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Abstract

In this note it is proved that a (real or complex) semiprime Banach algebra A satisfying
xAx = x2Ax2 for every x 6 A is a direct sum of a finite number of division Banach algebras.
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1. Introduction

Recently Esterle and Oudadess (1986) have shown that a complex semisimple
Banach algebra A satisfying Ax2 = Ax for every x G A is isomorphic to Cn for
some n > 0. Their strategy consists of proving that such an algebra is com-
mutative and then to obtain the result by using standard techniques of spectral
theory. These methods do not extend to the case of real scalars since there exist
noncommutative real Banach algebras B (for instance, the quaternions) which
are semisimple and satisfy Bx2 = Bx for every x € B.

We prove in this note that a (real or complex) semiprime Banach algebra A
satisfying x2Ax2 = xAx for every x € A is a direct sum of a finite number of
ideals each of which is isomorphic to either the reals, complexes or quaternions.
If A is complex all of them are isomorphic to the complex field and A is commu-
tative. In particular, the result of Esterle and Oudadess can be derived from our
theorem. We are indebted to our colleague Professor J. A. Cuenca who pointed
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out to us tha t the hypothesis on the existence of a uni t element was superfluous

in the first version of our result.

2. The theorem

Let A be an (associative) algebra over a field F. The algebra A is called
semiprime if I2 = 0 implies I = 0, I right ideal of A (equivalently, xAx = 0
implies x = 0). For a semiprime algebra A the socle is defined to be the sum of
all minimal right ideals of A (= sum of all minimal left ideals). An associative
algebra A is said to be unital if there exists 1 € A such that lx = xl = x for every
x € A. A unital algebra A is called a division algebra if every non-zero element
in A is invertible. A nonzero idempotent e € A is called primitive, completely
primitive or principal respectively, if eAe has no idempotents other than 0, e, eAe
is a division algebra or (1 — e)A(l — e) does not contain any nonzero idempotent
respectively, where (1 — e)A{l — e) makes sense even if A is non-unital. An
element a e A i s von Neumann regular if we can find b € A such that a — aba.

THEOREM. Every (real or complex) semiprime Banach algebra A satisfying
xAx = x2Ax2 for every x € A is a direct sum A = M\ © • • • © Mn of ideals
each of which is isomorphic to either the reals, complexes or quaternions. If A
is complex all the Mi are isomoprhic to the complex field and A is commutative.
Conversely, every direct sum A — Mi © • • • © Mn of division Banach algebras ia
a semisimple Banach algebra satisfying xAx — x2Ax2.

PROOF. Since the reverse implication is clear we only must settle the neces-
sary condition. Without loss in generality we may assume A ^ 0. First of all we
note that xAx = xnAxn for all x € A, n > 1. Now it follows by semiprimeness
that A has no nilpotent elements. Hence for any non-zero x € A, x3 jt 0, and
since x3 € xAx = x3Ax3 there is y G A such that x3 = x3yx3, so that x3y
and yx3 are non-zero idempotents. Suppose that {en}n=i is an infinite sequence
of non-zero orthogonal idempotents and let {An}n=i be a sequence of non-zero
real numbers such that £ ll^nen|| < oo. If u = ]T) Anen we have u ^ 0 and
u3 = J3 ̂ n^n is a von Neumann regular element, so that we can use the argu-
ments of Kaplansky (1948), Lemma 1, to get a contradiction. Thus A contains a
principal idempotent v which is a sum v — e\ H h er of orthogonal primitive
idempotents; we show that v is a unit element of A and that every primitive
idempotent e € A is completely primitive. Indeed, B = (1 — v)A(—v), is a
Banach algebra satisfying the same conditions as A, so that B = 0 since other-
wise B would contain a non-zero idempotent, which is a contradiction because
v is principal. Then ((1 — i/)^4)2 = 0 and hence (1 — v)A = 0 by semiprimeness.
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Analogously ,4(1 - v) = 0, so t h a t v is a uni t element of A. Now let e be a

primitive idempotent of A. Since the algebra tAe satisfies t h e same conditions

as A we have t h a t for every non-zero element x G eAe there exists y € tAe such

t h a t x3y and J / I 3 are non-zero idempotents in eAe. Hence x3y = e = yx3 since

e is primitive. T h e n eAe is a divison algebra and therefore e is a completely

primitive idempotent . We have thus proved t h a t A is a uni ta l algebra coinciding

with its socle (Jacobson (1956), page 65). Bu t such an algebra is semisimple

and satisfies the Descending Chain Condit ion on right ideals (Jacobson (1956),

page 75), so tha t by the Wedderburn-Art in theorem (Jacobson (1956), page 40)

A = M i © • • • © M n is a direct sum of ideals each of which is isomorphic t o a

full mat r ix ring Mn(i){Di) over a division ring D{. Since A contains no nilpo-

tent elements, every n* = 1 and since every Di is a division Banach algebra (in

fact, Di = UiAui for a completely primitive idempotent u*; (Jacobson (1956),

Lemma 3.1)), we have by Mazur-Gelfand theorem (Rickart (1974), Theorems

1.7.1 and 1.7.6) t h a t each Di is isomorphic to either the reals, complexes or

quaternions. If A is complex then every Di is isomoprhic to the complex field

and A is commutat ive, which completes the proof.

We finish by not ing t h a t the theorem of Esterle and Oudadess can be derived

from our result. Indeed, let A be a complex semiprime Banach algebra satisfying

Ax = Ax2 for every x € A. Since A is commutat ive (Esterle and Oudadess

(1986), Lemma 3.1) xAx = x2Ax2 for every x G A, so t h a t we can apply our

theorem to conclude t h a t A = C n for some n > 0.
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