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Abstract. It is argued that bumps in the timing histories €2(¢) of the
anomalous X-ray pulsars (AXPs) 1E 1048.1-5937 and 1E 22594586 are
the signature of a magnetar undergoing radiative precession, wherein the
hydromagnetic deformation of the neutron star couples to an oscillating
component of the vacuum-dipole radiation torque to produce an anhar-
monic wobble with period 7o, ~ 10yr. An analysis of Euler’s equations
of motion for a biaxial magnet reproduces the amplitude and recurrence
time of the bumps for 1E 1048.1-5937 and 1E 22594586, predicts (¢)
for the next 20 years for both objects, and predicts a testable statistical
relation between dQ/dt and 7, for the AXP population overall. Ra-
diative precession of soft gamma-ray repeaters is also discussed, together
with implications for the internal (e.g. viscosity) and magnetospheric (e.g.
ete™ pair currents) properties of magnetars.

1. Introduction

Anomalous X-ray pulsars (AXPs) are a subclass of X-ray pulsars, with pulse
periods between 6 and 12s, for which optical counterparts and orbital Doppler
shifts of pulse arrival times have not been detected (Mereghetti & Stella 1995;
van Paradijs, Taam & van den Heuvel 1995). At present, there is debate
over whether AXPs are (i) ordinary neutron stars with surface magnetic field
By ~ 102G, accreting from a very-low-mass binary companion or circumstellar
disk (van Paradijs et al. 1995; Baykal & Swank 1996), or (i) magnetars, i.e.
nonaccreting, ultramagnetized neutron stars with By > 10'* G, spinning down
electromagnetically (Thompson & Duncan 1996; Heyl & Hernquist 1999).

Two AXPs, 1E 1048.1-5937 and 1E 22594586, possess well-sampled timing
histories extending back over 20 years. Both objects spin down irregularly: the
rotation frequency decreases linearly with t on average, but there are ‘bumps’
superposed on the average trend every 5-10yr during which Q@ = dQ/dt < 0
fluctuates by a factor of 2-5 (Baykal et al. 1998; Oosterbroek et al. 1998; and
references therein). In existing models of AXPs, the bumps are ascribed to
white accretion-torque noise (Baykal & Swank 1996) or Vela-like glitches (Heyl
& Hernquist 1999). Here we discuss an alternative scenario in which the bumps
are the spin-down signature of radiative precession of a magnetar (Melatos 1999).
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2. Radiative Precession

Internal hydromagnetic stresses deform a magnetar, producing a fractional dif-
ference € = (I3 — Iy)/I} ~ B2 R®/4wcil) ~ 2 x 107%(Biy/10* G)* between the
principal moments of inertia Iy and I3, where Bi, is the characteristic strength
of the internal magnetic field, ¢s & 371/2¢ is the isothermal sound speed, and R
is the stellar radius {(Goldreich 1970; Katz 1989; Melatos 1999; see also Jones
1975 for a discussion of how the distortion is amplified by the proton superfluid
in the star). One has B;, & By if the internal field is confined within the crust
and B;, > Bg if it is generated in the core; moreover, the principal axis es is ap-
proximately parallel to m, the axis of the external magnetic dipole, provided the
source dynamo operates in a roughly axisymmetric, low-order-multipole mode.

In the absence of an external torque, and if € is not parallel to eg, the star
precesses freely with period 7,y = 27 /€Q = 85(Bin/10' G) (/1 rad s™1)~lyr.
In reality, an external torque is exerted by the vacuum radiation fields of the
rotating magnetic dipole. It consists of two parts: (i) the familiar spin-down
torque o< §2°, which acts along € X (2 X m) on the braking time-scale 75 =
2631/ BERSQ? » 2 x 10%(By/10M G)~2(Q/1rads™ 1) "2yr, and (ii) a near-field
torque o 02, associated with the axisymmetric inertia of the near-zone ra-
diation fields, which acts along £ x m on the time-scale ¢ ~ THQR/c ~
6(Bo/101 G)~2(2/1rad s~1)~lyr (Goldreich 1970; Melatos 1999). Given Bj, 2
By, one finds Ty, ~ 7y, i.€. the near-field torque couples to the Eulerian preces-
sion. The star wobbles anharmonically, with the angle @ between © and m (and
hence Q o sin? @) oscillating in a jerky fashion as in Fig. la. Each jerk matches
a bump in the timing history Q(¢).!

Euler’s equations of motion for a rotating, biaxial, dipole magnet take the
form (Melatos 1999)

D = —eQQs+ Qg 275 cos x[aQ* (= Q) cos x + Q3 sin x)

+ 0822 (2 sin x + Q3 cos x)], (1)
Qy = Q3+ Q527 [~a?Q,

+b(—; cos x + Q3 sin x) (2 sin x + Q3 cos x)], (2)
Qy = —Q5 %75 sin x[aQ2% (- cos x + Q3sin x)

+ 625 (£2; sin x + Q3 cos x)]. (3)

Subscripts denote vector components along the principal axes of inertia, x is
the (fixed) angle between m and es, and we have a = 0.33, b = 0.094¢/QpR,
and Q¢ = Q(to), where tp is an arbitrary origin. Terms o ¢ produce Eulerian
precession, terms o b arise from the near-field torque, and terms « « produce
secular braking. Equations (1)-(3) can be generalized to accommodate triaxi-
ality (see also Fig. la), and one can model crudely the internal magnetization
(e.g. toroidal versus poloidal) and distribution of magnetospheric currents (e.g.
plasma modifications) by adjusting the values of a and b respectively.

!The near-field torque, although directed along 2 x m, does change |§2| because the angular
momentum vector is not parallel to € for an aspherical star.
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Figure 1.  (a) Angular frequency derivative Q (solid curve), in di-
mensionless units, and the angle « between £ and m (dotted curve),
in degrees, as functions of time, in units of the braking time-scale 7.
Both curves are for y = 40°, € = 93(Qo70) !, € = (I — I1)/I; = 0.09,
Qg0 = 0.280, and Q30 = 0.408. A similar effect, without the small
secondary bumps, occurs for a biaxial star with ¢ = 0. (b) Rotation fre-
quency 2 vs. time ¢ for the AXP 1E 2259+586, with t, = JD 2,443, 000.
The squares and 1o error bars are X-ray timing data (Baykal et
al. 1998 and references therein). The solid curve is the solution to
Euler’s equations of motion (egs. [1]-[3]) for o = 0.900356 rads™,
Qomo = 2.35x 1012, ¢ = 3.4 x 1078, and vy = 13°, with initial conditions
szo = ——066890 and ngo = 065890

3. X-Ray Timing and Population Statistics

Fig. 1b displays X-ray-timing data for 1E 22594586 together with the best the-
oretical fit from (1)-(3). The unknown parameters ¢, 7o and x are constrained
to better than 5 per cent, and their values are exactly what one expects if AXPs
are hydromagnetically deformed magnetars with By, > By > 3 x 101G and yx
relatively small as for the geodynamo (see §2). A similar conclusion pertains to
1E 1048.1-5937 (Melatos 1999). The future timing behavior predicted by the
theory is also tightly constrained — and hence falsifiable. Although a formal es-
timate of the chi-square of the fit compares unfavorably with alternative models
invoking multiple glitches (Heyl & Hernquist 1999), the x? likelihood improves
dramatically when triaxiality is added to (1)-(3) and @ and b are treated as free
parameters (see §2). A detailed comparison of this more general model with
available data is in progress.

If radiative precession is responsible for bumpy spin-down, one expects an
inverse correlation across the AXP population between bump recurrence time
Tpr B % and average spin-down rate (Q) & Q/7 x B, viz.

() & —2 x 1074(By/Bin)? (/1 rad s 12 (rp/1yr) Trad s~ yr™,  (4)
with some scatter because 7, and (Q) depend on the detailed internal and
external magnetizations of each object (Melatos 1999). One also expects a nar-
row range of bump amplitudes AQ,, ~ 5 x 107°(Bo/Bin)*(Q2/1rads™!)? rads™!
(Melatos 1999).
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4. Internal and Magnetospheric Structure of a Magnetar

Bumpy spin-down is not observed in rotation-powered pulsars with By < 10*2 G,
except for PSR B1828-11 (A. Lyne, this symposium). This may be because ra-
diative precession is viscously damped inside an ordinary pulsar (cf. the Earth),
whereas the stiffening action of the superstrong magnetic field in a magnetar
hinders the development of elastic strains and sheared fluid flows. Alternatively,
it may imply that conduction currents in the magnetosphere of an ordinary pul-
sar nullify the precessive near-field torque, whereas the vacuum fields and hence
the near-field torque are not modified in a magnetar because pair production is
quenched, e.g. by positronium formation.

Soft gamma-ray repeaters (SGRs) are also thought to be magnetars. Woods
et al. (1999) recently presented Rossi X-Ray Timing Explorer observations of
SGR 1900+14 that reveal bumpy spin-down in that object, with § changing by
a factor & 2.3 during an interval of & 80d before reverting to the trend rate
(Q). The data are consistent with radiative precession. However, the 80-d in-
terval coincided with a giant X-ray flare which initiated several months of burst
activity. A correlation between flares and bumpy spin-down is not expected
in the simplest radiative-precession scenario. If future data substantiate such a
correlation, an alternative picture becomes more likely in which Eulerian preces-
sion and/or Vela-like glitches are excited by some flare trigger, such as episodic
Alfvén-wave emission or a starquake (Heyl & Hernquist 1999; Woods et al. 1999;
C. Thompson, this symposium).
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