ 
𝑎 0 𝑢 0 𝑏
0 𝑎′ 0 𝑏′ 0
𝑣 0 0 0 −�̂�
0 𝑐′ 0 −𝑎′ 0
𝑐 0 −�̂� 0 −�̂�

!"""""#
∈ 𝔰𝔬𝑚+𝑠, 𝑏

′ = −𝑏′, 𝑐′ = −𝑐′

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
� 𝔰𝔬𝑚 × 𝔰𝔬𝑠 .
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Figure 16. Orthogonal Dynkin Pyramid for (73, 13).

We compute the 𝑘 ♮𝑖 ’s as in the case where m is even.
∗ If s is odd, then the orbit O1;𝝁 is even and the Dynkin pyramid is as Figure 16 if 𝑞 = 7, 𝑚 = 3 and

𝑠 = 3.
From the pyramid, we obtain that

𝔤0 =
{
diag(𝑥1, . . . , 𝑥 (𝑞−1)/2, 𝑦,−/𝑥 (𝑞−1)/2, . . . ,−𝑥1) : 𝑥𝑖 ∈ 𝔤𝔩𝑚, 𝑦 ∈ 𝔰𝔬𝑚+𝑠

}
� (𝔤𝔩𝑚) (𝑞−1)/2 × 𝔰𝔬𝑚+𝑠 ,

and

𝔤♮ =

⎧⎪⎪⎨⎪⎪⎩diag(𝑥, . . . , 𝑥, 𝑦,−�̂�, . . . ,−�̂�) : 𝑥 = �� 
𝑎 𝑢 𝑏
2𝑣 0 −2�̂�
𝑐 −�̂� −�̂�

!"#, 𝑎, 𝑏, 𝑐 ∈ 𝔤𝔩 (𝑚−1)/2, 𝑏 = −�̂�, 𝑐 = −�̂�,

𝑦 =

�������� 

𝑤 0 𝑧 −𝑧 0 0
0 𝑎 𝑢 𝑢 0 0
𝑡 −𝑣 0 0 −�̂� �̂�
−𝑡 −𝑣 0 0 −�̂� −�̂�
0 0 �̂� �̂� 0 0
0 0 �̂� −̂𝑡 0 𝑤

!"""""""#
, 𝑤 ∈ 𝔰𝔬𝑠−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
� 𝔰𝔬𝑚 × 𝔰𝔬𝑠 .

The first statement then easily follows. We compute the 𝑘 ♮𝑖 ’s as in the case where m is even.
(2) 𝝁 = (𝑞𝑚, 1𝑠) with q even, m even and 𝑠 > 0 arbitrary. Here, the orbit O1;𝝁 is odd, and we have

𝔤0 =
{
diag(𝑥1, . . . , 𝑥𝑞/2, 𝑦,−𝑥𝑞/2, . . . ,−𝑥1) :

𝑥𝑖 ∈ 𝔤𝔩𝑚, 𝑦 ∈ 𝔰𝔬𝑠} � (𝔤𝔩𝑚)𝑞/2 × 𝔰𝔬𝑠 ,

𝔤♮ ={diag(𝑥, 0, . . . , 0, 𝑥, 𝑦,−�̂�, 0, . . . , 0,−�̂�) :

𝑥 =

(
𝑎 𝑏
𝑐 −�̂�

)
, 𝑏 = �̂�, 𝑐 = 𝑐, 𝑦 ∈ 𝔰𝔬𝑠

}
� 𝔰𝔭𝑚 × 𝔰𝔬𝑠 .

Let 𝔤♮1 be the simple component of 𝔤♮ isomorphic to 𝔰𝔭𝑚. To compute 𝑘 ♮1, pick 𝑡 ∈ 𝔤♮ with 𝑎 =
diag(1, . . . , 0), 𝑏 = 𝑐 = 0, 𝑦 = 0 in the above description of 𝔤♮. Then (𝑡 |𝑡)𝔤♮ = 2, (𝑡 |𝑡)𝔤 = 𝑞,
𝜅𝔤 (𝑡, 𝑡) = 2𝑞(𝑛 − 2), 𝜅𝔤0 (𝑥, 𝑥) = 2𝑚𝑞, 𝜅𝔤1/2 (𝑡, 𝑡) = 2𝑠. Therefore, 2𝑘 ♮1 = 𝑞𝑘 + 𝑞(𝑛 − 2) − 𝑛, whence the
expected result.

Assume 𝑠 = 3 or 𝑠 > 4. Let 𝔤♮2 be the simple component of 𝔤♮ isomorphic to 𝔰𝔬𝑠 . To compute
𝑘
♮
2, pick 𝑦 = diag(1, . . . ,−1) and 𝑥 = 0 in the above description of 𝔤♮. Then (𝑡 |𝑡)𝔤♮ = 1, (𝑡 |𝑡)𝔤 = 1,
𝜅𝔤 (𝑡, 𝑡) = 2(𝑛 − 2), 𝜅𝔤0 (𝑥, 𝑥) = 2(𝑠 − 2), 𝜅𝔤1/2 (𝑡, 𝑡) = 2𝑚. Therefore, 𝑘 ♮2 = 𝑘 + 𝑛 − 𝑚 − 𝑠, whence the
expected result.
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We compute similarly 𝑘 ♮0 for 𝑠 = 2 in which case the 𝔰𝔬𝑠 component is the centre 𝔤♮0 of 𝔤♮. Also, using
the isomorphism 𝔰𝔬4 � 𝔰𝔩2 × 𝔰𝔩2 as in (1), 𝑚 = 4 case, we easily obtain that 𝑘 ♮2 = 𝑘 ♮3 = 𝑘 + 𝑛 − 𝑚 − 𝑠.

It remains to check the last assertion. We do it for 𝔤 = 𝔰𝔭𝑚 and 𝝁 = (𝑞𝑚, 1𝑠); the other cases can be
checked easily as well. In this case, 𝔤♮ � 𝔰𝔭𝑚×𝔰𝔭𝑠 , 𝑘

♮
1 = 𝑞𝑘 +𝑞( 𝑛2 +1) − ( 𝑛2 +1) and 𝑘 ♮2 = 𝑘 + 𝑛

2 −
𝑚
2 − 𝑠

2 .
Therefore, 𝑘 ♮1 = 𝑝 − ( 𝑛2 + 1), which is a nonnegative integer. In particular, it is admissible for 𝔰𝔭𝑚.
However, 𝑘 ♮2 = −( 𝑠2 + 1) + 𝑝−𝑞 𝑚

2
𝑞 , with (𝑝 − 𝑞𝑚2 , 𝑞) = 1 and 𝑝 − 𝑞𝑚2 ≥ 𝑠

2 + 1. So 𝑘 ♮2 is admissible for
𝔰𝔭𝑠 . �

We are now in a position to state our results on collapsing levels for 𝔰𝔭𝑛. First, we consider the case
where 𝒲𝑘 (𝔤, 𝑓 ) is lisse – that is, 𝑓 ∈ O𝑘 .

Theorem 9.7. Assume that 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 = −
(
𝑛
2 + 1

)
+ 𝑝/𝑞 is an admissible level for 𝔤 = 𝔰𝔭𝑛. Pick a

nilpotent element 𝑓 ∈ O𝑘 so that 𝒲𝑘 (𝔤, 𝑓 ) is lisse.

1. Assume that k is principal. If 𝑝 = ℎ∨𝔰𝔭𝑛 = 𝑛
2 + 1, then for generic6 q, k is collapsing if and only if

𝑛 ≡ 0,−1 mod 𝑞. If 𝑛 ≡ 0,−1 mod 𝑞, then for generic q, k is collapsing if and only if 𝑝 = ℎ∨𝔰𝔭𝑛 .
Moreover, if 𝑛 ≡ 0,−1 mod 𝑞, then

𝒲−ℎ∨𝔰𝔭𝑛+ℎ
∨
𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐻

0
𝐷𝑆, 𝑓 (𝐿−ℎ∨𝔰𝔭𝑛+ℎ∨𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛)) � C.

2. Assume that k is a coprincipal admissible level for 𝔤 = 𝔰𝔭𝑛. If 𝑝 = ℎ𝔰𝔭𝑛 + 1 = 𝑛 + 1, then for generic
q, k is collapsing if and only if 𝑛 ≡ 0, 1 mod 𝑞

2 . If 𝑛 ≡ 0, 1 mod 𝑞
2 , then for generic q, k is collapsing

if and only if 𝑝 = ℎ𝔰𝔭𝑛 + 1 Moreover, if 𝑛 ≡ 0, 1 mod 𝑞
2 with 𝑞

2 odd, then

𝒲−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛)) � C,

and if 𝑛 ≡ 0, 1 mod 𝑞
2 with 𝑞

2 even, then

𝒲−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛)) � 𝐿1 (𝔰𝔬𝑚).

Note that, in the above statements, the isomorphism 𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) holds due to

Remark 6.7.

Proof. Let 𝝀 be the partition corresponding to 𝑓 ∈ O𝑘 . In the below proof, we always exploit the
symplectic Dynkin pyramid of shape 𝝀 as described in §9.1. Letting 𝐼 := {1, . . . , 𝑛2 ,−

𝑛
2 , . . . ,−1} the

set of labels, we notice that for 𝑗 ∈ 1
2Z>0,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 𝑗} = #{(𝑖, 𝑙) ∈ 𝐼 : 0 < 𝑖 ≤ |𝑙 |, | col(𝑖) − col(𝑙) |/2 = 𝑗}. (56)

In this way, the pyramid allows us to compute the central charge and the asymptotic dimension of
𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)). Indeed, the central charge of 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) is given by

𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) = dim𝔤0 − 1
2

dim𝔤1/2 − 12
(
𝑞

𝑝
|𝜌 |2 − 2(𝜌 |𝑥0) + 𝑝

𝑞
|𝑥0 |2

)
,

with

|𝑥0 |2 =
1
ℎ∨𝔤

∑
𝛼∈Δ+

(𝑥0 |𝛼)2, (𝜌 |𝑥0) = 1
2

∑
𝛼∈Δ+

(𝑥0 |𝛼),

6Here, by generic q, we mean all q but a finite number.
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while |𝜌 |2 is computed using the strange formula:

|𝜌 |2 =
ℎ∨𝔤 dim𝔤

12
=
𝑛(𝑛 + 1) (𝑛 + 2)

48
.

However, (56) enables to compute the term
∏

𝛼∈Δ+\Δ0
+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
in the asymptotic dimension of

𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) in the principal case.
For the coprincipal case, note that∏

𝛼∈Δ+\Δ0
+

2 sin
(
𝜋(𝑥0 |𝛼∨)

𝑞

)
=

∏
𝛼∈Δ long

+ \Δ0
+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

) ∏
𝛼∈Δshort

+ \Δ0
+

2 sin
(

2𝜋(𝑥0 |𝛼)
𝑞

)
,

and that for 𝑗 ∈ 1
2Z>0,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 𝑗} = #{(𝑖, 𝑙) ∈ 𝐼 : 0 < 𝑖 < |𝑙 |, | col(𝑖) − col(𝑙) |/2 = 𝑗}, (57)

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 𝑗} = #{(𝑖, 𝑙) ∈ 𝐼 : 𝑖 > 0, 𝑙 = −𝑖, | col(𝑖) − col(𝑙) |/2 = 𝑗}.

We now follow the strategy of Section 6.
(1) In this part, q is assumed to be odd. From the description of O𝑘 , either O𝑘 = O(𝑞�̃� ,�̃�) or

O𝑘 = O(𝑞�̃�−1 ,𝑞−1,�̃�+1) . We consider the two cases separately.
(a) Assume that O𝑘 = O(𝑞�̃� ,�̃�) , with 𝑚, �̃� even, and set 𝑚 := 𝑚, 𝑠 := �̃� for simplicity. According to

Table 3, we have 𝔤♮ � 𝔰𝔭𝑚, and 𝑘 ♮ = 𝑝 − ( 𝑛2 + 1). Using the symplectic pyramid of shape (𝑞𝑚, 𝑠), we
establish for 𝑗 = 1, . . . , (𝑞 − 1)/2 that

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 2 𝑗 − 1} =
(
𝑞 − 2 𝑗 + 1

2

)
× 𝑚2 +

{
𝑠/2 − 𝑗 + 1 if 𝑗 ≤ 𝑠/2
0 else.

,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 2 𝑗} =
(
𝑞 − 2 𝑗 − 1

2

)
× 𝑚2 + 𝑚(𝑚 + 1)

2
+
{
𝑠/2 − 𝑗 if 𝑗 ≤ 𝑠/2
0 else.

.

The cardinality of roots 𝛼 ∈ Δ+ such that (𝑥0 |𝛼) is a half-integer can be computed as follows.
∗ If 𝑠 − 1 ≤ 𝑞−1

2 − 𝑠
2 + 1, then

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = (2 𝑗 − 1)/2}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑠𝑚 if 𝑗 = 1, . . . , 𝑠 − 1,(
𝑠
2 +

⌊
𝑗
2

⌋ )
𝑚 if 𝑗 = 𝑠, . . . , 𝑞−1

2 − 𝑠
2 + 1,(

𝑠
2 − 𝑖 +

⌊
𝑗
2

⌋ )
𝑚 if 𝑗 = 𝑞−1

2 − 𝑠
2 + 1 + 𝑖 with 𝑖 = 1, . . . , 𝑠 − 1.

∗ If 𝑠 − 1 > 𝑞−1
2 − 𝑠

2 + 1, then

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = (2 𝑗 − 1)/2}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠𝑚 if 𝑗 = 1, . . . , 𝑞−1

2 − 𝑠
2 + 1,

(𝑠 − 𝑖)𝑚 if 𝑗 = 𝑞−1
2 − 𝑠

2 + 1 + 𝑖 with 𝑖 = 1, . . . , 3𝑠
2 − 2 − 𝑞−1

2 ,(
𝑠
2 − 𝑖 +

⌊
𝑗
2

⌋ )
𝑚 if 𝑗 = 𝑞−1

2 − 𝑠
2 + 1 + 𝑖 with 𝑖 = 3𝑠

2 − 1 − 𝑞−1
2 , . . . , 𝑠 − 1.

https://doi.org/10.1017/fms.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.81


62 T. Arakawa, J. van Ekeren and A. Moreau

From this, we get an expression of 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) depending on 𝑞, 𝑚, 𝑠. However,

𝑐𝐿
𝑘♮

(𝔤♮) =
𝑚(𝑚 + 1) (2 − 2𝑝 + 𝑚𝑞 + 𝑠)

2(−2𝑝 + 𝑚(𝑞 − 1) + 𝑠) .

Fix 𝑝 = ℎ∨𝔤 = 𝑛
2 + 1. For generic q, the only solutions of the equation 𝑐𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) = 𝑐𝐿𝑘♮

(𝔤♮) with
unknown s are 𝑠 = 0 and 𝑠 = 𝑞 − 1. Now if we fix 𝑠 = 0, for generic q, the only solutions of the equation
𝑐𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) = 𝑐𝐿𝑘♮

(𝔤♮) with unknown p are

𝑝 =
𝑛

2
+ 1 or 𝑝 =

𝑛 + 1
2

.

Only 𝑝 = 𝑛
2 + 1 is greater than ℎ∨𝔤 . If we fix 𝑠 = 𝑞 − 1, for generic q, the only solution of the equation

𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown p is 𝑝 = 𝑛

2 + 1.

∗ Assume 𝑝 = 𝑛
2 + 1 and 𝑠 = 0. In this case, 𝑘 ♮1 = 0 and g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔭𝑛)) = 0. We aim to apply

Proposition 6.6. By Proposition 4.10 and Lemma 7.1 (1), we have

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) =
1

𝑞 |Δ
0
+ |𝑞

𝑛
4

∏
𝛼∈Δ+\Δ0

+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
(58)

with 𝑛 = 𝑞𝑚 and |Δ0
+| =

(𝑞−1)𝑚(𝑚−1)
4 + 𝑚2

4 since the orbit O−1;𝝀 is even. By (56) and the previous
computations, we show that∏

𝛼∈Δ+\Δ0
+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
= 𝑞

𝑞𝑚2
4 +𝑚

4 , (59)

using the identities (42) and (44). Combining (58) and (59), we conclude that
A𝐻 0

𝐷𝑆, 𝑓
(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) = 1, as desired.

∗ Assume 𝑝 = 𝑛
2 + 1 and 𝑠 = 𝑞 − 1. Then 𝑘 ♮1 = 0 and g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔭𝑛)) = 0. As in the previous case,

we aim to apply Proposition 6.6. By Proposition 4.10 and Lemma 7.1 (1), we have

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) =
1

2
|Δ1/2 |

2 𝑞 |Δ
0
+ |𝑞

𝑛
4

∏
𝛼∈Δ+\Δ0

+

sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
(60)

with 𝑛 = 𝑞𝑚 + 𝑞 − 1, |Δ0
+| =

(𝑞−1)𝑚(𝑚−1)
4 + 𝑚2

4 and |Δ1/2 | = (𝑞 − 1)𝑚. Using the identities (42) and (44)
and the previous computations, we show that

∏
𝛼∈Δ+\Δ0

+

sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
=

(
1
2

) (𝑞−1)2𝑚
2 ( 𝑞

2𝑞−1

) 𝑞 (𝑚2+1)+(𝑚−1)
4

. (61)

Combining (60) and (61), we conclude that A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) = 1, as desired.
(b) Assume now that O𝑘 = O(𝑞𝑚 ,𝑞−1,𝑠) , with 𝑚 := 𝑚 − 1, 𝑠 := �̃� + 1. We argue as in (a). According

to Table 3, we have 𝔤♮ � 𝔰𝔭𝑚, and 𝑘 ♮1 = 𝑝 − ( 𝑛2 + 1). We compute the central charges of 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤))

and 𝐿𝑘♮ (𝔤♮) similarly as in (a). Fix 𝑝 = ℎ∨𝔤 = 𝑛
2 + 1. Solving the equation 𝑐𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) = 𝑐𝐿𝑘♮

(𝔤♮) with
unknown s, we get that for generic q, the only solutions are 0 or 𝑞 + 1, the second one being excluded.
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Fix 𝑠 = 0. Solving the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔤)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown p, we get that for generic q, the

only solutions are

𝑝 =
𝑛

2
or 𝑝 =

𝑛

2
+ 1.

Only 𝑝 = 𝑛
2 +1 is greater than ℎ∨𝔤 . But the case 𝑝 = 𝑛

2 +1 and 𝑠 = 0 has been already dealt with in part (a).
(2) In this part, q is assumed to be even. It follows from the description of O𝑘 that either

O𝑘 = O( ( 𝑞2 )�̃�+1 ,�̃�+1) with even 𝑞
2 , or O𝑘 = O( 𝑞2 +1, ( 𝑞2 )�̃� ,�̃�)

with odd 𝑞
2 , or O𝑘 = O( 𝑞2 +1, ( 𝑞2 )�̃�−1 , 𝑞2 −1,�̃�+1)

with odd 𝑞
2 .

(a) Assume that O𝑘 = O( ( 𝑞2 )�̃�+1 ,�̃�+1) , with 𝑞
2 even, and set 𝑚 := 𝑚 + 1, 𝑠 := �̃� + 1 for simplicity.

According to Table 3, we have 𝔤♮ � 𝔰𝔬𝑚, and 𝑘 ♮ = 𝑝 − 𝑛. The orbit O𝑘 is even. Hence, one can directly
use the asymptotic growth. We have

g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) =
1
2
(𝑚2

( 𝑞
2
− 𝑠

)
+ (𝑚 + 1)2𝑠) − (𝑛 − 1)𝑛(𝑛 + 2)

𝑝𝑞
,

with 𝑛 = 𝑞𝑚
2 + 𝑠, while

g𝐿
𝑘♮

(𝔤♮) =
𝑚(𝑚 − 1)

2

(
1 − 𝑚 − 2

𝑝 − 𝑞𝑚
2 − 𝑠 + 𝑚 − 2

)
.

Fixing 𝑠 = 0, we find that, for generic q, the only solution of the equation g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = g𝐿
𝑘♮

(𝔤♮) with
unknown p is 𝑝 = 𝑛 + 1. Fixing 𝑝 = 𝑛 + 1, the only solutions of the equation g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔭𝑛)) = g𝐿

𝑘♮
(𝔤♮)

with unknown 𝑠 are 𝑠 = 0 or 𝑠 = 𝑞
2 + 1, the second case being excluded.

From now on, it is assumed that 𝑠 = 0 and 𝑝 = 𝑛 + 1. Thus, 𝑘 ♮ = 1 and g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) =
𝑚
2 . By

Corollary 3.9, A𝐿1 (𝔰𝔭𝑚) =
1
2

, and by Proposition 4.10,

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+(𝑛+1)/𝑞 (𝔰𝔭𝑛)) =
2 |Δshort

+ ∩Δ0
+ |

𝑞 |Δ
0
+ |
( 𝑞

2
) 𝑛

4
√

4

∏
𝛼∈Δ+\Δ0

+

2 sin
(
𝜋(𝑥0 |𝛼∨)

𝑞

)
with |Δ0

+| = |Δshort
+ ∩ Δ0

+| =
𝑞�̃�(�̃�−1)

8 since O𝑘 is even. Using the symplectic pyramid of shape (( 𝑞2 )
𝑚),

we establish for 𝑗 = 1, . . . , 𝑞/4 that

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 𝑚2

( 𝑞
4
− 𝑗

)
+ 𝑚(𝑚 + 1)

2
,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 𝑚,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗} = 𝑚2

( 𝑞
4
− 𝑗

)
.

From this, we deduce as in previous computations that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+(𝑛+1)/𝑞 (𝔰𝔭𝑛)) =
1
2
,

whence the statement by Proposition 6.6.
(b) Assume that O𝑘 = O( 𝑞2 +1, ( 𝑞2 )�̃� ,�̃�)

with 𝑞
2 odd, 𝑚 := 𝑚 even, 𝑠 := �̃� even. According to Table 3,

we have 𝔤♮ � 𝔰𝔭𝑚, and 𝑘 ♮ = 𝑝
2 − 𝑛+1

2 . Using the symplectic pyramid of shape ( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑠), we

compute #{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 𝑗} and #{𝛼 ∈ Δ long

+ : (𝑥0 |𝛼) = 𝑗} for each j. For 𝑠 = 0, we establish
that for 𝑗 = 1, . . . , 𝑞/2
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#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = (2 𝑗 − 1)/2} = 𝑚

( 𝑞
2 − ( 𝑗 − 1)

)
,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 𝑞+2

4 − 𝑗 +
(
𝑞+2

4 − 𝑗
)
𝑚2,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 1,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗} = 𝑞+2

4 − 𝑗 +
(
𝑞+2

4 − 𝑗
)
𝑚2 + 𝑚(𝑚−1)

2 ,
and that for 𝑗 = 1, . . . , (𝑞 + 2)/4 − 1,
#{𝛼 ∈ Δ long

+ : (𝑥0 |𝛼) = 2 𝑗} = 𝑚.
For 𝑠 ≠ 0, we establish that

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = (2 𝑗 − 1)/2} = 𝑚

( 𝑞
2
− ( 𝑗 − 1)

)
+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑠 if 𝑗 ≤ 𝑞+2−2𝑠

4 ,

𝑚(𝑠 − 𝑞+2−2𝑠
4 + 𝑗) if 𝑞+2−2𝑠

4 + 1 ≤ 𝑗 ≤ 𝑞+2−2𝑠
4 + 𝑠 − 1,

0 if 𝑞+2−2𝑠
4 + 𝑠 ≤ 𝑗 ≤ 𝑞

2 ,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} =

(
𝑞 + 2

4
− 𝑗

)
𝑚2

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞+2−2𝑠

4 − (2 𝑗 − 1) + 3 + 4
(
𝑠
2 − 𝑗

)
if 𝑗 ≤ 𝑞+2−2𝑠

4 ,

2 if 𝑞+2−2𝑠
4 + 1 ≤ 𝑗 ≤ 𝑞+2−2𝑠

4 + 𝑠 − 1,
1 if 𝑞+2−2𝑠

4 + 𝑠 ≤ 𝑗 ≤ 𝑞
2 ,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} =

{
2 if 2 𝑗 − 1 ≤ 𝑠 − 1,
1 otherwise,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗} =

(
𝑞 + 2

4
− 𝑗

)
𝑚2 + 𝑚(𝑚 − 1)

2

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞+2−2𝑠

4 − 2 𝑗 + 2 + 4
(
𝑠
2 − 𝑗

)
if 𝑗 ≤ 𝑞+2−2𝑠

4 ,

2 if 𝑞+2−2𝑠
4 + 1 ≤ 𝑗 ≤ 𝑞+2−2𝑠

4 + 𝑠 − 1,
1 if 𝑞+2−2𝑠

4 + 𝑠 ≤ 𝑗 ≤ 𝑞
2 ,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗} = 𝑚.

Fixing 𝑝 = 𝑛 + 1, the only solutions of the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown 𝑠 are

𝑠 = 0 and 𝑠 = 𝑞
2 − 1. Fixing 𝑠 = 0 or 𝑠 = 𝑞

2 − 1, we find that for generic q the only admissible solution
of the equation 𝑐𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮

(𝔤♮) with unknown p is 𝑝 = 𝑛 + 1.
∗ Assume that 𝑝 = 𝑛 + 1 and 𝑠 = 0. We have 𝑘 ♮ = 0, g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔭𝑛)) = 0 and A𝐿1 (𝔰𝔭𝑚) = 1. Here, we

have |Δ0
+| =

(𝑞−2)𝑚(𝑚−1)
8 + (𝑞−2)

4
(
𝑚
2
)2, |Δshort

+ ∩Δ0
+| =

𝑞𝑚(𝑚−1)
8 + (𝑞−2)

4 + 𝑚(𝑚−2)
4 , |Δ1/2

+ | = 𝑚 +𝑚(𝑞−2),
and using the above computations, we obtain that A𝐻 0

𝐷𝑆, 𝑓
(𝐿−( 𝑛2 +1)+(𝑛+1)/𝑞 (𝔰𝔭𝑛)) = 1, whence the statement

by Proposition 6.6.
∗ Assume that 𝑝 = 𝑛+ 1 and 𝑠 = 𝑞

2 − 1. We have 𝑘 ♮ = 0, g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 0 and A𝐿1 (𝔰𝔭𝑚) = 1. Here,

we have |Δ0
+| =

(𝑞−2)𝑚(𝑚−1)
8 +

(
𝑚
2
)2, |Δshort

+ ∩Δ0
+| =

𝑞𝑚(𝑚−1)
8 + 𝑚(𝑚−2)

4 , |Δ1/2
+ | = 𝑞𝑚

2 , and using the above
computations, we deduce that A𝐻 0

𝐷𝑆, 𝑓
(𝐿−( 𝑛2 +1)+(𝑛+1)/𝑞 (𝔰𝔭𝑛)) = 1, whence the statement by Proposition 6.6.

(c) Assume that O𝑘 = O( 𝑞2 +1, ( 𝑞2 )𝑚 ,
𝑞
2 −1,𝑠) with 𝑞

2 odd, 𝑚 := 𝑚 − 1 even, 𝑠 := �̃� + 1 even. According
to Table 3, we have 𝔤♮ � 𝔰𝔭𝑚, and 𝑘 ♮ = 𝑝

2 − 𝑛+1
2 . As in the previous cases, we compute the central

charge 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) using the symplectic pyramid of shape ( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑞2 − 1, 𝑠). We omit here the

details. Fixing 𝑝 = 𝑛 + 1, the only solutions of the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown

𝑠 are 𝑠 = 0 or 𝑠 = 𝑞
2 + 1, the second case being excluded. Fixing 𝑠 = 0, we find that for generic q, the
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only admissible solution of the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown p is 𝑝 = 𝑛 + 1. But

the case where 𝑝 = 𝑛 + 1 and 𝑠 = 0 has been already dealt with in part (2) (b).
This terminates the proof of part (2). �

Remark 9.8. Since C and 𝐿1 (𝔰𝔬𝑚) are rational, Theorem 9.7 confirms Conjecture 4.6 for 𝔤 = 𝔰𝔭𝑛,
𝑘 +ℎ∨𝔤 = ℎ∨𝔤 /𝑞 with 𝑛 ≡ 0,−1 (mod 𝑞), q odd, and 𝑘 +ℎ∨𝔤 = (ℎ∨𝔤 +1)/𝑞 with 𝑛 ≡ 0, 1 (mod 𝑞/2), q even.

Remark 9.9. Although our main goal is to identify collapsing levels (i.e., to prove isomorphisms
between certain W-algebras and affine vertex algebras), it is worth remarking that our methods can be
used to prove other isomorphisms too, as we now illustrate.

We consider the coprincipal admissible level 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞, for 𝔤 = 𝔰𝔭𝑛, where q is twice an odd
integer and 𝑝 = ℎ + 1. Then O𝑘 = O𝝀 , where 𝝀 = ( 𝑞2 + 1, ( 𝑞2 )

𝑚, 𝑠) for some 𝑚, 𝑠 even. Let 𝑓 ∈ O𝑘 .
In Theorem 9.7 above, we showed that if 𝑠 = 0, then 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) is isomorphic to the trivial vertex
algebra C.

If instead 𝑠 = 2, then the central charge of 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)), which in general is given by the formula

𝑐 = −
𝑠(𝑞 − 2𝑠 − 2)

(
𝑞𝑠 + 𝑞 − 2𝑠2 − 2𝑠 + 4

)
4𝑞

and becomes

𝑐 = 13 − 24
𝑞

− 3𝑞
2
,

which is the central charge of the Virasoro minimal model Vir2,𝑞/2. The values of (𝑥0 |𝛼) for 𝛼 ∈ Δ+
can be read off from the symplectic pyramid of 𝝀, as was done in the proof of Theorem 9.7, to obtain a
formula for the asymptotic dimension A𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔤)) . However, the asymptotic dimension of Vir2,𝑞/2 is

given by formula (6), and the two expressions can be shown to coincide by an elementary, though very
tedious, calculation. It follows that

𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � Vir2,𝑞/2 .

This gives a yet another evidence for Conjecture 4.4 and Conjecture 4.6.

We now turn to collapsing levels for 𝔰𝔭𝑛 in the non lisse cases – that is, we consider the partitions
𝝁 ∈ 𝒫−1(𝑛) identified in Lemma 9.3 cases (b)–(k). Our study leads us to the following results.

Theorem 9.10. Assume that 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 = −
(
𝑛
2 + 1

)
+ 𝑝/𝑞 is admissible for 𝔤 = 𝔰𝔭𝑛.

1. Assume that k is principal – that is, q is odd.
(a) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 1𝑠), with 𝑚, 𝑠 even. For

generic q, k is collapsing if and only if 𝑝 = ℎ∨𝔰𝔭𝑛 , and

𝒲−ℎ∨𝔰𝔭𝑛+ℎ
∨
𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔭𝑠+ℎ∨𝔰𝔭𝑠 /𝑞 (𝔰𝔭𝑠).

(b) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 𝑞 − 1, 1𝑠), with s even. For
generic q, k is collapsing only if 𝑝 = ℎ∨𝔰𝔭𝑛 , and the following inclusion is a finite extension:

𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/(2𝑞) (𝔰𝔭𝑠) ↩−� 𝒲−ℎ∨𝔰𝔭𝑛+ℎ
∨
𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛, 𝑓 ).
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2. Assume that k is coprincipal – that is, q is even.
(a) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition ( 𝑞2 + 1, ( 𝑞2 )

𝑚, 1𝑠), with 𝑞
2 odd, m

even, s even. If 𝑝 = ℎ𝔰𝔭𝑛 + 1, then k is collapsing if and only if 𝑠 = 0 or 𝑠 = 2. If 𝑠 = 2, then for
generic q, k is collapsing if and only if 𝑝 = ℎ𝔰𝔭𝑛 + 1. Moreover, if 𝑠 = 2, then

𝒲−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔭𝑠+ℎ∨𝔰𝔭𝑠 /(𝑞/2) (𝔰𝔭𝑠).

(b) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition ( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑞2 − 1, 1𝑠), with 𝑞

2
odd and s even. For generic q, k is collapsing only if 𝑝 = ℎ𝔰𝔭𝑛 + 1, and the following inclusion is
a finite extension:

𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/𝑞 (𝔰𝔭𝑠) ↩−� 𝒲−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛, 𝑓 ).

(c) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (( 𝑞2 )
𝑚, 1𝑠), with 𝑞

2 even, m odd
or even, and s even. For generic q, k is collapsing only if 𝑝 = ℎ𝔰𝔭𝑛 +1, and the following inclusion
is a finite extension:

𝐿1 (𝔰𝔬𝑚) ⊗ (𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/𝑞 (𝔰𝔭𝑠)) ↩−� 𝒲−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛, 𝑓 )

Remark 9.11. Similarly to Remark 8.9, notice that (3) and (4) are compatible with (1) for 𝑠 = 0, and
(5), (6), (7) are compatible with (2) with 𝑠 = 0.

Proof. We argue as in the proof of Theorem 9.7. So we omit some details when the computations are
very similar to those considered in Theorem 9.7.

(1) In this part, q is odd.
(a) Fix a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 1𝑠). According to Table 3,

we have 𝔤♮ � 𝔰𝔭𝑚 × 𝔰𝔭𝑠 , 𝑘
♮
1 = 𝑝 − ( 𝑛2 + 1) and 𝑘

♮
2 = −( 𝑠2 + 1) + (𝑝 − 𝑞𝑚

2 )/𝑞. Since f is even,
𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔰𝔭𝑛)), and Proposition 6.6 gives a necessary and sufficient condition for that k
is collapsing.

By Proposition 4.10, we have

g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) =
1
2
((𝑚 + 𝑠)2 + 𝑚2(𝑞 − 1) + 𝑚 + 𝑠) − 𝑛(𝑛 + 1) (𝑛 + 2)

4𝑝𝑞
,

with 𝑛 = 𝑞𝑚 + 𝑠, while by Corollary 3.9,

g𝐿
𝑘♮

(𝔤♮) = g𝐿−( 𝑚2 +1)+( 𝑚−𝑛
2 +𝑝)/1 (𝔰𝔭𝑚) + g𝐿−( 𝑠2 +1)+(𝑝− 𝑞𝑚

2 )/𝑞 (𝔰𝔭𝑠)

=
𝑚(𝑚 + 1)

2

(
1 − 𝑚 + 2

𝑚 − 𝑛 + 2𝑝

)
+ 𝑠(𝑠 + 1)

2

(
1 − 𝑠 + 2

(2𝑝 − 𝑞𝑚)𝑞

)
.

By solving the equation g𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = g𝐿
𝑘♮

(𝔤♮) with unknown p, we obtain that, for generic q, the
only solutions which are nonnegative integers are

𝑝 =
𝑛 + 1

2
and 𝑝 =

𝑛

2
+ 1.

Only the solution 𝑝 = 𝑛
2 + 1 is greater than ℎ∨𝔤 . From now on, it is assumed that 𝑝 = 𝑛

2 + 1. Then 𝑘 ♮1 = 0
and 𝑘 ♮2 = −( 𝑠2 +1) + ( 𝑠2 +1)/𝑞. We now apply Proposition 6.6 to prove that k is collapsing. By Corollary
3.9 and Lemma 7.1 (1), we have

A𝐿−( 𝑠2 +1)+( 𝑠2 +1)/𝑞 (𝔰𝔭𝑠) =
1

𝑞𝑠2/4𝑞𝑠/4
.
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However, by Proposition 4.10 and Lemma 7.1 (1), we have

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) =
1

𝑞 |Δ
0
+ |𝑞

𝑛
4

∏
𝛼∈Δ+\Δ0

+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
(62)

with 𝑛 = 𝑞𝑚 + 𝑠 and |Δ0
+| =

(𝑞−1)𝑚(𝑚−1)
4 + (𝑚+𝑠)2

4 , since the orbit 𝐺. 𝑓 is even. Using the pyramid
associated with the partition (𝑞𝑚, 1𝑠), we establish that for 𝑗 = 1, . . . , (𝑞 − 1)/2,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 2 𝑗 − 1} =
(
𝑞−2 𝑗−1

2

)
× 𝑚2 + 𝑚(𝑚 + 𝑠),

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 2 𝑗} =
(
𝑞−2 𝑗−1

2

)
× 𝑚2 + 𝑚(𝑚 + 𝑠) + 𝑚(𝑚+1)

2 ,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 𝑞 − 2 𝑗} = 𝑗𝑚2,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 𝑞 − 2 𝑗 + 1} = ( 𝑗 − 1)𝑚2 + 𝑚(𝑚+1)
2 ,

We deduce that ∏
𝛼∈Δ+\Δ0

+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
=𝑞

𝑞𝑚2
4 +𝑚𝑠

2 +𝑚
4 (63)

by (42) and (44). Combining (62) and (63), we conclude that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) = A𝐿−( 𝑠2 +1)+( 𝑠2 +1)/𝑞 (𝔰𝔭𝑠) ,

as desired.
(b) Fix a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 𝑞−1, 1𝑠). According to Table 3,

we have 𝔤♮ � 𝔰𝔭𝑚 × 𝔰𝔭𝑠 , 𝑘
♮
1 = 𝑝 − ( 𝑛2 + 1) and 𝑘 ♮2 = −( 𝑠2 + 1) + 2𝑝−𝑚𝑞−𝑞

2𝑞 , with (2𝑝 − 𝑚𝑞 − 𝑞, 2𝑞) = 1.
Using the pyramid of shape (𝑞𝑚, 𝑞 − 1, 1𝑠), we establish that for 𝑗 = 1, . . . , (𝑞 − 1)/2,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 2 𝑗−1
2 } =

(
𝑞−1

2

)
𝑚 +

(
𝑞−(2 𝑗−1)

2

)
𝑚 + 𝑠,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 𝑞+2 𝑗−2
2 } =

(
𝑞−(2 𝑗−1)

2

)
𝑚,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 2 𝑗 − 1} =
(
𝑞−(2 𝑗−1)

2

)
𝑚2 +

(
𝑞−(2 𝑗−1)

2

)
+
{
𝑚𝑠 if 2 𝑗 − 1 ≤ 𝑞−1

2
0 otherwise,

,

#{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 2 𝑗} =
(
𝑞−2 𝑗−1

2

)
𝑚2 +

(
𝑞−2 𝑗−1

2

)
+ 𝑚(𝑚+1)

2 +
{
𝑚𝑠 if 2 𝑗 − 1 ≤ 𝑞−1

2
0 otherwise.

As explained in the proof of Theorem 9.7, the above cardinalities allow us to compute the central
charge of 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔰𝔭𝑛)). By solving the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿
𝑘♮

(𝔤♮) with unknown p, we

obtain that for generic q, the only admissible solution is 𝑝 =
𝑛

2
+ 1. Assume that 𝑝 = 𝑛

2 + 1. Then

𝑘
♮
1 = 0 and 𝑘

♮
2 = −( 𝑠2 + 1) + 𝑠+1

2𝑞 , which is coprincipal admissible for 𝔰𝔭𝑠 . We easily verify that
g𝐻 0

𝐷𝑆, 𝑓
(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) = g𝐿−( 𝑠2 +1)+ 𝑠+1

2𝑞
(𝔰𝔭𝑠) . By Corollary 3.9 and Lemma 7.1 (4), we have

A𝐿−( 𝑠2 +1)+(𝑠+1)/(2𝑞) (𝔰𝔭𝑠) =
1

2 𝑠
2 +1𝑞

𝑠
4 (𝑠+1) .

However, by Proposition 4.10 and Lemma 7.1 (1),

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) =
1

2 |Δ1/2 |/2𝑞 |Δ
0
+ |𝑞

𝑛
4

∏
𝛼∈Δ+\Δ0

+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
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with 𝑛 = 𝑞𝑚 + 𝑞 − 1 + 𝑠, |Δ0
+| =

(𝑞−1)𝑚(𝑚−1)
4 + (𝑚+𝑠)2

4 and |Δ1/2 | = (𝑞 − 1)𝑚 + 𝑠. From the above
computations, we get that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) = 2A𝐿−( 𝑠2 +1)+ 𝑠+1
2𝑞

(𝔰𝔭𝑠) .

Since g𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) = g𝐿−( 𝑠2 +1)+ 𝑠+1
2𝑞

(𝔰𝔭𝑠) , it follows from Theorem 3.10

𝒲−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛, 𝑓 ) a direct sum of admissible representations of 𝐿−( 𝑠2 +1)+ 𝑠+1
2𝑞

(𝔰𝔭𝑠).
(2) In this part, q is even.
(a) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition ( 𝑞2 + 1, ( 𝑞2 )

𝑚, 1𝑠), with odd 𝑞
2 .

According to Table 3, we have 𝔤♮ � 𝔰𝔭𝑚 × 𝔰𝔭𝑠 , 𝑘
♮
1 = 𝑝

2 − 𝑛+1
2 and 𝑘 ♮2 = −( 𝑠2 + 1) + 2𝑝−𝑚𝑞−𝑞

2𝑞 .
Using the pyramid of shape ( 𝑞2 + 1, ( 𝑞2 )

𝑚, 1𝑠), we establish that for 𝑗 = 1, . . . , 𝑞/2,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗 − 1

2
} =

(
𝑞 + 2 − 2 𝑗

2

)
𝑚 +

{
𝑠 if 2 𝑗 − 1 ≤ 𝑞

2
0 otherwise,

that for 𝑗 = 1, . . . , (𝑞 + 2)/4,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} =

(
𝑞 + 2 − 4 𝑗

4

)
(𝑚2 + 1) +

{
𝑚𝑠 if 2 𝑗 ≤ 𝑞−2

4
0 otherwise,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 1,

and that for 𝑗 = 1, . . . , (𝑞 − 2)/4,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗} =

(
𝑞 + 2 − 4 𝑗

4

)
(𝑚2 + 1) + 𝑚(𝑚 − 1)

2
+
{
𝑚𝑠 if 2 𝑗 ≤ 𝑞−2

4
0 otherwise,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗} = 𝑚.

The above cardinalities allows us to compute the central charge of 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔰𝔭𝑛)).

By solving the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown p, we obtain that, for generic q,

the only admissible solution is 𝑝 = 𝑛 + 1. Fixing 𝑝 = 𝑛 + 1, we obtain that the only nonnegative integer
solutions the equation 𝑐𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮

(𝔤♮) with unknown s are 𝑠 = 0 and 𝑠 = 2. The case where
𝑝 = 𝑛 + 1 and 𝑠 = 0 has been already dealt with in the proof of Theorem 9.7. We now assume that
𝑝 = 𝑛 + 1 and 𝑠 = 2. Then 𝑘 ♮1, 𝑘 ♮2 = ( 𝑠2 + 1)/(𝑞/2), and we easily verify that g𝐻 0

𝐷𝑆, 𝑓
(𝐿𝑘 (𝔰𝔭𝑛)) = g𝐿

𝑘♮
(𝔤♮) .

Let us compare the asymptotic dimensions. We obtain here that

A𝐿−( 𝑠2 +1)+(𝑠/2+1)/(𝑞/2) (𝔰𝔭𝑠) =
1

(𝑞/2) 𝑠2
4 + 𝑠

3

and that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+(𝑛+1)/𝑞 (𝔰𝔭𝑛)) =
2 |Δshort∩Δ0

+ |

2 |Δ1/2 |/2𝑞 |Δ
0
+ | (𝑞/2) 𝑛

4 ×
√

4

∏
𝛼∈Δ+\Δ0

+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
with 𝑛 = 𝑞𝑚/2+𝑞/2+3, |Δ0

+| =
(𝑞−2)𝑚(𝑚−1)

4 + (𝑚+2)2

4 , |Δshort∩Δ0
+| = |Δ0

+| − 𝑚+2
2 and |Δ1/2 | = 𝑞𝑚/2+2.

From the above computations, we can compute the last factor in A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+(𝑛+1)/𝑞 (𝔰𝔭𝑛)) , and we get
that A𝐻 0

𝐷𝑆, 𝑓
(𝐿−( 𝑛2 +1)+(𝑛+1)/𝑞 (𝔰𝔭𝑛)) equals A𝐿−( 𝑠2 +1)+(𝑠/2+1)/(𝑞/2) (𝔰𝔭𝑠) , whence the expected result.
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(b) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition ( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑞2 − 1, 1𝑠), with odd

𝑞
2 . According to Table 3, we have 𝔤♮ � 𝔰𝔭𝑚 × 𝔰𝔭𝑠 , 𝑘

♮
1 = 𝑝

2 − 𝑛+1
2 and 𝑘 ♮2 = −( 𝑠2 + 1) + 𝑝− 𝑞𝑚

2 −𝑞
𝑞 . Using

the pyramid of shape ( 𝑞2 + 1, ( 𝑞2 )
𝑚, 𝑞2 − 1, 1𝑠) we establish that for 𝑗 = 1, . . . , 𝑞/2,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = (2 𝑗 − 1)/2} = 𝑚 + 𝑚(𝑞 − 2 𝑗) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑠 if 𝑗 ≤ (𝑞 − 2)/4,
𝑠 if 𝑗 = (𝑞 + 2)/4,
0 otherwise,

and that for

𝑗 = 1, . . . , (𝑞 − 2)/4,
#{𝛼 ∈ Δshort

+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 2 +
(
𝑞+2−4 𝑗

4

)
(𝑚2 + 4) + 1

+
{
𝑚𝑠 if 2 𝑗 − 1 ≤ (𝑞 − 2)/4,
0 otherwise,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 2,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 𝑞/2} = 1,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗} = 2 +

(
𝑞−2−4 𝑗

4

)
(𝑚2 + 4) + 𝑚(𝑚−1)

2

+
{
𝑚𝑠 if 2 𝑗 ≤ (𝑞 − 2)/4
0 otherwise,

,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗} = 𝑚,

By solving the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown p, we obtain that, for generic q, the

only solution is 𝑝 = 𝑛+1. From now on, we assume that 𝑝 = 𝑛+1. Then 𝑘 ♮1 = 0 and 𝑘 ♮2 = −( 𝑠2 +1) + 𝑠+1
𝑞 ,

and we have g𝒲−( 𝑛2 +1)+ 𝑛+1
𝑞

(𝔰𝔭𝑛 , 𝑓 ) = g𝐿−( 𝑠2 +1)+ 𝑠+1
𝑞

(𝔰𝔭𝑠) .. Moreover,

A𝐿−( 𝑠2 +1)+ 𝑠+1
𝑞

(𝔰𝔭𝑠) =
2 𝑠

2 (
𝑠
2 −1)

𝑞
𝑠2
4 (𝑞/2) 𝑠

4
√

4
,

and, as in the previous case, we compute A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+ 𝑛+1
𝑞

(𝔰𝔭𝑛)) . Here, we get that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+ 𝑛+1
𝑞

(𝔰𝔭𝑛)) = 2A𝐿−( 𝑠2 +1)+ 𝑠+1
𝑞

(𝔰𝔭𝑠) ,

and we conclude as in (1) (b).
(c) Fix a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (( 𝑞2 )

𝑚, 1𝑠), with even 𝑞
2 . According

to Table 3, we have 𝔤♮ � 𝔰𝔬𝑚 × 𝔰𝔭𝑠 , 𝑘
♮
1 = 𝑝 − 𝑛 and 𝑘 ♮2 = −( 𝑠2 + 1) + (𝑝 − 𝑞𝑚

2 )/𝑞. Using the pyramid
associated with the partition (( 𝑞2 )

𝑚, 1𝑠), we establish that for 𝑗 = 1, . . . , 𝑞/4,
#{𝛼 ∈ Δshort

+ : (𝑥0 |𝛼) = (2 𝑗 − 1)/2} = 𝑚𝑠,
#{𝛼 ∈ Δshort

+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 𝑚2 ( 𝑞
4 − 1

)
+ 𝑚(𝑚−1)

2 ,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 2 𝑗 − 1} = 𝑚, and that for 𝑗 = 1, . . . , 𝑞/4 − 1,

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 2 𝑗} = 𝑚2 ( 𝑞

4 − 1
)
.

By solving the equation 𝑐𝐻 0
𝐷𝑆, 𝑓

(𝐿𝑘 (𝔰𝔭𝑛)) = 𝑐𝐿𝑘♮
(𝔤♮) with unknown p, we obtain that, for generic q,

the only solutions are

𝑝 = 𝑛 and 𝑝 = 𝑛 + 1.

Only the solution 𝑝 = 𝑛 + 1 leads to an admissible level. From now on, it is assumed that 𝑝 = 𝑛 + 1.
Then 𝑘 ♮1 = 1 and 𝑘 ♮2 = −( 𝑠2 + 1) + 𝑠+1

𝑞 , and we have g𝒲−( 𝑛2 +1)+ 𝑛+1
𝑞

(𝔰𝔭𝑛 , 𝑓 ) = g𝐿1 (𝔰𝔬𝑚) + g𝐿−( 𝑠2 +1)+ 𝑠+1
𝑞

(𝔰𝔭𝑠) =

𝑚
2 + 𝑠 (2+𝑞−2𝑠+𝑞𝑠)

2𝑞 .
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By Corollary 3.9 and Lemma 7.1 (1),

A𝐿1 (𝔰𝔬𝑚) ⊗𝐿−( 𝑠2 +1)+ 𝑠+1
2

(𝔰𝔭𝑠) =
1
2
× 2 𝑠

4 (𝑠−1)−1

𝑞
𝑠
4 (𝑠+1) .

However, by Proposition 4.10 and Lemma 7.1 (1),

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+ 𝑛+1
𝑞

(𝔰𝔭𝑛)) =
2 |Δshort

+ ∩Δ0
+ |

2 |Δ1/2
+ |/2𝑞 |Δ

0
+ |𝑞

𝑛
4

∏
𝛼∈Δ+\Δ0

+

2 sin
(
𝜋(𝑥0 |𝛼)
𝑞

)
with 𝑛 = 𝑞𝑚 + 𝑠, |Δshort

+ ∩ Δ0
+| =

𝑚(𝑚−1)𝑞
8 + 𝑠 (𝑠−2)

4 , |Δ0
+| =

𝑚(𝑚−1)𝑞
8 +

(
𝑠
2
)2 and |Δ1/2

+ | = 𝑚𝑠. Using the
above computations, we get that

A𝐻 0
𝐷𝑆, 𝑓

(𝐿−( 𝑛2 +1)+ 𝑛+1
2

(𝔰𝔭𝑛)) = 2A𝐿1 (𝔰𝔬𝑚) ⊗𝐿−( 𝑠2 +1)+ 𝑠+1
2

(𝔰𝔭𝑠) ,

and we conclude as in (1) (b). �

One can specify the decomposition of the finite extension (1) (b) in Theorem 9.10 assuming that
Conjecture 4.4 holds; that is,

𝒲−ℎ∨𝔰𝔭𝑛+ℎ
∨
𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐻

0
𝐷𝑆, 𝑓 (𝐿−ℎ∨𝔰𝔭𝑛+ℎ∨𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛)).

(The same arguments work for the the finite extensions in (2) (b) and (c).) Keep the notations of the
proof. Denoting by 𝐿

𝑘
♮
2
(𝔰𝔭𝑠;𝜆) the highest irreducible representation of 𝐿

𝑘
♮
2
(𝔰𝔭𝑠) of admissible weight

𝜆, we get that

𝐻0
𝐷𝑆, 𝑓 (𝐿−( 𝑛2 +1)+( 𝑛2 +1)/𝑞 (𝔰𝔭𝑛)) =

⊕
Δ𝜆∈ 1

2Z

𝐿−( 𝑠2 +1)+ 𝑠+1
2𝑞

(𝔰𝔭𝑠;𝜆)⊗𝑚𝜆 ,

where Δ𝜆 is the lowest 𝐿0-eigenvalue of 𝐿−( 𝑠2 +1)+ 𝑠+1
2𝑞

(𝔰𝔭𝑠;𝜆). Moreover, the sum is finite.

We have 𝑝2 − ℎ𝔰𝔭𝑠 = (𝑠 + 1) − 𝑠 = 1, where 𝑘 ♮2 + ℎ
∨
𝔰𝔭𝑠 = 𝑝2/𝑞2. Recall that

Δ𝜆(𝔰𝔭𝑠) =
(𝜆 |𝜆 + 2𝜌𝔰𝔭𝑠 )

2(𝑘 ♮2 + ℎ
∨
𝔰𝔭𝑠 )

.

For generic q, we observe that 𝜆 = 𝜛1 is the only fundamental weight for which Δ𝜆 ∈ 1
2Z. However, we

easily verify using Proposition 4.10 that

qdim(𝐿−( 𝑠2 +1)+(𝑠+1)/(2𝑞) (𝔰𝔭𝑠;𝜛1)) = 1.

That is,

A𝐿−( 𝑠2 +1)+(𝑠+1)/(2𝑞) (𝔰𝔭𝑠 ;𝜛1) = A𝐿−( 𝑠2 +1)+(𝑠+1)/(2𝑞) (𝔰𝔭𝑠) .

As a result,

𝑚0A𝐿−( 𝑠2 +1)+( 𝑠2 +1)/𝑞 (𝔰𝔭𝑠 ;0) + 𝑚𝜛1 A𝐿−( 𝑠2 +1)+( 𝑠2 +1)/𝑞 (𝔰𝔭𝑠 ;𝜛1) = 2A𝐿−( 𝑠2 +1)+( 𝑠2 +1)/𝑞 (𝔰𝔭𝑠 ;0) .

But 𝑚0 must be at most 1. So, if

𝒲−ℎ∨𝔰𝔭𝑛+ℎ
∨
𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐻

0
𝐷𝑆, 𝑓 (𝐿−ℎ∨𝔰𝔭𝑛+ℎ∨𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛)),
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we get

𝒲−ℎ∨𝔰𝔭𝑛+ℎ
∨
𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/(2𝑞) (𝔰𝔭𝑠) ⊕ 𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/(2𝑞) (𝔰𝔭𝑠;𝜛1).

Arguing as above, we conjecture explicit decompositions for the other finite extensions:

Conjecture 9.12. For generic q, we have the following finite extensions:

𝒲−ℎ∨𝔰𝔭𝑛+ℎ
∨
𝔰𝔭𝑛 /𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/(2𝑞) (𝔰𝔭𝑠) ⊕ 𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/(2𝑞) (𝔰𝔭𝑠;𝜛1).

𝒲−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/𝑞 (𝔰𝔭𝑠) ⊕ 𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/𝑞 (𝔰𝔭𝑠;𝜛1).

𝒲−ℎ∨𝔰𝔭𝑛+(ℎ𝔰𝔭𝑛+1)/𝑞 (𝔰𝔭𝑛, 𝑓 )

� 𝐿1 (𝔰𝔬𝑚) ⊗ (𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/𝑞 (𝔰𝔭𝑠)) ⊕ (𝐿1 (𝔰𝔬𝑚;𝜛1) ⊗ (𝐿−ℎ∨𝔰𝔭𝑠+(ℎ𝔰𝔭𝑠+1)/𝑞 (𝔰𝔭𝑠;𝜛1))).

Remark 9.13. As it has been observed in the proof of Theorem 9.7 (1), if k is collapsing for 𝑓 ∈ O(𝑞𝑚 ,1𝑠) ,
then necessarily 𝑝 = 𝑛

2 + 1 or 𝑝 = 𝑛+1
2 . Only the first case verifies that 𝑝 ≥ ℎ∨𝔤 . However, one may

wonder whether the following holds:

𝐻0
𝐷𝑆, 𝑓 (𝐿−( 𝑛2 +1)+ 𝑛+1

2𝑞
(𝔰𝔭𝑛)) � 𝐿−1/2 (𝔰𝔭𝑚) ⊗ 𝐿−( 𝑠2 +1)+ 𝑠+1

2𝑞
(𝔰𝔭𝑠).

(The two above vertex algebras have the same central charge.)

We now state our main results on collapsing levels for 𝔰𝔬𝑛. Here, also we start with the lisse case –
that is, 𝑓 ∈ O𝑘 .

Theorem 9.14. Assume that 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 = −(𝑛−2) + 𝑝/𝑞 is admissible for 𝔤 = 𝔰𝔬𝑛. Pick a nilpotent
element 𝑓 ∈ O𝑘 so that 𝒲𝑘 (𝔤, 𝑓 ) is lisse.

1. Assume that q is odd. If 𝑝 = ℎ∨𝔰𝔬𝑛 = 𝑛 − 2, then for generic q, k is collapsing if and only if 𝑛 ≡ 0, 1
mod 𝑞. If 𝑛 ≡ 0, 1 mod 𝑞, then for generic q, k is collapsing if and only if 𝑝 = ℎ∨𝔰𝔬𝑛 . Moreover, if
𝑛 ≡ 0, 1 mod 𝑞, then

𝒲−ℎ∨𝔰𝔬𝑛+ℎ
∨
𝔰𝔬𝑛 /𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐻

0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � C.

2. Assume that n and q are even. If 𝑝 = ℎ𝔰𝔬𝑛 + 1 = 𝑛 − 1, then for generic q, k is collapsing if and only
if 𝑛 ≡ 0, 2 mod 𝑞. If 𝑛 ≡ 0, 2 mod 𝑞, then for generic q, k is collapsing if and only if 𝑝 = ℎ𝔰𝔬𝑛 + 1.
Moreover, if 𝑛 ≡ 0, 2 mod 𝑞, then

𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � C.

3. Assume that n is odd and that q is even. If 𝑝 = ℎ𝔰𝔬𝑛 + 1 = 𝑛, then for generic q, k is collapsing if
and only if 𝑛 ≡ −1, 1 mod 𝑞. If 𝑛 ≡ −1, 1 mod 𝑞, then for generic q, k is collapsing if and only if
𝑝 = ℎ𝔰𝔬𝑛 + 1. Moreover, if 𝑛 ≡ −1, 1 mod 𝑞, then

𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � C.

Proof. We argue as in the proof of Theorem 9.7. We exploit here the orthogonal Dynkin pyramid
of shape 𝝀 corresponding to 𝑓 ∈ O𝑘 . Here, we set 𝐼 = {1, . . . , 𝑛2 ,−

𝑛
2 , . . . ,−1} if n is even, and

𝐼 = {1, . . . , 𝑛2 , 0,−
𝑛
2 , . . . ,−1} if n is odd. Moreover, for 𝑗 ∈ 1

2Z>0,

#{𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 𝑗} = #{(𝑖, 𝑙) ∈ 𝐼 : 0 < 𝑖 ≤ |𝑙 |, | col(𝑖) − col(𝑙) |/2 = 𝑗},

#{𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 𝑗} = #{(𝑖, 𝑙) ∈ 𝐼 : 𝑖 > 0, 𝑙 = 0, | col(𝑖) − col(𝑙) |/2 = 𝑗},
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and

{𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 𝑗} = {𝛼 ∈ Δ long
+ : (𝑥0 |𝛼) = 𝑗} ∪ {𝛼 ∈ Δshort

+ : (𝑥0 |𝛼) = 𝑗},

with {𝛼 ∈ Δshort
+ : (𝑥0 |𝛼) = 𝑗} = ∅ if n is even. From this, we compute the central charge and the

asymptotic dimension of 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) using the pyramid exactly as in the case where 𝔤 = 𝔰𝔭𝑛. Since

the proof is very similar to that of Theorem 9.7, we omit the details. �

Remark 9.15. As in Remark 9.9, we now comment on a few isomorphisms between W-algebras obtained
with similar methods as in the proof of Theorem 9.14 above.

Let 𝑞 > 3 be even and not divisible by 3, let n be odd, and 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 a coprincipal admissible
level for 𝔤 = 𝔰𝔬𝑛, where 𝑝 = ℎ𝔤 + 1. Then O𝑘 = O𝝀 , where 𝝀 = (𝑞𝑚, 𝑠). If we choose n so that 𝑠 = 3 and
take 𝑓 ∈ O𝑘 , then we obtain an isomorphism

𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � Vir3,𝑞/2,

proved by comparison of asymptotic growth and asymptotic dimension.
If q and m are odd so that 𝑛 = 𝑚𝑞 + 3 is even, and 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 is the principal admissible level

for 𝔤 = 𝔰𝔬𝑛 where 𝑝 = ℎ∨𝔤 , then O𝑘 = O𝝀 , where 𝝀 = (𝑞𝑚, 3). If we choose 𝑓 ∈ O𝑘 , then we obtain an
isomorphism

𝒲𝑘 (𝔤, 𝑓 ) � 𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) � Vir2,𝑞 ,

again proved by comparison of asymptotic growth and asymptotic dimension.

Theorem 9.16. Assume that 𝑘 = −ℎ∨𝔤 + 𝑝/𝑞 = −(𝑛 − 2) + 𝑝/𝑞 is admissible for 𝔤 = 𝔰𝔬𝑛.

1. Assume that q is odd so that k is principal.
(a) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 1𝑠) with 𝑠 ≥ 3. For generic

q, k is collapsing only if 𝑝 = ℎ∨𝔰𝔬𝑛 or 𝑝 = ℎ∨𝔰𝔬𝑛 + 1. Moreover,

𝒲−ℎ∨𝔰𝔬𝑛+ℎ
∨
𝔰𝔬𝑛 /𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔬𝑠+ℎ∨𝔰𝔬𝑠 /𝑞 (𝔰𝔬𝑠),

and (for 𝑚 ≥ 3) we have the following inclusion is a finite extension:

𝐿1 (𝔰𝔬𝑚) ⊗ 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ∨𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠) ↩−� 𝒲−ℎ∨𝔰𝔬𝑛+(ℎ
∨
𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ).

(b) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, (𝑞 − 1)2). For generic q, k
is collapsing if and only if 𝑝 = ℎ∨𝔰𝔬𝑛 and

𝒲−ℎ∨𝔰𝔬𝑛+ℎ
∨
𝔰𝔬𝑛 /𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐿−2+2/𝑞 (𝔰𝔩2),

2. Assume that q and n are even so that k is principal.
(a) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞 + 1, 𝑞𝑚, 1𝑠), with even m, odd

s. Then k is collapsing if and only if 𝑝 = ℎ𝔰𝔬𝑛 + 1 and,

𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠).

(b) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞 + 1, 𝑞𝑚, 𝑞 − 1, 1𝑠), with even
𝑚, 𝑠, 𝑠 > 2. Then for generic q, k is collapsing only if 𝑝 = ℎ𝔰𝔬𝑛 + 1. Moreover, for generic q, we
have the following inclusion is a finite extension:

𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠) ↩−� 𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ).

3. Assume that n is odd and q is even so that k is coprincipal.
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(a) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 1𝑠), with even m and odd
s. Then for generic q, k is collapsing only if 𝑝 = ℎ𝔰𝔬𝑛 + 1. Moreover,

𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠).

(b) Pick a nilpotent element 𝑓 ∈ O𝑘 corresponding to the partition (𝑞𝑚, 𝑞 − 1, 1𝑠), with even 𝑚, 𝑠,
𝑠 > 2. Then for generic q, k is collapsing only if 𝑝 = 𝑛. Moreover, for generic q, we have the
following inclusion is a finite extension:

𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠) ↩−� 𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ).

Proof. This proof is very similar to that of Theorem 9.10, except that, obviously, we use here orthogonal
Dynkin pyramids. We omit the details. �

The following conjecture is similar to Conjecture 9.12.

Conjecture 9.17. For generic q, we have the following finite extensions:

𝒲−ℎ∨𝔰𝔬𝑛+(ℎ
∨
𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ) �

𝐿1(𝔰𝔬𝑚) ⊗ 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ∨𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠) ⊕ 𝐿1 (𝔰𝔬𝑚;𝜛1) ⊗ 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ∨𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠;𝜛1).
𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠) ⊕ 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠;𝜛1).
𝒲−ℎ∨𝔰𝔬𝑛+(ℎ𝔰𝔬𝑛+1)/𝑞 (𝔰𝔬𝑛, 𝑓 ) � 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠) ⊕ 𝐿−ℎ∨𝔰𝔬𝑠+(ℎ𝔰𝔬𝑠+1)/𝑞 (𝔰𝔬𝑠;𝜛1).

Remark 9.18. Similarly to Remark 8.9, notice that (4) with 𝑠 = 0 or 𝑠 = 1 is compatible with (1), (5)
with 𝑠 = 1 is compatible with (2), (7) with 𝑠 = 1 is compatible with (3), and (8) with 𝑠 = 0 is compatible
with (3).

Remark 9.19. It might be also interesting to consider the case where (𝑛 − 2, 𝑞) ≠ 1. For example,

consider the Lie algebra 𝔰𝔬27 (type 𝐵13) and 𝑓 ∈ O(54 ,17) . We find that 𝑘 = −25 + 25
5

= −20 is not

admissible, and 𝑘 ♮1 = −5 + 5
5
= −4 is not admissible either. One can wonder whether

𝒲−20 (𝔰𝔬27, 𝑓 ) � 𝐿−4 (𝔰𝔬7).

Other examples are

𝒲−18 (𝔰𝔬23, 𝑓 ) � 𝐿−6 (𝔰𝔬9),

𝒲−6 (𝔰𝔬11, 𝑓 ) � 𝐿−2 (𝔰𝔬5).

The last example is interesting because one knows [21, Theorem 7.1] that, for ℓ ≥ 3,

𝑋𝐿−2 (𝔰𝔬2ℓ+1) = O𝑠ℎ𝑜𝑟𝑡 .

Conjecture 9.20.

1. The cases covered by Theorems 8.7 and 8.8 give the exhaustive list of pairs ( 𝑓 , 𝑘) where f is a
nilpotent element of 𝔰𝔩𝑛 and k is an admissible collapsing levels for 𝔰𝔩𝑛.

2. The cases covered by Theorems 9.7 and 9.10 give the exhaustive list of pairs ( 𝑓 , 𝑘) where f is a
nilpotent element of 𝔰𝔭𝑛 and k is an admissible collapsing levels for 𝔰𝔭𝑛.

3. The cases covered by Theorems 9.14 and 9.16 give the exhaustive list of pairs ( 𝑓 , 𝑘) where f is a
nilpotent element of 𝔰𝔬𝑛 and k is an admissible collapsing levels for 𝔰𝔬𝑛.
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Table 5. Main asymptotic data in type 𝐸6..

O𝑘 𝐺. 𝑓 SO𝑘 , 𝑓
𝑝
𝑞 = 𝑘 + ℎ∨𝔤 𝑘♮ + ℎ∨

𝔤♮
𝑐𝑉 g𝑉 A𝑉 Comments

𝐸6 𝐸6 {0} 12/13, 13/12 0 0 1 �
𝐸6 (𝑎1) 𝐸6 (𝑎1) {0} 13/9 0 0 1 �
𝐸6 (𝑎3) 𝐸6 (𝑎3) {0} 13/6 0 0 1 �

𝐴5 𝑎1 13/6 2/3 −6 2
1

3
√

3
�

12/7 3/14 −25
20
7

2
28

√
7
≠

1
28

√
7

fin. ext.

𝐷4 N𝐴2 12/7 3/7 −48
48
7

1
74 �

13/6 4/3 −10 6
1

81
√

3
�

𝐴4 + 𝐴1 𝐴4 𝑎1 12/5 2/5 −12
12
5

1
5
√

5
�

𝐷4 (𝑎1) 2𝐴2 𝑔𝑠𝑝
2 12/4 −42 𝑘 = −9, 𝑘♮ = −3

not admissible
2𝐴2 + 𝐴1 2𝐴2 + 𝐴1 {0} ⊂ 𝐴1 13/3 2/1 0 0 1 �

2𝐴2 𝑔2 13/3 7/3 −10 6
1

27
√

3
�

𝐴2 unknown in 𝐴2 × 𝐴2 13/3 4/3 −20 12 3 ×
(

1
81

√
3

)2
≠

(
1

81
√

3

)2
fin. ext.

3𝐴1 3𝐴1 {0} ⊂ 𝐴1 × 𝐴2 13/2 4/1 2 2
1
√

3
�

2𝐴1 𝑏3 12/2 −14 𝑘 = −6, 𝑘♮ = −2
not admissible

𝐴1 unknown in 𝐴5 13/2 7/2 −25 20
2

217
√

3
≠

1
217

√
3

fin. ext.

10. Collapsing levels in the exceptional types

In this section, we state our main results and conjectures concerning collapsing levels in the exceptional
types. As in the preceding sections, our proofs follow the strategy described in Section 6; considering
pairs (O𝑘 , 𝐺. 𝑓 ) such that SO𝑘 , 𝑓 is collapsing. Data on nilpotent orbits, 𝔰𝔩2-triples and centralisers,
which we will use throughout this section, are recorded in Tables 11, 12, 13, 14–15, 16–17.

The results of this section are organised by type, the isomorphisms in type 𝐸6, 𝐸7, 𝐸8, 𝐺2 and 𝐹4
presented in Theorems 10.1, 10.6, 10.11, 10.16 and 10.18, respectively. In place of f, we write the
label of 𝐺. 𝑓 in the Bala-Carter classification, and 𝔤 and 𝔤♮ are denoted by their types. The results are
summarized in Tables 5, 6, 8, 9 and 10. We present a complete proof only for Theorem 10.1, the others
being very similar.

In the tables, we indicate for each triple (O𝑘 , 𝐺. 𝑓 ,O♮ � SO𝑘 , 𝑓 ) the values of 𝑝/𝑞 = 𝑘 + ℎ∨𝔤 , 𝑘 ♮𝑖 + ℎ
∨
𝔤♮𝑖

,

for 𝑖 = 1, . . . , 𝑠 (if 𝑖 > 1, we write in the first column 𝑘 ♮1 + ℎ
∨
𝔤♮1

, and in second column 𝑘 ♮2 + ℎ
∨
𝔤♮2

, etc.),

the central charge 𝑐𝑉 , the asymptotic growth g𝑉 and the asymptotic dimension A𝑉 with V being either
𝐻0
𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) or 𝐿𝑘♮ (𝔤♮). Then we write in the last column the symbol � if all invariants match, we

write ‘fin. ext.’ if we expect that 𝒲𝑘 (𝔤, 𝑓 ) is a finite extension of 𝐿𝑘♮ (𝔤♮) (usually, this happens when
all invariants for 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)) match except the asymptotic dimension, and more details are furnished
in the corresponding theorem). As a rule, when one of the invariants does not coincide, we write in first
position the invariant corresponding to 𝐻0

𝐷𝑆, 𝑓 (𝐿𝑘 (𝔤)).
Nilpotent orbits are given by their the Bala-Carter classification in the exceptional types. Nilpotent

orbits in classical types are given in term of partitions. Note that the associated variety of 𝐿𝑘 (𝔤)
determines the possible denominators q of 𝑘 + ℎ∨𝔤 since k is admissible (see Theorem 3.2). So the values
of q are always among these possible denominators.
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Table 6. Main asymptotic data in type 𝐸7..

O𝑘 𝐺. 𝑓 SO𝑘 , 𝑓
𝑝
𝑞 = 𝑘 + ℎ∨𝔤 𝑘♮ + ℎ∨

𝔤♮
𝑐𝑉 g𝑉 A𝑉 Comments

𝐸7 𝐸7 {0} 18/19, 19/18 0 0 1 �
𝐸7 (𝑎1) 𝐸7 (𝑎1) {0} 19/14 0 0 1 �

𝐸7 (𝑎2) 𝐸6 𝑎1 18/13 2/13 −36
36
13

1
13

√
13

�

19/12 3/4 −5
5
2

1
8
√

2
�

𝐸7 (𝑎3) 𝐷6 𝑎1 18/11 3/22 −41
32
11

2
44

√
11

≠
1

44
√

11
fin. ext.

19/10 12/5 −12
12
5

1
5
√

5
�

𝐸7 (𝑎4) 𝐷5 𝑎1 × 𝑎1 19/8 3/8, 3/4 −18
21
4

2
256

√
2
≠

1
256

√
2

fin. ext.

𝐴6 𝐴6 {0} ⊂ 𝐴1 18/7 0 0 0 1 �

19/7 3/1 1 1
1
√

2
�

𝐴6 (𝐴5)′′ N𝐺2 18/7 4/7 −84 12
1
77 �

𝐷4 N𝐶3 18/7 4/7 −126 18
1

710
√

7
�

𝐸7 (𝑎5) 𝐸7 (𝑎5) {0} 19/6 0 0 1 �

𝐸6 (𝑎3) 𝑎1 19/6 3/2 −1 2
1
4

�

𝐷6 (𝑎2) 𝑎1 19/6 2/3 −6 2
1

3
√

3
�

(𝐴5)′ 𝑎1 × 𝑎1 19/6 2/3, 3/2 −7 4
1

223
√

3
�

(𝐴5)′′ 𝑔𝑠𝑝
2 19/6 7/6 −34 10

1
2733

√
3

�

𝐷4 O
𝐶3
(4,2) 19/6 7/6 −51 16

1
64
√

3
�

𝐴4 + 𝐴2 𝐴4 + 𝐴2 {0} ⊂ 𝐴1 19/5 5/1
9
5

9
5

√
2
5

sin
𝜋

5
�

𝐴4 𝑎2 18/5 3/5 −32
32
5

1
54 �

𝐴3 + 𝐴2 + 𝐴1 𝐴3 + 𝐴2 + 𝐴1 {0} ⊂ 𝐴1 19/4 4/1
3
2

3
2

1
2

�

𝐷4 (𝑎1) N𝐴1 ×N𝐴1 ×N𝐴1 19/4 3/4 −15
15
2

1
210

√
2

�

𝐴3 unknown in 𝐴1 × 𝐵3 19/4 3/4, 7/4 −44
35
2

2
221

√
2
≠

1
222

√
2

fin. ext.

2𝐴2 + 𝐴1 2𝐴2 + 𝐴1 {0} ⊂ 𝐴1 × 𝐴1 19/3 3/1, 2/1 1 1
1
√

2
�

𝐴2 + 3𝐴1 𝑔2 19/3 8/3 −7 7
1

33
√

6
�

18/3 6/3 −14
14
3

1
33
√

3
not adm.

2𝐴2 {0} × 𝑔2 ⊂ 𝐴1 ×𝐺2 19/3 3/1, 7/3 −9 7
1

33
√

6
�

𝐴2 unknown in 𝐴5 19/3 7/3 −55 25
3

318
√

2
≠

1
318

√
2

fin. ext.

4𝐴1 4𝐴1 {0} ⊂ 𝐶3 19/2 0 0 1 �

(3𝐴1)′ 𝑐3 19/2 7/2 −3 6
1
24 �

(3𝐴1)′′ 𝑓4 19/2 13/2 −20 16
1

213 �

2𝐴1 unknown in 𝐴1 × 𝐵4 19/2 3/2, 9/2 −21 18
2

216 ≠
1

216 fin. ext.

𝐴1 unknown in 𝐷6 19/2 11/2 −54 36
2

234 ≠
1

234 fin. ext.
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Table 7. Main asymptotic data in type 𝐸8..

O𝑘 𝐺. 𝑓 SO𝑘 , 𝑓
𝑝
𝑞 = 𝑘 + ℎ∨𝔤 𝑘♮ + ℎ∨

𝔤♮
𝑐𝑉 g𝑉 A𝑉 Comments

𝐸8 𝐸8 {0} 30/31, 31/30 0 0 1 �
𝐸8 (𝑎1) 𝐸8 (𝑎1) {0} 30/24 0 0 1 �
𝐸8 (𝑎2) 𝐸8 (𝑎2) {0} 31/20 0 0 1 �

𝐸8 (𝑎3) 𝐸7 𝑎1 31/18 2/9 −24
8
3

1
27

�

30/19 3/38 −73
56
19

2
76

√
19

≠
1

76
√

19
fin. ext.

𝐸8 (𝑎4) 𝐸8 (𝑎4) {0} 30/15 0 0 1 �

𝐸8 (𝑏4) 𝐸7 (𝑎1) 𝑎1 31/14 3/14 −25
20
7

2
28

√
7
≠

1
28

√
7

fin. ext.

𝐸8 (𝑎5) 𝐸8 (𝑎5) {0} 31/12 0 0 1 �

𝐷7 𝐴1 30/13 3/26 −49
38
13

2
52
√

13
≠ 1

52
√

13
fin. ext.

31/12 2/3 −6 2 1
3
√

13
�

𝐸6 N𝐺2 30/13 4/13 −168
168
13

1
137 �

31/12 7/12 −82 12
1

33214
√

3
�

𝐸8 (𝑎6) 𝐸8 (𝑎6) {0} 31/10 0 0 1 �

𝐷6 N𝐵2 30/11 5/22 −122
104
11

2
23115 ≠

1
23115 fin. ext.

31/10 3/5 −40 8
1
55 �

𝐸8 (𝑏6) 𝐸6 (𝑎1) 𝐴2 31/9 4/9 −46
22
3

1
94
√

3
�

𝐴7 𝐴7 {0} ⊂ 𝐴1 31/8 0 0 1 �

𝐷5 unknown in 𝐵3 31/8 7/8 −99 18
2

228
√

2
≠

1
228

√
32

fin. ext.

𝐴6 + 𝐴1 𝐴6 𝑎1 30/7 2/7 −18
18
7

1
7
√

7
�

31/7 3/7, 3/1 −10
26
7

2
14

√
7
≠

1
14

√
7

fin. ext.

𝐸8 (𝑎7) 𝐸8 (𝑎7) {0} 31/6 0 0 1 �

𝐸7 (𝑎5) 𝑎1 31/6 2/3 −6 2
1

3
√

3
�

𝐷6 (𝑎2) 𝑎1 × 𝑎1 31/6 2/3, 2/3 −12 4
1
33 �

𝐸6 (𝑎3) 𝑔𝑠𝑝
2 31/6 7/6 −34 10

1
2733

√
3

�

𝐴5 𝑎1 × 𝑔𝑠𝑝
2 31/6 2/3, 7/6 −40 12

1
2735 �

𝐷4 𝐹4 (𝑎3) 31/6 13/6 −164 40
1

326213 �

𝐴6 + 𝐴1 𝐷4 𝐹4 (𝑎2) 30/7 9/7 −312
312

7
1

726 �

𝐴4 + 𝐴3 𝐴4 + 𝐴3 {0} ⊂ 𝐴1 31/5 0 0 1 �

32/5 4/1
3
2

3
2

1
2

�

2𝐴3 2𝐴3 {0} ⊂ 𝐴1 31/4 0 0 1 �

𝐷4 (𝑎1) + 𝐴2 𝑎2 31/4 3/2 −8 4
1
24 �

𝐷4 (𝑎1) unknown in 𝐷4 31/4 7/4 −68 22
4

229 ≠
1

229 fin. ext.

𝐴3 unknown in 𝐵5 31/4 11/4 −125 40
2

250 ≠
1

250 fin. ext.

We also indicate in the table the isomorphism type of SO𝑘 , 𝑓 (in the third column) when it is known (if
so, it is a product of nilpotent orbits in 𝔤♮). When the isomorphism O♮ � SO𝑘 , 𝑓 comes from a minimal
degeneration, then we always obtain a minimal nilpotent orbit closure [47]. Following Kraft and Procesi
[64, 66], we refer to the minimal nilpotent orbit Omin of a simple Lie algebra by the lowercase letters
for the ambient simple Lie algebra: 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘 (𝑘 ≥ 4), 𝑔2, 𝑓4, 𝑒6, 𝑒7, 𝑒8. Similarly, we refer to the
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Table 8. Main asymptotic data in type 𝐸8..

O𝑘 𝐺. 𝑓 SO𝑘 , 𝑓
𝑝
𝑞 = 𝑘 + ℎ∨𝔤 𝑘♮ + ℎ∨

𝔤♮
𝑐𝑉 g𝑉 A𝑉 Comments

2𝐴2 + 2𝐴1 2𝐴2 + 2𝐴1 {0} ⊂ 𝐵2 31/3 0 0 1 �

32/3 4/1
5
2

5
2

1
2

�

2𝐴2 𝑔2 × 𝑔2 31/3 7/3, 7/3 −20 12
1
37 �

𝐴2 unknown in 𝐸6 31/3 13/3 −138 54
3

339
√

3
≠

1
339

√
3

fin. ext.

4𝐴1 4𝐴1 {0} ⊂ 𝐶4 31/2 0 0 1 �

3𝐴1 𝑓4 31/2 13/2 −20 16
1

213 �

2𝐴1 unknown in 𝐵6 31/2 13/2 −54 36
2

233 ≠
1

233 fin. ext.

𝐴1 unknown in 𝐸7 31/2 19/2 −119 70
2

267 ≠
1

267 fin. ext.

Table 9. Main asymptotic data in type 𝐺2..

O𝑘 𝐺. 𝑓 SO𝑘 , 𝑓
𝑝
𝑞 = 𝑘 + ℎ∨𝔤 𝑘♮ + ℎ∨

𝔤♮
𝑐𝑉 g𝑉 A𝑉 Comments

𝐺2 𝐺2 {0} 7/12 0 0 1 �
4/7 0 0 1 �

𝐺2 (𝑎1) 𝐺2 (𝑎1) {0} 7/6 0 0 1 �

�̃�1 𝑎1 7/6 2/3 −6 2
1

3
√

3
�

�̃�1 𝐴1 m 5/2 5/2 3/5 12/5
2

2
√

5
sin

𝜋

5
≠

1
2
√

5
sin

𝜋

5
fin. ext.

𝐴1 𝐴1 {0} ⊂ 𝐴1 7/3 2/1 0 0 1 �

8/3 3/1 1 1
1
√

2
�

minimal special nilpotent orbit7 for the ambient simple Lie algebra as 𝑎𝑠𝑝𝑘 , 𝑏𝑠𝑝𝑘 , 𝑐𝑠𝑝𝑘 , 𝑑𝑠𝑝𝑘 (𝑘 ≥ 4), 𝑔𝑠𝑝2 ,
𝑓 𝑠𝑝4 , 𝑒𝑠𝑝6 , 𝑒𝑠𝑝7 , 𝑒𝑠𝑝8 . The nilpotent cone of a Lie algebra of type X will denoted by N𝑋 . In Table 10, the
letter m refers to a non-normal type of singularity which is neither a simple surface singularity nor a
minimal singularity (see [47, §1.8.4]). As for the singularity 𝑎+2 appearing also in Table 10, it refers to
the singularity 𝑎2 together with the action of a subgroup 𝐾 ⊂ Aut(𝔰𝔩3) which lifts a subgroup of the
Dynkin diagram of 𝔰𝔩3 = 𝐴2 (see [47, §1.8.2]).

When the isomorphism type ofSO𝑘 , 𝑓 is not known (to the best of our knowledge), we write ‘unknown’.

Theorem 10.1. The following isomorphisms hold, providing collapsing levels for 𝔤 = 𝐸6.

𝒲−12+12/13(𝐸6, 𝐸6) � C, 𝒲−12+13/12(𝐸6, 𝐸6) � C,
𝒲−12+13/9(𝐸6, 𝐸6 (𝑎1)) � C, 𝒲−12+13/6(𝐸6, 𝐸6 (𝑎3)) � C,
𝒲−12+13/6(𝐸6, 𝐴5) � 𝐿−2+2/3(𝐴1), 𝒲−12+12/7(𝐸6, 𝐷4) � 𝐿−3+3/7 (𝐴2),
𝒲−12+13/6(𝐸6, 𝐷4) � 𝐿−2+4/3(𝐴2), 𝒲−12+12/5(𝐸6, 𝐴4) � 𝐿−2+2/5(𝐴1),
𝒲−12+13/3(𝐸6, 2𝐴2 + 𝐴1) � C, 𝒲−12+13/3(𝐸6, 2𝐴2) � 𝐿−4+7/3 (𝐺2),
𝒲−12+13/2(𝐸6, 3𝐴1) � 𝐿1 (𝐴2).

7There is an order-reversing map d on the set of nilpotent orbits in 𝔤 that becomes an involution when restricted to its image
[78]. Orbits in the image of d are called special. There is a unique minimal special nilpotent orbit, which is of dimension 2ℎ𝔤 − 2.
Note that the minimal nilpotent orbit of 𝔤 has dimension 2ℎ∨𝔤 − 2.
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Table 10. Main asymptotic data in type𝐹4..

O𝑘 𝐺. 𝑓 SO𝑘 , 𝑓
𝑝
𝑞 = 𝑘 + ℎ∨𝔤 𝑘♮ + ℎ∨

𝔤♮
𝑐𝑉 g𝑉 A𝑉 Comments

𝐹4 𝐹4 {0} 13/18, 9/13 0 0 1 �
𝐹4 (𝑎1) 𝐹4 (𝑎1) {0} 13/12 0 0 1 �

𝐹4 (𝑎2) 𝐶3 𝑎1 9/7 2/7 −18
18
7

1
7
√

7
�

13/10 3/10 −17
14
5

2
225

√
5
≠

1
225

√
5

fin. ext.

𝐵3 𝑎1 9/7 2/7 −18
18
7

1
7
√

7
�

𝐵3 𝐵3 {0} ⊂ 𝐴1 13/8 3/1 1 1
1
√

2
�

�̃�2 N𝐺2 12/8 4/8 −98
49
4

not admissible
𝐹4 (𝑎3) 𝐹4 (𝑎3) {0} 13/6 0 0 1 �

𝐶3 (𝑎1) 𝑎1 13/6 2/3 −6 2
1

3
√

3
�

𝐵2 𝑎1 × 𝑎1 13/6 2/3, 2/3 −12 4
1

3
√

3
�

9/5 3/10, 3/10 −34
28
5

4
53/222 ≠

2
53/222 fin. ext.

�̃�2 𝑔𝑠𝑝
2 13/6 7/6 −34 10

1
2733

√
3

�

9/6 3/6 −98
14
3

1
33
√

3
not admissible

�̃�2 + 𝐴1 �̃�2 𝑔2 9/3 6/3 −14
14
3

1
33
√

3
not admissible

𝐴2 + �̃�1 m 10/3 5/2
3
5

13
5

2
2
√

5
sin

𝜋

5
fin. ext.

≠
1

2
√

5
sin

𝜋

5

𝐴2 unknown in 𝐴2 10/3 5/3 − 32
5

32
5

3 × 23

37/25

(
sin

𝜋

5

)2
sin

2𝜋
5

fin. ext.

≠
23

37/25

(
sin

𝜋

5

)2
sin

2𝜋
5

𝐴2 + �̃�1 𝐴2 + �̃�1 {0} ⊂ 𝐴1 13/4 2/1 0 0 1 �

𝐴2 𝑎+2 13/4 3/2 −8 4
1
24 �

�̃�1 unknown in 𝐴3 13/4 5/4 −33 12
4

216 ≠
1

216 fin. ext.
𝐴1 𝐴1 {0} ⊂ 𝐶3 13/2 4/1 0 0 1 �

Moreover, the following inclusions are finite extensions:

𝐿−2+3/14(𝐴1) ↩−� 𝒲−12+12/7(𝐸6, 𝐴5), 𝐿−3+4/3 (𝐴2) ⊗ 𝐿−3+4/3(𝐴2) ↩−� 𝒲−12+13/3(𝐸6, 𝐴2),
𝐿−6+7/2(𝐴5) ↩−� 𝒲−12+13/2(𝐸6, 𝐴1).

Proof. We detail below only a few cases. The chief tool to prove the isomorphisms is Theorem 3.10,
using data summarised in Table 5.

• Assume 𝑞 ≥ 12. Let 𝑝 ≥ 12 and (𝑝, 𝑞) = 1. Computing the central charge, we observe that
𝑐𝒲−12+𝑝/𝑞 (𝐸6 ,𝐸6) = 0 if and only if (𝑝, 𝑞) = (12, 13) or (𝑝, 𝑞) = (13, 12). Moreover, in both these cases,
g𝒲−12+𝑝/𝑞 (𝐸6 ,𝐸6) = 0 and A𝒲−12+𝑝/𝑞 (𝐸6 ,𝐸6) = 1. By Theorem 3.10, the first two isomorphisms follow.

•Assume that 𝑞 = 6 or 7, and pick 𝑓 ∈ 𝐴5. According to Table 13, we have𝔤♮ � 𝔰𝔩2 and 𝑘 ♮ = 𝑘+17/2.
Computing the central charge, we easily verify that if k is collapsing, then necessarily (𝑝, 𝑞) = (13, 6)
or (𝑝, 𝑞) = (12, 7).

∗ Assume first that (𝑝, 𝑞) = (13, 6). Then 𝑘 ♮ = −2+2/3. Since 𝑘 = −12+13/6 and 𝑘 ♮ = −2+2/3 are
admissible for 𝐸6 and 𝐴1, respectively, it suffices to apply Theorem 3.10 to prove that 𝒲−12+13/6(𝐸6, 𝐴5)
and 𝐿−2+2/3(𝐴1) are isomorphic.
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We easily check using Corollary 3.9 and Proposition 4.10 that 𝐿−2+2/3 (𝐴1) and
𝐻0
𝐷𝑆,𝐴5

(𝐿−12+13/6 (𝐸6)) share the same asymptotic growth of 2. Let us compare their asymptotic di-
mensions. By Corollary 3.9 and Lemma 7.1 (1), we have

A𝐿−2+2/3 (𝐴1) =
1

3
√

3
,

while by Proposition 4.10 and Lemma 7.1 (2),

A𝐻 0
𝐷𝑆,𝐴5

(𝐿−12+13/6 (𝐸6)) =
1

2 |Δ1/2 |/26 |Δ0
+ |63

√
3

∏
𝛼∈Δ+\Δ0

+

2 sin
𝜋(𝑥0 |𝛼)

6
,

with |Δ1/2 | = 6 and |Δ0
+| = 1. Computing the cardinality of {𝛼 ∈ Δ+ : (𝑥0 |𝛼) = 𝑗} for 𝑗 > 0, we verify

that ∏
𝛼∈Δ+\Δ0

+

2 sin
𝜋(𝑥0 |𝛼)

6
= 2733,

whence A𝐻 0
𝐷𝑆,𝐴5

(𝐿−12+13/6 (𝐸6)) =
1

3
√

3
, as required.

∗ Assume now that (𝑝, 𝑞) = (12, 7). Here, we obtain that

g𝐻 0
𝐷𝑆,𝐴5

(𝐿−12+12/7 (𝐸6)) = g𝐿−2+3/14 (𝐴1)

and that

A𝐻 0
𝐷𝑆,𝐴5

(𝐿−12+12/7 (𝐸6)) = 2A𝐿−2+3/14 (𝐴1) .

Moreover, we can verify that the central charges of 𝐻0
𝐷𝑆,𝐴5

(𝐿−12+12/7 (𝐸6)) and 𝐿−2+3/14(𝐴1) are both
equal to −25. By Theorem 3.10, 𝒲−12+12/7(𝐸6, 𝐴5) is a finite extension of 𝐿−2+3/14 (𝐴1).

We argue similarly in all the other cases. �

Remark 10.2.

1. The associated variety of 𝐻0
𝐷𝑆,𝐴1

(𝐿−12+13/2 (𝐸6)) and that of 𝐿−6+7/2(𝐴5) have the same dimension,
but they are not isomorphic. Indeed, the former is the nilpotent Slodowy slice S3𝐴1 ,𝐴1 in 𝐸6, while
the latter is the closure of the nilpotent orbit of 𝐴5 = 𝔰𝔩6 attached to the partition (23). These two
varieties are not isomorphic since the number of nilpotent 𝐺♮-orbits in O(23) is 4, while if S3𝐴1 ,𝐴1

had a dense 𝐺♮-orbit, then the number of 𝐺♮-orbits in S3𝐴1 ,𝐴1 would be 3, as we can see from the
Hasse diagram of 𝐸6.

2. Similarly, the nilpotent Slodowy slice S2𝐴2+𝐴1 ,𝐴2 (associated variety of 𝐻0
𝐷𝑆,𝐴2

(𝐿−12+13/3 (𝐸6)) is
not isomorphic to the product N𝐴2 × N𝐴2 (associated variety of 𝐿−3+4/3 (𝐴2) ⊗ 𝐿−3+4/3(𝐴2)), and
these two varieties have the same dimension.

Proposition 10.3. The following decompositions hold:

𝒲−12+13/2 (𝐸6, 𝐴1) � 𝐿−6+7/2 (𝐴5) ⊕ 𝐿−6+7/2(𝐴5;𝜛3),
𝒲−12+13/3 (𝐸6, 𝐴2) �

(
𝐿−3+4/3 (𝐴2) ⊗ 𝐿−3+4/3(𝐴2)

)
⊕

(
𝐿−3+4/3 (𝐴3;𝜛1) ⊗ 𝐿−3+4/3 (𝐴3;𝜛1)

)
⊕

(
𝐿−3+4/3 (𝐴3;𝜛2) ⊗ 𝐿−3+4/3(𝐴3;𝜛2)

)
.

Proof. • Assume first that (𝑝, 𝑞) = (13, 2), and let 𝑓 ∈ 𝐴1. In this case, we have

g𝐻 0
𝐷𝑆,𝐴1

(𝐿−12+13/2 (𝐸6)) = g𝐿−6+7/2 (𝐴5) , A𝐻 0
𝐷𝑆,𝐴1

(𝐿−12+13/2 (𝐸6)) = 2A𝐿−6+7/2 (𝐴5) .
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Moreover, we verify that the central charges of 𝐻0
𝐷𝑆,𝐴1

(𝐿−12+13/2 (𝐸6)) and 𝐿−6+7/2 (𝐴5) are both equal
to −25. Arguing as in the proof of Theorem 9.10 (1) (b), we obtain that

𝒲−12+13/2(𝐸6, 𝐴1) =
⊕
Δ𝜆∈ 1

2Z

𝐿−6+7/2(𝐴5;𝜆),

where Δ𝜆 is the lowest 𝐿0-eigenvalue of 𝐿−6+7/2(𝐴1;𝜆). We require

Δ𝜆 =
(𝜆 |𝜆 + 2𝜌)
2(𝑘 ♮ + 6)

=
(𝜆 |𝜆 + 2𝜌)

7
∈ 1

2
Z,

where 𝜆 =
5∑
𝑖=1
𝜆𝑖𝜛𝑖 , assuming that all 𝜆𝑖 ∈ Z≥0, with 1 = 𝑝 − ℎ∨𝐴5

≥
5∑
𝑖=1
𝜆𝑖 ≥ 0. The only possibilities

are 𝜆 = 0 or 𝜆 = 𝜛3.
However, by Proposition 4.10, we easily see that

A𝐿−6+7/2 (𝐴5;𝜛3) = A𝐿−6+7/2 (𝐴5) .

As a result,

𝑚0A𝐿−6+7/2 (𝐴5;0) + 𝑚1A𝐿−6+7/2 (𝐴5;𝜛3) = 2A𝐿−6+7/2 (𝐴5;0) .

But𝑚0 must be at most 1. We conclude that either 𝒲−12+13/2(𝐸6, 𝐴1) � 𝐿−6+7/2(𝐴5) ⊕ 𝐿−6+7/2 (𝐴5;𝜛3)
or that −12 + 13/2 is collapsing. But this is impossible by Proposition 6.8 and Remark 10.2.

• Assume now (𝑝, 𝑞) = (13, 3) and 𝑓 ∈ 𝐴2. We have 𝒲−12+13/3(𝐸6, 𝐴2) � 𝐻0
𝐷𝑆, 𝑓 (𝐿−12+13/3 (𝐸6))

since f is even. Arguing as in the previous case, we obtain here that the only possible weights are
𝜆 = 0, 𝜆 = 𝜛1 or 𝜆 = 𝜛2. Since 𝐻0

𝐷𝑆, 𝑓 (𝐿−12+13/3 (𝐸6)) � 𝒲−12+13/3(𝐸6, 𝐴2) is a finite direct sum of
admissible 𝐿−3+4/3(𝐴2) ⊗ 𝐿−3+4/3(𝐴2)-modules, we obtain here from the equalities

𝑚0A𝐿−3+4/3 (𝐴2;0) ⊗𝐿−3+4/3 (𝐴2;0) + 𝑚1A𝐿−3+4/3 (𝐴2;𝜛1) ⊗𝐿−3+4/3 (𝐴2;𝜛1)

+ 𝑚2A𝐿−3+4/3 (𝐴2;𝜛2) ⊗𝐿−3+4/3 (𝐴3;𝜛2) = 3A𝐿−3+4/3 (𝐴2) ⊗𝐿−3+4/3 (𝐴2) ,

and 𝑚0 = 1 the expected decomposition. Indeed, by Proposition 4.10,

A𝐿−3+4/3 (𝐴3;𝜛1) = A𝐿−3+4/3 (𝐴2;𝜛2) = A𝐿−3+4/3 (𝐴2) .

�

For (𝑝, 𝑞) = (12, 7) and 𝑓 ∈ 𝐴5, similar arguments as before Conjecture 9.12 lead to the following
conjecture.

Conjecture 10.4.

𝒲−12+12/7(𝐸6, 𝐴5) � 𝐿−2+3/14(𝐴1) ⊕ 𝐿−2+3/14(𝐴1;𝜛1).

We conjecture the following isomorphisms at non-admissible level.

Conjecture 10.5.

𝒲−9 (𝐸6, 2𝐴2) � 𝐿−3 (𝐺2), 𝒲−6(𝐸6, 2𝐴1) � 𝐿−2(𝐵3).
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Theorem 10.6. The following isomorphisms hold, providing collapsing levels for 𝔤 = 𝐸7.

𝒲−18+18/19 (𝐸7, 𝐸7) � C, 𝒲−18+19/18(𝐸7, 𝐸7) � C,
𝒲−18+19/14 (𝐸7, 𝐸7(𝑎1)) � C, 𝒲−18+18/13(𝐸7, 𝐸6) � 𝐿−2+2/13(𝐴1),
𝒲−18+19/12 (𝐸7, 𝐸6) � 𝐿−2+3/4(𝐴1), 𝒲−18+19/10(𝐸7, 𝐷6) � 𝐿−2+2/5 (𝐴1),
𝒲−18+18/7 (𝐸7, 𝐴6) � C, 𝒲−18+19/7(𝐸7, 𝐴6) � 𝐿1 (𝐴1),
𝒲−18+18/7 (𝐸7, (𝐴5)′′) � 𝐿−4+4/7(𝐺2), 𝒲−18+18/7(𝐸7, 𝐷4) � 𝐿−4+4/7 (𝐶3),
𝒲−18+19/6 (𝐸7, 𝐸7(𝑎5)) � C, 𝒲−18+19/6(𝐸7, 𝐸6(𝑎3)) � 𝐿−2+3/2 (𝐴1),
𝒲−18+19/6 (𝐸7, 𝐷6 (𝑎2)) � 𝐿−2+2/3 (𝐴1), 𝒲−18+19/6(𝐸7, (𝐴5)′) � 𝐿−2+2/3(𝐴1) ⊗ 𝐿−2+3/2(𝐴1),
𝒲−18+19/6 (𝐸7, (𝐴5)′′) � 𝐿−4+7/6(𝐺2), 𝒲−18+19/6(𝐸7, 𝐷4) � 𝐿−4+7/6 (𝐶3),
𝒲−18+19/5 (𝐸7, 𝐴4 + 𝐴2) � 𝐿3 (𝐴1), 𝒲−18+18/5(𝐸7, 𝐴4) � 𝐿−3+3/5(𝐴2),
𝒲−18+19/4 (𝐸7, 𝐴3 + 𝐴2 + 𝐴1) � 𝐿2(𝐴1), 𝒲−18+19/4(𝐸7, 𝐷4 (𝑎1)) � 𝐿−2+3/4(𝐴1)⊗3,

𝒲−18+19/3 (𝐸7, 2𝐴2 + 𝐴1) � 𝐿1 (𝐴1), 𝒲−18+19/3(𝐸7, 𝐴2 + 3𝐴1) � 𝐿−4+8/3(𝐺2),
𝒲−18+19/3 (𝐸7, 2𝐴2) � 𝐿1 (𝐴1) ⊗ 𝐿−4+7/3(𝐺2), 𝒲−18+19/2(𝐸7, 4𝐴1) � C,
𝒲−18+19/2 (𝐸7, (3𝐴1)′) � 𝐿−4+7/2(𝐶3), 𝒲−18+19/2(𝐸7, (3𝐴1)′′) � 𝐿−9+13/2(𝐹4).

Moreover, the following inclusions are finite extensions:

𝐿−2+3/22(𝐴1) ↩−� 𝒲−18+18/11(𝐸7, 𝐷6), 𝐿−2+3/8 (𝐴1) ⊗ 𝐿−2+3/4(𝐴1)
↩−� 𝒲−18+19/8(𝐸7, 𝐷5),

𝐿−2+3/4(𝐴1) ⊗ 𝐿−5+7/4 (𝐵3) ↩−� 𝒲−18+19/4(𝐸7, 𝐴3), 𝐿−6+7/3 (𝐴5) ↩−� 𝒲−18+19/3(𝐸7, 𝐴2),
𝐿−2+3/2(𝐴1) ⊗ 𝐿−7+9/2 (𝐵4) ↩−� 𝒲−18+19/2(𝐸7, 2𝐴1), 𝐿−10+11/2 (𝐷6) ↩−� 𝒲−18+19/2 (𝐸7, 𝐴1).

Remark 10.7. In the comments below, we argue as in Remark 10.2 to conclude that the varieties are
not isomorphic with the same dimension.

1. The associated variety of 𝐻0
𝐷𝑆,𝐴3

(𝐿−18+19/4(𝐸7)) is not isomorphic to the associated variety of
𝐿−2+3/4(𝐴1) ⊗ 𝐿−5+7/4 (𝐵3). The former is the nilpotent Slodowy slice S𝐴3+𝐴2+𝐴1 ,𝐴3 in 𝐸7, while the
later is the closure of the nilpotent orbit of 𝑎1 × O1, (32 ,1) ⊂ 𝐴1 × 𝐵3.

2. The associated variety of 𝐻0
𝐷𝑆,𝐴2

(𝐿−18+19/3(𝐸7)) is not isomorphic to the associated variety of
𝐿−6+7/3(𝐴5). The former is the nilpotent Slodowy slice S2𝐴2+𝐴1 ,𝐴2 in 𝐸7, while the later is the
closure of the nilpotent orbit of 𝐴5 = 𝔰𝔩6 attached to the partition (32).

3. The associated variety of 𝐻0
𝐷𝑆,2𝐴1

(𝐿−18+19/2 (𝐸7)) is not isomorphic to the associated variety of
𝐿−2+3/2(𝐴1) ⊗ 𝐿−7+9/2(𝐵4). The former is the nilpotent Slodowy slice S4𝐴1 ,2𝐴1 in 𝐸7, while the later
is the closure of the nilpotent orbit of 𝑎1 × O1, (24 ,1) ⊂ 𝐴1 × 𝐵4. Here, to conclude that varieties are
not isomorphic, one needs to use the singularities of S4𝐴1 ,2𝐴1 as described in [47].

4. The associated variety of 𝐻0
𝐷𝑆,𝐴1

(𝐿−18+19/2(𝐸7)) is not isomorphic to the associated variety of
𝐿−10+11/2 (𝐷6). The former is the nilpotent Slodowy slice S4𝐴1 ,𝐴1 in 𝐸7, while the later is the closure
of the nilpotent orbit of 𝐷6 = 𝔰𝔬12 attached to the partition (3, 24, 1).

Proposition 10.8. The following decompositions hold:

𝒲−18+19/8(𝐸7, 𝐷5) � (𝐿−2+3/8(𝐴1) ⊗ 𝐿−2+3/4 (𝐴1))⊕(𝐿−2+3/8(𝐴1;𝜛1) ⊗ 𝐿−2+3/4(𝐴1;𝜛1)),
𝒲−18+19/4(𝐸7, 𝐴3) � (𝐿−2+3/4 (𝐴1) ⊗ 𝐿−5+7/4(𝐵3)) ⊕ (𝐿−2+3/4 (𝐴1;𝜛1) ⊗ 𝐿−5+7/4 (𝐵3;𝜛3)),
𝒲−18+19/3(𝐸7, 𝐴2) � 𝐿−6+7/3 (𝐴5)⊕𝐿−6+7/3(𝐴5;𝜛2) ⊕ 𝐿−6+7/3 (𝐴5;𝜛4),
𝒲−18+19/2(𝐸7, 2𝐴1) � (𝐿−2+3/2(𝐴1) ⊗ 𝐿−7+9/2 (𝐵4)) ⊕ (𝐿−2+3/2(𝐴1;𝜛1) ⊗ 𝐿−7+9/2(𝐵4;𝜛1)),
𝒲−18+19/2(𝐸7, 𝐴1) � 𝐿−10+11/2 (𝐷6)⊕𝐿−10+11/2(𝐷6;𝜛1).
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Proof. We argue as in the proof of Proposition 10.3. More precisely, for f in 𝐷5 or 𝐴2, we can use the
fact that f is even. For the other cases, we use Proposition 6.8 and Remark 10.7. �

For (𝑝, 𝑞) = (18, 11) and 𝑓 ∈ 𝐷6, similar arguments as before Conjecture 9.12 lead to the following
conjecture.

Conjecture 10.9.

𝒲−18+18/11(𝐸7, 𝐷6) � 𝐿−2+3/22 (𝐴1) ⊕ 𝐿−2+3/22(𝐴1;𝜛1).

Based on the coincidence of central charges and asymptotic growths and dimensions at the non-
admissible levels k and 𝑘 ♮ corresponding to 𝑘 + 18 = 𝑝/𝑞 = 18/3 and 𝑘 ♮ + 4 = 6/3, we conjecture the
following:

Conjecture 10.10.

𝒲−12 (𝐸7, 𝐴2 + 3𝐴1) � 𝐿−2 (𝐺2).

Theorem 10.11. The following isomorphisms hold, providing collapsing levels for 𝔤 = 𝐸8.

𝒲−30+30/31 (𝐸8, 𝐸8) � C, 𝒲−30+31/30(𝐸8, 𝐸8) � C,
𝒲−30+31/24 (𝐸8, 𝐸8(𝑎1)) � C, 𝒲−30+31/20(𝐸8, 𝐸8 (𝑎2)) � C,
𝒲−30+31/18 (𝐸8, 𝐸7) � 𝐿−2+2/9(𝐴1), 𝒲−30+31/15(𝐸8, 𝐸8 (𝑎4)) � C,
𝒲−30+31/12 (𝐸8, 𝐷7) � 𝐿−2+2/3 (𝐴1), 𝒲−30+31/12(𝐸8, 𝐸8 (𝑎5)) � C,
𝒲−30+30/13 (𝐸8, 𝐸6) � 𝐿−4+4/13(𝐺2), 𝒲−30+31/12(𝐸8, 𝐸6) � 𝐿−4+7/12 (𝐺2),
𝒲−30+31/10 (𝐸8, 𝐸8(𝑎6)) � C, 𝒲−30+31/10(𝐸8, 𝐷6) � 𝐿−3+3/5(𝐵2),
𝒲−30+31/9 (𝐸8, 𝐸6(𝑎1)) � 𝐿−3+4/9(𝐴2), 𝒲−30+31/8(𝐴7, 𝐴7) � C,
𝒲−30+30/7 (𝐸8, 𝐴6) � 𝐿−2+2/7 (𝐴1), 𝒲−30+31/6(𝐸8, 𝐸8 (𝑎7)) � C,
𝒲−30+31/6 (𝐸8, 𝐸8(𝑎7)) � C, 𝒲−30+31/6(𝐸8, 𝐷6 (𝑎2)) � 𝐿−2+2/3(𝐴1) ⊗ 𝐿−2+2/3 (𝐴1),
𝒲−30+31/6 (𝐸8, 𝐸6(𝑎3)) � 𝐿−4+7/6(𝐺2), 𝒲−30+31/6(𝐸8, 𝐷4) � 𝐿−9+13/6(𝐹4),
𝒲−30+30/7 (𝐸8, 𝐷4) � 𝐿−9+9/7 (𝐹4), 𝒲−30+31/5(𝐸8, 𝐴4 + 𝐴3) � C,
𝒲−30+32/5 (𝐸8, 𝐴4 + 𝐴3) � 𝐿2 (𝐴1), 𝒲−30+31/4(𝐸8, 2𝐴3) � C,
𝒲−30+31/4 (𝐸8, 𝐷4 (𝑎1) + 𝐴2) � 𝐿−3+3/2 (𝐴2), 𝒲−30+31/3(𝐸8, 2𝐴2 + 2𝐴1) � C,
𝒲−30+32/3 (𝐸8, 2𝐴2 + 2𝐴1) � 𝐿1 (𝐵2), 𝒲−30+31/3(𝐸8, 2𝐴2) � 𝐿−4+7/3 (𝐺2) ⊗ 𝐿−4+7/3(𝐺2),
𝒲−30+31/2 (𝐸8, 4𝐴1) � C, 𝒲−30+31/2(𝐸8, 3𝐴1) � 𝐿−9+13/2 (𝐹4).

Moreover, the following inclusions are finite extensions.

𝐿−2+3/38 (𝐴1) ↩−� 𝒲−30+30/19 (𝐸8, 𝐸7), 𝐿−2+3/14(𝐴1) ↩−� 𝒲−30+31/14(𝐸8, 𝐸7 (𝑎1)),
𝐿−2+3/26 (𝐴1) ↩−� 𝒲−30+30/13 (𝐸8, 𝐷7), 𝐿−3+5/22(𝐵2) ↩−� 𝒲−30+30/11(𝐸8, 𝐷6),
𝐿−3+7/8 (𝐵3) ↩−� 𝒲−30+31/8(𝐸8, 𝐷5), 𝐿−2+3/7(𝐴1) ⊗ 𝐿1 (𝐴1) ↩−� 𝒲−30+31/7 (𝐸8, 𝐴6),
𝐿−6+7/4 (𝐷4) ↩−� 𝒲−30+31/4(𝐸8, 𝐷4 (𝑎1)), 𝐿−9+11/4(𝐵5) ↩−� 𝒲−30+31/4(𝐸8, 𝐴3),
𝐿−12+13/3 (𝐸6) ↩−� 𝒲−30+31/3(𝐸8, 𝐴2), 𝐿−11+13/2(𝐵6) ↩−� 𝒲−30+31/2(𝐸8, 2𝐴1),
𝐿−18+19/2 (𝐸7) ↩−� 𝒲−30+31/2(𝐸8, 𝐴1).

Remark 10.12. In the below comments, we argue as in Remark 10.2 to conclude that the varieties are
not isomorphic with the same dimension.
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1. The associated variety of 𝐻0
𝐷𝑆,𝐷5

(𝐿−30+31/8 (𝐸8)) is not isomorphic to the associated variety of
𝐿−5+7/8(𝐵3). The former is the nilpotent Slodowy slice S𝐴7 ,𝐷5 in 𝐸8, while the later is the closure of
the the nilpotent cone N𝐵3 of 𝐵3.

2. The associated variety of 𝐻0
𝐷𝑆,𝐷4 (𝑎1) (𝐿−30+31/4 (𝐸8)) is not isomorphic to the associated variety of

𝐿−4+7/4(𝐷4). The former is the nilpotent Slodowy slice S2𝐴3 ,𝐷4 (𝑎1) in 𝐸8, while the later is the
closure of the orbit O1;(5,3) in 𝐷4.

3. The associated variety of 𝐻0
𝐷𝑆,𝐴3

(𝐿−30+31/4(𝐸8)) is not isomorphic to the associated variety of
𝐿−9+11/4 (𝐵5). The former is the nilpotent Slodowy slice S2𝐴3 ,𝐴3 in 𝐸8, while the later is the closure
of the orbit O1;(42 ,3) in 𝐵5.

4. The associated variety of 𝐻0
𝐷𝑆,𝐴2

(𝐿−30+31/3(𝐸8)) is not isomorphic to the associated variety of
𝐿−12+13/3 (𝐸6). The former is the nilpotent Slodowy slice S2𝐴2+2𝐴1 ,𝐴2 in 𝐸8, while the later is the
closure of the orbit 2𝐴2 + 𝐴1 in 𝐸6.

5. The associated variety of 𝐻0
𝐷𝑆,2𝐴1

(𝐿−30+31/2 (𝐸8)) is isomorphic to the associated variety of
𝐿−11+13/2 (𝐵6). The former is the nilpotent Slodowy slice S4𝐴1 ,2𝐴1 in 𝐸8, while the later is the closure
of the orbit O1;(26 ,1) in 𝐵6.

6. The associated variety of 𝐻0
𝐷𝑆,𝐴1

(𝐿−30+31/2(𝐸8)) is not isomorphic to the associated variety of
𝐿−18+19/2 (𝐸7). Indeed the former is the nilpotent Slodowy slice S4𝐴1 ,𝐴1 in 𝐸8, while the later is the
closure of the orbit 4𝐴1 in 𝐸7.

Proposition 10.13. The following decompositions hold:

𝒲−30+31/8(𝐸8, 𝐷5) � 𝐿−3+7/8 (𝐵3)⊕𝐿−3+7/8(𝐵3;𝜛3),

𝒲−30+31/4(𝐸8, 𝐷4 (𝑎1)) � 𝐿−6+7/4(𝐷4) ⊕
⊕
𝑖=1,3,4

𝐿−6+7/4(𝐷4;𝜛𝑖),

𝒲−30+31/4(𝐸8, 𝐴3) � 𝐿−9+11/4(𝐵5) ⊕ 𝐿−9+11/4 (𝐵5;𝜛1),
𝒲−30+31/3(𝐸8, 𝐴2) � 𝐿−12+13/3(𝐸6)⊕𝐿−12+13/3(𝐸6;𝜛1) ⊕ 𝐿−12+13/3 (𝐸6;𝜛6),
𝒲−30+31/2(𝐸8, 2𝐴1) � 𝐿−11+13/2 (𝐵6) ⊕ 𝐿−11+13/2(𝐵6;𝜛6),
𝒲−30+31/2(𝐸8, 𝐴1) � 𝐿−18+19/2(𝐸7)⊕𝐿−18+19/2(𝐸7;𝜛7).

Proof. We argue as in the proof of Proposition 10.3. More precisely, for f in 𝐷5, 𝐷4 (𝑎1) or 𝐴2, we can
use the fact that f is even. For the other cases, we use Proposition 6.8 and Remark 10.12. �

For other cases, similar arguments as before Conjecture 9.12 lead to the following conjecture.

Conjecture 10.14.

𝒲−30+30/19 (𝐸8, 𝐸7) � 𝐿−2+3/38(𝐴1)⊕𝐿−2+3/38(𝐴1;𝜛1),
𝒲−30+31/14 (𝐸8, 𝐸7(𝑎1)) � 𝐿−2+3/14(𝐴1) ⊕ 𝐿−2+3/14 (𝐴1;𝜛1)
𝒲−30+30/13 (𝐸8, 𝐷7) � 𝐿−2+3/26 (𝐴1) ⊕ 𝐿−2+3/26 (𝐴1;𝜛1)
𝒲−30+30/11 (𝐸8, 𝐷6) � 𝐿−3+5/22 (𝐵2)⊕𝐿−3+5/22(𝐵2;𝜛2),
𝒲−30+31/7 (𝐸8, 𝐴6) �

(
𝐿−2+3/7 (𝐴1) ⊗ 𝐿1 (𝐴1)

)
⊕

(
𝐿−2+3/7(𝐴1;𝜛1) ⊗ 𝐿1 (𝐴1;𝜛1)

)
.

In type 𝐸8, we make the following conjecture concerning non-admissible levels.

Conjecture 10.15. The following isomorphisms hold.

𝒲−30+32/12(𝐸8, 𝐸6) � 𝐿−4+2/3(𝐺2), 𝒲−24 (𝐸8, 𝐸6 (𝑎3)) � 𝐿−2 (𝐺2),
𝒲−45/2(𝐸8, 𝐴4 + 2𝐴1) � C, 𝒲−70/3 (𝐸8, 𝐴4 + 𝐴2 + 𝐴1) � C.

For example, in the case of f of Bala-Carter type 𝐴4 + 2𝐴1 the conjecture is motivated by the fact
that the central charge is 0 and 𝑘 ♮0 = 𝑘 ♮1 = 0. Similarly, for f of type 𝐴4 + 𝐴2 + 𝐴1, we find 𝑘 ♮1 = 0.
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Table 11. Centralisers of 𝔰𝔩2-triples in type 𝐺2..

𝐺. 𝑓 even 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖

𝐺2 yes {0}
𝐺2 (𝑎1) yes {0}
�̃�1 no 𝐴1 𝑘

♮
1 = 𝑘 + 3

2
𝐴1 no 𝐴1 𝑘

♮
1 = 3𝑘 + 5

Table 12. Centralisers of 𝔰𝔩2-triples in type 𝐹4..

𝐺. 𝑓 even 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖

𝐹4 yes {0}
𝐹4 (𝑎1) yes {0}
𝐹4 (𝑎2) yes {0}
𝐶3 yes 𝐴1 𝑘

♮
1 = 𝑘 + 6

𝐵3 yes 𝐴1 𝑘
♮
1 = 8𝑘 + 60

𝐹4 (𝑎3) yes {0}
𝐶3 (𝑎1) no 𝐴1 𝑘

♮
1 = 𝑘 + 11

2
�̃�2 + 𝐴1 no 𝐴1 𝑘

♮
1 = 3𝑘 + 17

𝐵2 no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 11

2
𝑘
♮
2 = 𝑘 + 11

2
𝐴2 + �̃�1 no 𝐴1 𝑘

♮
1 = 6𝑘 + 69

2
�̃�2 yes 𝐺2 𝑘

♮
1 = 𝑘 + 4

𝐴2 yes 𝐴2 𝑘
♮
1 = 2𝑘 + 10

𝐴1 + �̃�1 no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 4
𝑘
♮
2 = 8𝑘 + 40

�̃�1 no 𝐴3 𝑘
♮
1 = 𝑘 + 3

𝐴1 no 𝐶3 𝑘
♮
1 = 𝑘 + 5

2

Theorem 10.16. The following isomorphisms hold, providing collapsing levels for 𝐺2.

𝒲−4+7/12(𝐺2, 𝐺2) � C, 𝒲−4+4/7 (𝐺2, 𝐺2) � C
𝒲−4+7/6(𝐺2, 𝐺2 (𝑎1)) � C, 𝒲−4+7/6 (𝐺2, �̃�1) � 𝐿−2+2/3 (𝐴1),
𝒲−4+7/3(𝐺2, 𝐴1) � C, 𝒲−4+8/3 (𝐺2, 𝐴1) � 𝐿1 (𝐴1).

Moreover, the following isomorphism holds.

𝒲−4+5/2(𝐺2, 𝐴1) � 𝐿−2+5/2(𝐴1) ⊕ 𝐿−2+5/2(𝐴1;𝜛1).

Proof. To prove the second assertion, we argue as in the proof of Proposition 10.3 using Remark 10.17
below. �

Remark 10.17. The associated variety of 𝒲−4+5/2 (𝐺2, 𝐴1) is not isomorphic to the associated variety of
𝐿−2+5/2 (𝐴1). The former is the nilpotent Slodowy slice S�̃�1 ,𝐴1

in 𝐺2, while the later is the the nilpotent
cone in 𝐴1, and it is known that S�̃�1 ,𝐴1

is a 2-dimensional non-normal variety.
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Table 13. Centralisers of 𝔰𝔩2-triples in type 𝐸6..

𝐺. 𝑓 even 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖

𝐸6 yes {0}
𝐸6 (𝑎1) yes {0}
𝐷5 yes C 𝑘

♮
0 = 𝑘 + 21

2
𝐸6 (𝑎3) yes {0}
𝐷5 (𝑎1) no C 𝑘

♮
0 = 12𝑘 + 117

𝐴5 no 𝐴1 𝑘
♮
1 = 𝑘 + 17

2
𝐴4 + 𝐴1 no C 𝑘

♮
0 = 15𝑘 + 144

𝐷4 yes 𝐴2 𝑘
♮
1 = 2𝑘 + 18

𝐴4 yes C × 𝐴1 𝑘
♮
0 = 15𝑘 + 144
𝑘
♮
1 = 𝑘 + 8

𝐷4 (𝑎1) yes C2 𝜙
♮
0 ≠ 0 for admissible k

𝐴3 + 𝐴1 no C × 𝐴1 𝑘
♮
0 = 𝑘 + 9
𝑘
♮
1 = 𝑘 + 15

2
2𝐴2 + 𝐴1 no 𝐴1 𝑘

♮
1 = 3𝑘 + 23

𝐴3 no C × 𝐵2 𝑘
♮
0 = 𝑘 + 9
𝑘
♮
1 = 𝑘 + 7

𝐴2 + 2𝐴1 no C × 𝐴1 𝑘
♮
0 = 6𝑘 + 45
𝑘
♮
1 = 6𝑘 + 45

2𝐴2 no 𝐺2 𝑘
♮
1 = 𝑘 + 6

𝐴2 + 𝐴1 no C × 𝐴2 𝑘
♮
0 = 6𝑘 + 45
𝑘
♮
1 = 𝑘 + 6

𝐴2 yes 𝐴2 × 𝐴2 𝑘
♮
1 = 𝑘 + 6
𝑘
♮
2 = 𝑘 + 6

3𝐴1 no 𝐴1 × 𝐴2 𝑘
♮
1 = 𝑘 + 11

2
𝑘
♮
2 = 2𝑘 + 12

2𝐴1 no C × 𝐵3 𝑘
♮
0 = 3𝑘 + 18
𝑘
♮
1 = 𝑘 + 4

𝐴1 no 𝐴5 𝑘
♮
1 = 𝑘 + 3

Theorem 10.18. The following isomorphisms hold, providing collapsing levels for 𝔤 = 𝐹4.

𝒲−9+13/18(𝐹4, 𝐹4) � C, 𝒲−9+9/13 (𝐹4, 𝐹4) � C
𝒲−9+13/12(𝐹4, 𝐹4 (𝑎1)) � C, 𝒲−9+9/7 (𝐹4, 𝐶3) � 𝐿−2+2/7(𝐴1)
𝒲−9+9/7(𝐹4, 𝐵3) � 𝐿−2+2/7(𝐴1), 𝒲−9+13/8 (𝐹4, 𝐵3) � 𝐿1 (𝐴1)
𝒲−9+13/6(𝐹4, 𝐹4 (𝑎3)) � C, 𝒲−9+13/6 (𝐹4, 𝐶3 (𝑎1)) � 𝐿−2+2/3 (𝐴1)
𝒲−9+13/6(𝐹4, 𝐵3) � 𝐿−2+2/3(𝐴1) ⊗ 𝐿−2+2/3(𝐴1), 𝒲−9+13/6 (𝐹4, �̃�2)) � 𝐿−4+7/6(𝐺2)
𝒲−9+13/4(𝐹4, 𝐴2 + �̃�1) � C, 𝒲−9+13/4 (𝐹4, 𝐴2)) � 𝐿−3+3/2(𝐴2),
𝒲−9+13/2(𝐹4, 𝐴1)) � C.

Moreover, the following inclusions are finite extensions.

𝐿−2+5/2 (𝐴1) ↩−� 𝒲−9+10/3(𝐹4, 𝐴2 + �̃�1), 𝐿−3+5/3(𝐴2) ↩−� 𝒲−9+10/3(𝐹4, 𝐴2),
𝐿−4+5/4 (𝐴3) ↩−� 𝒲−9+13/4(𝐹4, �̃�1).

Remark 10.19. In the below comments, we argue as in Remark 10.2 to conclude that the varieties are
not isomorphic.
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Table 14. Centralisers of 𝔰𝔩2-triples in type 𝐸7..

𝐺. 𝑓 even 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖

𝐸7 yes {0}
𝐸7 (𝑎1) yes {0}
𝐸7 (𝑎2) yes {0}
𝐸7 (𝑎3) yes {0}
𝐸6 yes 𝐴1 𝑘

♮
1 = 3𝑘 + 48

𝐸6 (𝑎1) yes C 𝑘
♮
0 = 𝑘 + 16

𝐷6 no 𝐴1 𝑘
♮
1 = 𝑘 + 29

2
𝐸7 (𝑎4) yes {0}
𝐷6 (𝑎1) no 𝐴1 𝑘

♮
1 = 𝑘 + 14

𝐷5 + 𝐴1 no 𝐴1 𝑘
♮
1 = 2𝑘 + 30

𝐴6 yes 𝐴1 𝑘
♮
1 = 7𝑘 + 108

𝐸7 (𝑎5) yes {0}
𝐷5 yes 𝐴1 × 𝐴1 𝑘

♮
1 = 𝑘 + 14
𝑘
♮
2 = 2𝑘 + 30

𝐸6 (𝑎3) yes 𝐴1 𝑘
♮
1 = 3𝑘 + 44

𝐷6 (𝑎2) yes 𝐴1 𝑘
♮
1 = 𝑘 + 27

2
𝐷5 (𝑎1) + 𝐴1 yes 𝐴1 𝑘

♮
1 = 8𝑘 + 116

𝐴5 + 𝐴1 no 𝐴1 𝑘
♮
1 = 3𝑘 + 41

(𝐴5)′ no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 27

2
𝑘
♮
2 = 3𝑘 + 44

𝐴4 + 𝐴2 yes 𝐴1 𝑘
♮
1 = 15𝑘 + 216

𝐷5 (𝑎1) no C × 𝐴1 𝑘
♮
0 = 2𝑘 + 29
𝑘
♮
1 = 𝑘 + 13

𝐴4 + 𝐴1 no C2 𝜙
♮
0 ≠ 0 for admissible k

𝐷4 + 𝐴1 no 𝐵2 𝑘
♮
1 = 𝑘 + 25

2
(𝐴5)′′ yes 𝐺2 𝑘

♮
1 = 𝑘 + 12

𝐴3 + 𝐴2 + 𝐴1 yes 𝐴1 𝑘
♮
1 = 24𝑘 + 320

𝐴4 yes C × 𝐴2 𝑘
♮
0 = 𝑘 + 72

5
𝑘
♮
1 = 𝑘 + 12

𝐴3 + 𝐴2 no C × 𝐴1 𝑘
♮
0 = 𝑘 + 40

3
𝑘
♮
1 = 𝑘 + 12

1. The associated variety of 𝐻0
𝐷𝑆,𝐴2+�̃�1

(𝐿−9+10/3(𝐹4)) is not isomorphic to the associated variety of
𝐿−2+5/2 (𝐴1). The former is the nilpotent Slodowy sliceS�̃�2+𝐴1 ,𝐴2+�̃�1

whose singularity at 𝑓 ∈ 𝐴2+ �̃�1
is not normal (see [47, §1.8.4]), while the later is the nilpotent cone of 𝐴1 = 𝔰𝔩2.

2. The associated variety of 𝐻0
𝐷𝑆,𝐴2

(𝐿−9+10/3 (𝐹4, 𝐴2) is not isomorphic to the associated variety of
𝐿−2+5/3 (𝐴2). The former is the nilpotent Slodowy slice S ˜̃𝐴2+𝐴1 ,𝐴2

, while the later is the nilpotent
cone of 𝐴2.

3. The associated variety of 𝐻0
𝐷𝑆, �̃�1

(𝐿−9+13/4 (𝐹4)) is not isomorphic to the associated variety of
𝐿−4+5/4 (𝐴3). Indeed, the former is the nilpotent Slodowy slice S𝐴2+�̃�1 , �̃�1

in 𝐹4, while the later is the
nilpotent cone of 𝐴3 = 𝔰𝔩4. But the number of nilpotent 𝐺♮-orbits in N𝐴3 is 5, while the number of
𝐺♮-orbits in S𝐴2+�̃�1 , �̃�1

would be 4.

Proposition 10.20. The following decompositions hold:

𝒲−9+10/3(𝐹4, 𝐴2 + �̃�1) � 𝐿−2+5/2 (𝐴1) ⊕ 𝐿−2+5/2(𝐴1;𝜛1),
𝒲−9+10/3(𝐹4, 𝐴2) � 𝐿−3+5/3(𝐴2) ⊕ 𝐿−3+5/3(𝐴2;𝜛1) ⊕ 𝐿−3+5/3(𝐴2;𝜛2),

𝒲−9+13/4(𝐹4, �̃�1) � 𝐿−4+5/4(𝐴3) ⊕
⊕
𝑖=1,2,3

𝐿−4+5/4(𝐴3;𝜛𝑖).
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Table 15. Centralisers of 𝔰𝔩2-triples in type 𝐸7..

𝐺. 𝑓 even 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖

𝐷4 (𝑎1) + 𝐴1 no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 12
𝑘
♮
2 = 𝑘 + 12

𝐷4 yes 𝐶3 𝑘
♮
1 = 𝑘 + 12

𝐴3 + 2𝐴1 no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 23

2
𝑘
♮
2 = 2𝑘 + 24

𝐷4 (𝑎1) yes 𝐴1 × 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 12
𝑘
♮
2 = 𝑘 + 12
𝑘
♮
3 = 𝑘 + 12

(𝐴3 + 𝐴1)′ no 𝐴1 × 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 23

2
𝑘
♮
2 = 𝑘 + 12
𝑘
♮
3 = 2𝑘 + 24

2𝐴2 + 𝐴1 no 𝐴1 × 𝐴1 𝑘
♮
1 = 3𝑘 + 36
𝑘
♮
2 = 3𝑘 + 35

(𝐴3 + 𝐴1)′′ no 𝐵3 𝑘
♮
1 = 𝑘 + 10

𝐴2 + 3𝐴1 yes 𝐺2 𝑘
♮
1 = 2𝑘 + 22

2𝐴2 yes 𝐴1 ×𝐺2 𝑘
♮
1 = 3𝑘 + 36
𝑘
♮
2 = 𝑘 + 10

𝐴3 no 𝐴1 × 𝐵3 𝑘
♮
1 = 𝑘 + 12
𝑘
♮
2 = 𝑘 + 10

𝐴2 + 2𝐴1 no 𝐴1 × 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 10
𝑘
♮
2 = 2𝑘 + 22
𝑘
♮
3 = 6𝑘 + 66

𝐴2 + 𝐴1 no C × 𝐴3 𝑘
♮
0 = 𝑘 + 11
𝑘
♮
1 = 𝑘 + 9

4𝐴1 no 𝐶3 𝑘
♮
1 = 𝑘 + 17

2
𝐴2 yes 𝐴5 𝑘

♮
1 = 𝑘 + 8

(3𝐴1)′ no 𝐴1 ×𝐶3 𝑘
♮
1 = 𝑘 + 17

2
𝑘
♮
2 = 𝑘 + 8

(3𝐴1)′′ yes 𝐹4 𝑘
♮
1 = 𝑘 + 6

2𝐴1 no 𝐴1 × 𝐵4 𝑘
♮
1 = 𝑘 + 8
𝑘
♮
2 = 𝑘 + 6

𝐴1 no 𝐷6 𝑘
♮
1 = 𝑘 + 4

Proof. We argue as in the proof of Proposition 10.3. More precisely, for 𝑓 ∈ 𝐴2, we can use the fact
that f is even. For the other cases, we use Proposition 6.8 and Remark 10.19. �

For other cases, similar arguments as before Conjecture 9.12 lead to the following conjecture.

Conjecture 10.21.

𝒲−9+13/10 (𝐹4, 𝐶3) � 𝐿−2+3/10(𝐴1) ⊕ 𝐿−2+3/10(𝐴1;𝜛1),
𝒲−9+9/5(𝐹4, 𝐵2) � (𝐿−2+3/10 (𝐴1) ⊗ 𝐿−2+3/10(𝐴1)) ⊕ (𝐿−2+3/10 (𝐴1;𝜛1) ⊗ 𝐿−2+3/10 (𝐴1;𝜛1)).

As in the classical cases, we have the following conjecture.

Conjecture 10.22. Assume that 𝔤 simple of exceptional type. The cases covered by Theorems 10.1, 10.6,
10.11, 10.16 and 10.18 give the exhaustive list of pairs ( 𝑓 , 𝑘) where f is a nilpotent element of 𝔤 and k
is an admissible collapsing levels for 𝔤.
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Table 16. Centralisers of 𝔰𝔩2-triples in type 𝐸8..

𝐺. 𝑓 even 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖

𝐸8 yes {0}
𝐸8 (𝑎1) yes {0}
𝐸8 (𝑎2) yes {0}
𝐸8 (𝑎3) yes {0}
𝐸8 (𝑎4) yes {0}
𝐸7 no 𝐴1 𝑘

♮
1 = 𝑘 + 53

2
𝐸8 (𝑏4) yes {0}
𝐸8 (𝑎5) yes {0}
𝐸7 (𝑎1) no 𝐴1 𝑘

♮
1 = 𝑘 + 26

𝐸8 (𝑏5) yes {0}
𝐷7 no 𝐴1 𝑘

♮
1 = 2𝑘 + 107

2
𝐸8 (𝑎6) yes {0}
𝐸7 (𝑎2) no 𝐴1 𝑘

♮
1 = 𝑘 + 51

2
𝐸6 + 𝐴1 no 𝐴1 𝑘

♮
1 = 3𝑘 + 77

𝐷7 (𝑎1) no C 𝑘
♮
0 = 4𝑘 + 106

𝐸8 (𝑏6) yes {0}
𝐸7 (𝑎3) no 𝐴1 𝑘

♮
1 = 𝑘 + 25

𝐸6 (𝑎1) + 𝐴1 no C 𝑘
♮
0 = 2𝑘 + 51

𝐴7 no 𝐴1 𝑘
♮
1 = 4𝑘 + 209

2
𝐷7 (𝑎2) no C 𝑘

♮
0 = 𝑘 + 26

𝐸6 yes 𝐺2 𝑘
♮
1 = 𝑘 + 24

𝐷6 no 𝐵2 𝑘
♮
1 = 𝑘 + 49

2
𝐷5 + 𝐴2 yes C 𝑘

♮
0 = 3𝑘 + 76

𝐸6 (𝑎1) yes 𝐴2 𝑘
♮
1 = 𝑘 + 24

𝐸7 (𝑎4) no 𝐴1 𝑘
♮
1 = 𝑘 + 24

𝐴6 + 𝐴1 no 𝐴1 𝑘
♮
1 = 7𝑘 + 180

𝐷6 (𝑎1) no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 24
𝑘
♮
2 = 𝑘 + 24

𝐴6 yes 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 24
𝑘
♮
2 = 7𝑘 + 180

𝐸8 (𝑎7) yes {0}
𝐷5 + 𝐴1 no 𝐴1 × 𝐴1 𝑘

♮
1 = 𝑘 + 47

2
𝑘
♮
2 = 2𝑘 + 48

𝐸7 (𝑎5) no 𝐴1 𝑘
♮
1 = 𝑘 + 47

2
𝐸6 (𝑎3) + 𝐴1 no 𝐴1 𝑘

♮
1 = 3𝑘 + 71

𝐷6 (𝑎2) no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 47

2
𝑘
♮
2 = 𝑘 + 47

2
𝐷5 (𝑎1) + 𝐴2 no 𝐴1 𝑘

♮
1 = 6𝑘 + 285

2
𝐴5 + 𝐴1 no 𝐴1 × 𝐴1 𝑘

♮
1 = 𝑘 + 47

2
𝑘
♮
2 = 3𝑘 + 71

𝐴4 + 𝐴3 no 𝐴1 𝑘
♮
1 = 10𝑘 + 238

𝐷5 yes 𝐵3 𝑘
♮
1 = 𝑘 + 22

𝐸6 (𝑎3) yes 𝐺2 𝑘
♮
1 = 𝑘 + 22

𝐷4 + 𝐴2 yes 𝐴2 𝑘
♮
1 = 2𝑘 + 46

Conjecture 10.23. The following isomorphisms hold.

𝒲−15/2(𝐹4, �̃�2) � 𝐿−7/2 (𝐺2), 𝒲−6(𝐹4, �̃�2) � 𝐿−2 (𝐺2).

Writing 𝑘 = −9 + 12/8 and 𝑘 ♮ = −4 + 4/8, we find that 𝒲−15/2(𝐹4, �̃�2) and 𝐿−7/2 (𝐺2) have the
same central charge and that the (conjectural) formula for asymptotic growth and asymptotic dimension
coincide; see Table 10. Similarly, writing 𝑘 = −9 + 9/3 and 𝑘 ♮ = −4 + 6/3, we find that 𝒲−6 (𝐹4, �̃�2)
and 𝐿−2 (𝐺2) have the same central charge and that the (conjectural) formula for asymptotic growth and
asymptotic dimension coincide; see Table 10.
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Table 17. Centralisers of 𝔰𝔩2-triples in type 𝐸8..

𝐺. 𝑓 even 𝔤♮ =
⊕

𝑖 𝔤
♮
𝑖 𝑘

♮
𝑖

𝐴4 + 𝐴2 + 𝐴1 no 𝐴1 𝑘
♮
1 = 15𝑘 + 350

𝐷5 (𝑎1) + 𝐴1 no 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 22
𝑘
♮
2 = 8𝑘 + 184

𝐴5 no 𝐴1 ×𝐺2 𝑘
♮
1 = 𝑘 + 47

2
𝑘
♮
2 = 𝑘 + 22

𝐴4 + 𝐴2 yes 𝐴1 × 𝐴1 𝑘
♮
1 = 15𝑘 + 350
𝑘
♮
2 = 𝑘 + 22

𝐴4 + 2𝐴1 no C × 𝐴1 𝑘
♮
0 = 𝑘 + 45

2
𝑘
♮
1 = 2𝑘 + 45

𝐷5 (𝑎1) no 𝐴3 𝑘
♮
1 = 𝑘 + 21

2𝐴3 no 𝐵2 𝑘
♮
1 = 2𝑘 + 89

2
𝐴4 + 𝐴1 no C × 𝐴2 𝑘

♮
0 = 𝑘 + 45

2
𝑘
♮
1 = 𝑘 + 21

𝐷4 (𝑎1) + 𝐴2 yes 𝐴2 𝑘
♮
1 = 6𝑘 + 132

𝐷4 + 𝐴1 no 𝐶3 𝑘
♮
1 = 𝑘 + 41

2
𝐴3 + 𝐴2 + 𝐴1 no 𝐴1 × 𝐴1 𝑘

♮
1 = 𝑘 + 41

2
𝑘
♮
2 = 24𝑘 + 528

𝐴4 yes 𝐴4 𝑘
♮
1 = 𝑘 + 20

𝐴3 + 𝐴2 no C × 𝐵2 𝑘
♮
0 = 𝑘 + 22
𝑘
♮
1 = 𝑘 + 20

𝐷4 (𝑎1) + 𝐴1 no 𝐴1 × 𝐴1 × 𝐴1 𝑘
♮
1 = 𝑘 + 20
𝑘
♮
2 = 𝑘 + 20
𝑘
♮
3 = 𝑘 + 20

𝐴3 + 2𝐴1 no 𝐴1 × 𝐵2 𝑘
♮
1 = 2𝑘 + 40
𝑘
♮
2 = 𝑘 + 39

2
2𝐴2 + 2𝐴1 no 𝐵2 𝑘

♮
1 = 3𝑘 + 59

𝐷4 yes 𝐹4 𝑘
♮
1 = 𝑘 + 18

𝐷4 (𝑎1) no 𝐷4 𝑘
♮
1 = 𝑘 + 18

𝐴3 + 𝐴1 no 𝐴1 × 𝐵3 𝑘
♮
1 = 𝑘 + 39

2
𝑘
♮
2 = 𝑘 + 18

2𝐴2 + 𝐴1 no 𝐴1 ×𝐺2 𝑘
♮
1 = 3𝑘 + 59
𝑘
♮
2 = 𝑘 + 8

2𝐴2 yes 𝐺2 ×𝐺2 𝑘
♮
1 = 𝑘 + 18
𝑘
♮
2 = 𝑘 + 18

𝐴2 + 3𝐴1 no 𝐴1 ×𝐺2 𝑘
♮
1 = 𝑘 + 35

2
𝑘
♮
2 = 2𝑘 + 36

𝐴3 no 𝐵5 𝑘
♮
1 = 𝑘 + 16

𝐴2 + 2𝐴1 no 𝐴1 × 𝐵3 𝑘
♮
1 = 6𝑘 + 108
𝑘
♮
2 = 𝑘 + 16

𝐴2 + 𝐴1 no 𝐴5 𝑘
♮
1 = 𝑘 + 15

4𝐴1 no 𝐶4 𝑘
♮
1 = 𝑘 + 29

2
𝐴2 yes 𝐸6 𝑘

♮
1 = 𝑘 + 12

3𝐴1 no 𝐴1 × 𝐹4 𝑘
♮
1 = 𝑘 + 29

2
𝑘
♮
2 = 𝑘 + 12

2𝐴1 no 𝐵6 𝑘
♮
1 = 𝑘 + 10

𝐴1 no 𝐸7 𝑘
♮
1 = 𝑘 + 6

11. Centralisers of 𝔰𝔩2-triples in simple exceptional Lie algebras

In this appendix, we collect the data relative to each 𝔰𝔩2-triples in simple exceptional Lie algebras. Our
results are obtained using the software GAP4 and are summarised in Tables 11, 12, 13, 15 and 17.
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In the tables, nilpotent orbits are given by the Bala-Carter classification (first column). We indicate
in the second column whether the nilpotent orbit is even or not. The third column gives the type of 𝔤♮,
and the last column gives the values of the 𝑘 ♮𝑖 ’s. Obviously, the order follows the order of the simple
factors of 𝔤♮ as appearing in the third column.
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