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Pendant drops appear in many engineering applications, such as inkjet printing and optical
tensiometry, and they have also been the subject of studies of droplet–particle interaction.
While the hydrostatics of pendant drops has been studied extensively, the influence of
external flow disturbances has received limited attention. This research aims to incorporate
aerodynamic factors into the understanding of pendant drop behaviour. Employing a
simplified model, an irrotational flow aligned with the drop’s axis is derived from a
distribution of singularity elements within the drop. The drop’s equilibrium shape is then
determined using a numerical model that couples the flow field with the Young–Laplace
equation. The model’s predictions are compared to droplet images captured via high-speed
shadowgraph in a vertical wind tunnel, showing good agreement with the experimentally
observed shapes. Additionally, under certain flow conditions, the drop exhibits instability
in the form of periodic pendulum-like motion. This instability was linked to two distinct
critical drop heights, and the corresponding stability criterion was mathematically derived
from the numerical model. Our theoretical and experimental findings provide the first
quantitative description of the equilibrium shape and stability criterion of pendant drops
under the influence of external flow.

Key words: drops, nonlinear instability, multiphase flow

1. Introduction
Pendant drops are a common phenomenon in nature, and serve as a canonical multiphase
system, frequently explored in engineering applications. The fundamental physics
governing pendant drops in static ambient conditions has been studied extensively, with
particular focus on their axisymmetric shape, stability, response to electric and acoustic
fields, and evolution under a steady increase in volume (O’Brien 1991; Basaran &
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Wohlhuter 1992; Wohlhuter & Basaran 1992; Basaran & DePaoli 1994; Schulkes 1994;
Wilkes & Basaran 1997; Moon, Kang & Kim 2006; Bussonnière et al. 2016; Mohamed
et al. 2016; Zografov, Tankovsky & Andreeva 2014; Zhang & Zhou 2023). The theory
of pendant drops in static conditions has been especially useful in tensiometry, where
liquid surface tension is determined based on experimentally measured drop shapes
(Bormashenko et al. 2013; Berry et al. 2015; Wang & Li 2020). However, few studies have
investigated pendant drops under dynamic conditions, where an external airflow interacts
with the drop.

Previous research on dynamic systems involving airflow past drops has primarily
focused on drops freely floating or falling in the gas phase (Kubesh & Beard 1993;
Testik & Barros 2007; Szakáll et al. 2009; Beard, Bringi & Thurai 2010; Szakáll et al.
2014; Szakáll & Urbich 2018; Zhang et al. 2019; Szakáll et al. 2021). The deformation
of drops due to external pressure is fundamental to understanding such multiphase
systems. The equilibrium shape of free-falling drops at their terminal velocities was
studied nearly 40 years ago in the seminal work of Beard & Chuang (1987). In their
study, the axisymmetric shape of raindrops was solved numerically using the Young–
Laplace equation, balancing the Laplace pressure due to drop surface curvature with
the external aerodynamic pressure from the surrounding uniform airflow. Building on
this work, Feng & Beard (1991) proposed perturbation theory to describe raindrop
oscillation characteristics. These results were later verified through vertical wind tunnel
experiments by Szakáll et al. (2010), providing quantitative evidence that advanced the
understanding of falling drop dynamics in air. In parallel, numerous studies have also
explored the behaviour of partially wetting drops subjected to gas flows on flat solid
surfaces, including configurations involving horizontal and vertical airflow as well as jet
impingement (Durbin 1988; Ding 2008; Hooshanginejad & Lee 2017; Hooshanginejad
et al. 2020; Hooshanginejad & Lee 2022; Chen et al. 2022; Kang et al. 2025). These
works examined drop deformation and three-dimensional dynamics, such as drop splitting
and depinning.

Pendant drops in airflow represent another example of such liquid–gas systems, and
can be observed in various natural contexts, such as dewdrops or irrigation droplets
hanging from foliage, and meltwater drops forming at the tips of icicles. A more practical
application of pendant drop systems is presented in Speirs, Belden & Hellum (2023),
where the capture of airborne particles by raindrops is investigated in a laboratory setting.
In their set-up, small particles collide with a stationary pendant drop held in place within
a vertical wind tunnel. The ability to maintain a drop of a specific size at a fixed position
under controlled flow velocity is essential for such experiments.

Despite the relevance in nature and engineering fields, the dynamics of pendant drops
under the influence of uniform flow, in contrast to raindrops or substrate-bound drops,
has only recently been studied by Dockery, Aydin & Dickerson (2024). In their work,
the periodic motion of pendant drops due to airflow disturbances was observed in wind
tunnel experiments. The oscillation modes were categorised based on drop size and airflow
velocity, and the corresponding oscillation frequencies were found to be related to the
balance of forces acting on the drop. However, their formulation assumes drag force of
a sphere, and this assumption becomes less accurate with significant drop deformation.
Motivated by this limitation, the present study aims to provide a more comprehensive
description of drop deformation, and establish a deeper understanding of the system
by linking the equilibrium shape to the observed dynamic behaviour. At present, no
mathematical model fully describes the behaviour of deformed pendant drops under
airflow, which makes it challenging to devise engineered approaches for manipulating drop
behaviour in dynamic ambient conditions.
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Figure 1. An axisymmetric pendant drop suspended from a needle outlet, immersed in a surrounding uniform
upward vertical flow.

The present study addresses this gap through a dual approach involving numerical
modelling and experimental observations. The numerical model employs potential flow
theory and the Young–Laplace equation to predict the equilibrium shape of pendant drops
influenced by uniform vertical flow. Concurrent experimental observations offer insights
into the actual shapes and unstable motions of pendant drops under these conditions.
By integrating numerical and experimental methodologies, this study aims to enhance
our understanding of the complex interactions between pendant drops and external flows,
contributing to improved insights into multiphase flow dynamics.

Before delving into the theoretical and experimental results, § 2 of this paper is dedicated
to constructing a governing equation for calculating the equilibrium shape of the drop. To
address the nonlinearity of the problem, it introduces a novel least squares formulation,
along with efficient methods for describing the external flow field and complex drop
shapes. This section ultimately presents the results for the calculation of equilibrium
shapes. Section 3 then extends the numerical model to vertical force analysis, demonstrat-
ing that while the drop is in force balance, stability of the equilibrium is not always guaran-
teed due to torque generated by slight disturbances. Section 4 introduces the experimental
set-up and results for pendant drops in a vertical wind tunnel, and shows that the numerical
model accurately predicts the realistic shape and unstable behaviour of the drops.

2. Equilibrium shape model

2.1. Young–Laplace equation
This study examines a liquid pendant drop suspended from the outlet of a cylindrical
needle, as depicted in figure 1. The drop is deformed by a uniform vertical airflow with
velocity U∞ to form a contact angle ψc with the needle. Let a and h represent the outer
radius of the needle outlet and the height of the drop, respectively. Assuming axisymmetry,
the equilibrium shape of the drop can be described in two-dimensional (x,z) coordinates,
with the origin at the centre of the needle outlet. Here, the x-axis denotes the radial
direction, and the z-axis points in the vertical upward direction. Note that x is always
positive in both the left and right sides of the z-axis in figure 1. The shape can also be
expressed in polar coordinates, where r is the distance from the origin, and θ is the polar
angle measured from the negative z direction. In this configuration, the bottom apex of the
drop is located at θ = 0 and z = −h.
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The equilibrium shape of the liquid drop surface results from the balance between
surface tension and the pressure difference across the surface. Gunde et al. (2001)
derived the Young–Laplace equation for an axisymmetric pendant drop in a quiescent
environment. In our study, we modify this equation by incorporating the aerodynamic
pressure term to assess the impact of external airflow. This approach aligns with that of
Beard & Chuang (1987), who used a prescribed pressure distribution around a sphere to
determine the shape of a falling raindrop. The pressure difference at the bottom of the drop
is expressed as

p(i)θ=0 − p(e)θ=0 = σ
2
b0
, (2.1)

where σ is the surface tension coefficient of the liquid, and b0 is the radius of curvature at
the bottom. Here, p(i) and p(e) denote the internal and external pressures, respectively. The
pressures at an arbitrary θ are given as

p(i) = p(i)θ=0 − ρdg(h + z), (2.2)

p(e) = p(e)θ=0 − ρag(h + z)− 1
2
ρaU

2∞(κ(0)− κ(θ)). (2.3)

Here, ρd and ρa are the densities of the drop and air, respectively, g is the gravitational
acceleration, and κ(θ ) is the aerodynamic pressure coefficient on the surface of the drop,
defined as

κ(θ)= p(e) − p∞
1
2
ρaU 2∞

. (2.4)

Expressions (2.3) and (2.4) are valid only under the assumption of inviscid flow, which
is further explored in § 2.2. Subtracting (2.3) from (2.2) and using (2.1), we formulate the
Young–Laplace equation for the pendant drop as

p(i) − p(e) = σ

(
1
b1

+ 1
b2

)
= σ

2
b0

− (ρd − ρa) g(h + z)+ 1
2
ρaU

2∞(κ(0)− κ(θ)),

(2.5)
where b1 and b2 are the principal radii of curvature at a given point on the drop surface.
Note that the hydrostatic pressure term includes (h + z) rather than (h − z) because the
drop is located in the negative z-plane.

We can non-dimensionalise the equation with the radius of the needle. Defining
dimensionless variables B1 = b1/a, B2 = b2/a, B0 = b0/a, H = h/a and Z = z/a, (2.5)
is transformed into

1
B1

+ 1
B2

= 2
B0

− Boa(H + Z)+ Wea(κ(0)− κ(θ)), (2.6)

where the Bond number and Weber number, based on the radius of the needle a, are
defined as

Boa = (ρd − ρa)ga2

σ
, (2.7)

Wea = ρaU 2∞a

2σ
. (2.8)

Equation (2.6) is the final form of the Young–Laplace equation expressed with
dimensionless variables. Notably, in (2.6), the dimensionless numbers Boa and Wea are
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Figure 2. The numerical scheme for calculating potential flow field around a pendant drop. (a) An irrotational
flow field generated by an axisymmetric Rankine ring source combined with a uniform free stream.
(b) Distribution of the ring sources used to model potential flow around the drop–needle system.

independent of the droplet’s shape. Therefore, the solution process requires determining
the aerodynamic pressure distribution κ(θ ) as well as the radii of curvature B1 and B2 of
the equilibrium shape, necessitating a solution scheme for nonlinear equations.

2.2. Aerodynamic pressure distribution
To obtain the aerodynamic pressure distribution κ(θ ) around deformed pendant drop
shapes, our numerical model remains simplistic by employing a concept of a Rankine ring
source element, as depicted in figure 2(a). These ring sources are centred and distributed
along the z-axis, encompassing both the drop and the extended needle in the positive z
direction, as illustrated in figure 2(b). For the kth ring source, with intensity qk and radius
xk at z = zk, the velocity potential ϕk is derived following the approach of Hess (1962) and
expressed as

φk (x, z)= 4qk
1√
Q1

K

(
Q2

Q1

)
, (2.9)

where Q1 and Q2 are further defined as

Q1 = (x + xk)
2 + (z − zk)

2 , (2.10)
Q2 = 4xkx . (2.11)

Additionally, K(β), the complete elliptic integral of the first kind, is defined as

K(β)=
∫ π/2

0

1√
1 − β sin2 θ

dθ, (2.12)

where β is a non-negative real number. The flow velocity components are derived from
the derivatives of ϕk with respect to the corresponding coordinates. The radial and axial
velocity components of the axisymmetric flow, created from a set of ring sources combined
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with a uniform vertical free stream, is given as

ux =
∑
k

∂φk

∂x
=

∑
k

2qk

[
Q1 − x (x + xk)

x
√
Q1 (Q1 − Q2)

E

(
Q2

Q1

)
− 1

x
√
Q1

K

(
Q2

Q1

)]
, (2.13)

uz =U∞ +
∑
k

∂φk

∂z
=U∞ −

∑
k

4qk
1√

Q1 (Q1 − Q2)
E

(
Q2

Q1

)
, (2.14)

where E(β), the complete elliptic integral of the second kind, is defined as

E(β)=
∫ π/2

0

√
1 − β sin2 θ dθ. (2.15)

Determining the intensity, radius and position of each ring source is crucial for
accurately simulating the axisymmetric flow around a specific drop shape. The boundary
condition at the surface, comprising both the drop and needle, is given by

u · n = 0, (2.16)

where u = (ux, uz) is the flow velocity vector, and n is the normal vector to the body
surface. Employing a finite number of ring sources necessitates discretising the surface
into an equal number of surface points (ξm , ζm), at which (2.16) must be satisfied, as
shown in figure 2(b). If xk and zk are fixed at specific values, then the velocity components
in (2.13) and (2.14) become linear expressions with respect to qk. In this case, (2.16) forms
a system of linear equations that can be readily solved for qk. Appropriate specification
of the radius and position of each ring source significantly simplifies the determination
of the potential flow field, thereby facilitating the calculation of the aerodynamic pressure
distribution. In the current numerical model, the ring sources are uniformly distributed
along the z-axis, with each source’s radius set so that it resides just inside the body surface.
It has been determined that up to two hundred ring sources, as well as corresponding
surface points, are sufficient to achieve a converged solution for the velocity potential.

Figure 3(a) displays an example of the potential flow field around a pendant drop with
H = 4, where the stagnation point is located at the bottom apex of the drop, and the flow
smoothly contours the surfaces of both the drop and the needle. It is important to note that
this model does not account for any liquid flow inside the drop induced by the airflow,
which, while affecting the internal pressure distribution, does not significantly alter the
resultant equilibrium shape (Szakáll et al. 2010).

The resultant aerodynamic pressure distribution κ(θ ) around the drop is illustrated in
figure 3(b) as a solid black line. For comparison, classical results of potential flow around
a sphere and the empirical pressure distribution by Fage (1937), used in Beard & Chuang
(1987) for simulating raindrops, are also depicted. In general, the primary weakness of
potential flow in describing the flow around a body is its inability to capture the pressure
loss caused by flow separation. Imai (1950) demonstrated that using potential flow to
describe spherical raindrops results in a significant overestimation of drop deformation,
especially at the rear stagnation point, due to the full recovery of pressure. Consequently,
Beard & Chuang (1987) employed the empirical pressure data from Fage (1937) modified
based on the potential flow to better represent flow separation and achieve a more accurate
simulation of raindrop shape.

In the case of a pendant drop suspended from a needle, such pressure measurement data
are unavailable in the literature. Thus we opted to utilise potential flow in an attempt to
emulate the flow field around the pendant drop. Notwithstanding, figure 3(b) shows that the
pressure on the downwind side of the pendant drop does not reach the stagnation pressure,
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Figure 3. Potential flow field and pressure distribution around a pendant drop. (a) Flow field around a drop
with height H = 4. (b) Resultant aerodynamic pressure on the drop surface compared to potential flow around
a sphere and experimental results from Fage (1936).

κ(θ ) = 1. Therefore, we anticipate that the overestimation of aft pressure from potential
flow is less significant for a pendant drop compared to a raindrop. As a result, the pendant
drop shape emulated using potential flow is expected to more closely represent the realistic
shape. Section 4.3 presents a comparison between the model results and experimental
observations.

2.3. Approximate series solution
The general solution to the governing equation (2.6), which models the shape of a pendant
drop, cannot be derived directly via algebraic methods due to mathematical complexities.
The aerodynamic pressure term κ(θ ) lacks a straightforward explicit form in relation to the
non-dimensional shape R(θ ). The first principal radius of curvature, B1, is the radius of the
circular arc that best approximates the curve R(θ ) at a given point. The second principal
radius of curvature, B2, is defined as the distance from a point on the drop surface to the
z-axis in the direction perpendicular to the surface. We represent B1 and B2 as (Abbena,
Salamon & Gray 2017)

B1 =
(
R2 + R2

θ

)3/2

R2 + 2R2
θ − RRθθ

, (2.17)

B2 = R sin θ
(
R2 + R2

θ

)1/2

R sin θ − Rθ cos θ
, (2.18)

where Rθ and Rθθ are the first and second derivatives of R(θ ) with respect to
θ , respectively. Consequently, (2.6) is inherently nonlinear and necessitates iterative
numerical methods. In this study, we develop a least-squares-based method to solve this
equation. The approach begins by approximating the drop shape with a cosine series:

R(θ)=
N∑

n=0

cn cos nθ. (2.19)
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Here, N denotes a truncation order introduced to facilitate the numerical determination
of the shape coefficients cn. Assuming axisymmetry of the drop shape, the cosine series
representation (2.19) ensures a smooth bottom apex at θ = 0, which can be imposed as
the boundary condition (dR/dθ )θ = 0 = 0. The other geometric boundary conditions are
specified as

R (θ = 0)= c0 + c1 + · · · + cN = H, (2.20)

R
(
θ = π

2

)
= c0 − c2 + c4 − · · · + (−1)�N/2� c2�N/2� = 1. (2.21)

Note that these conditions have already been non-dimensionalised using the radius of
the needle, a. Equation (2.20) establishes the drop’s height, while (2.21) ensures contact
with the needle outlet’s perimeter.

Employing a cosine series transforms the governing (2.6) into a nonlinear system
concerning the shape coefficients cn. If we incorporate the concept of surface points
(ξm , ζm) introduced in § 2.2, then the challenge of determining the equilibrium shape can
be reformulated as

f (ξm, ζm; c0, c1, . . . , cN )= 1
B1

+ 1
B2

− 2
B0

+ Boa(H + Z)− Wea(κ(0)− κ(θ))= 0,

m = 1, 2, . . . , M, (2.22)

where M is the number of surface points on the drop. The problem now translates to a
system of nonlinear equations, represented as f = 0 concerning the shape coefficients
cn. The number of equations M and the number of unknowns N + 1 are independent.
Therefore, the problem is solvable via an iterative nonlinear least squares method. This
method is outlined as follows:

S =
M∑

m=1

f (ξm, ζm; c)2 + λTLc, (2.23)

∂S

∂c
= ∂S

∂λ
= 0. (2.24)

In this context, S is an objective function that we aim to minimise, c = [c0 c1 . . . cN]T is
a column vector of shape coefficients, λ is a Lagrangian multiplier, and L is a 2 × (N + 1)
linear constraint matrix given as

L =
[

1
1

1
0

1
−1

1
0

1
1

1
0

· · ·
· · ·

]
. (2.25)

This matrix consolidates the geometric constraints (2.20) and (2.21) into a single
equation Lc = [H 1]T, facilitating the use of height H as a geometric constraint to maintain
linearity in the constraints. This is advantageous as more conventional metrics, such
as volumetric diameter, would result in nonlinear constraint equations, complicating the
numerical approach. Our approach enables the following iterative scheme for a nonlinear
least squares problem:

c(i+1) − c(i) = −(J TJ )−1J T f (c)(i)

+ (J TJ )−1LT (L(J TJ )−1LT )−1L(J TJ )−1J T f (c)(i), (2.26)
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Wea = 0.6 Wea = 0.8
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Figure 4. Equilibrium shapes of pendant drops at various sizes and Weber numbers.

where i is the iteration index, and Jacobian J, an M × (N + 1) matrix, is defined via

Jmn = ∂ fm
∂cn

. (2.27)

The iterative scheme (2.26) incorporates the Gauss–Newton method for nonlinear least
squares problems in the constrained linear least squares estimator (Amemiya 1985).

Due to the undefined explicit expression of κ(θ ) relative to cn, the partial differentiation
in (2.27) is calculated using a second-order central difference scheme. Our numerical
model uses M = 200 surface points (equal to the number of ring source singularities inside
the drop) and truncation order N = 100 for the cosine series. These values were determined
based on convergence tests, which showed that further increases in M and N resulted in
negligible changes to both the drop shape and the drag force arising from aerodynamic
pressure. The iterative process, as specified in (2.26), continues until convergence of the
shape coefficient vector c is achieved.

The equilibrium shapes of pendant drops of various sizes under different flow velocities
are presented in figure 4. Drop sizes range from H = 1 to H = 4, and the maximum flow
velocity corresponds to Weber number Wea = 0.8. The maximum values of H and Wea
used in the model calculations were chosen to match the experiment presented in § 4. In
practice, drops larger than H = 4 tend to detach from the needle due to their weight, while
flow velocities larger than that corresponding to Wea = 0.8 cause excessive vibration, also
leading to drop detachment. The results in figure 4 indicate that aerodynamic pressure
flattens the drop, akin to raindrop deformation observed by Beard & Chuang (1987). As
flow velocity increases, so does deformation, affecting the contact angle ψc at the needle,
which decreases with increasing drop size up to H = 3, but increases at H = 4 due
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Figure 5. Force balance on a pendant drop. (a) Different forces acting on the drop under the influence of
surrounding flow. (b) Variation in forces with respect to drop size, with Wea = 0.8.

to the weight of the drop. This trend in ψc variation is consistent across different flow
velocities.

3. Force balance analysis

3.1. Vertical force equilibrium
The numerical model described in § 2 resolves the Young–Laplace equation for a pendant
drop, thereby ensuring that the model accounts for the local force balance between pressure
and surface tension on the drop’s surface. At equilibrium, this balance across the entire
drop surface equates to a net zero force acting on the drop. Given the drop’s axisymmetry,
horizontal components of force cancel each other, and only vertical forces are considered
significant in this analysis. The vertical force equilibrium of the drop is expressed as

ΣF = FD + FS − (FG − FB)− FP = 0, (3.1)

where subscripts D, S, G, B and P correspond to drag, surface tension, gravity, buoyancy
and pressure, respectively. These forces, depicted in figure 5(a), are crucial for discussions
regarding the stability and dynamic behaviour of the drop. Each force acts vertically and is
expressed using dimensionless variables. The simplest among these is the surface tension
force FS, which pulls the drop upwards from its contact line with the needle. Given that
the contact line is a circle with radius a, the net surface tension force is 2πσa sin ψc.
Non-dimensionalising this force by dividing by σa yields

FS = 2π sinψc. (3.2)

The net gravitational force, the weight of the drop minus the buoyancy, is non-
dimensionalised in a similar manner as the surface tension force FS. This expression is
given as

FG − FB = BoaV, (3.3)

where V represents the dimensionless volume of the drop. This force acts downwards,
opposing the direction of the surface tension in (3.1).

The pressure force FP results from the excess pressure at the needle outlet (Gunde et al.
2001), analogous to the normal force on an object at a surface. This excess pressure is
calculated by setting Z = 0 and θ = π/2 in the governing equation (2.6). As the force acts
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over the needle outlet area πa2, the dimensionless pressure force is given as

FP = π

(
2
B0

− BoaH + Wea
(
κ(0)− κ

(π

2

)))
. (3.4)

Finally, the drag force due to aerodynamic pressure around the drop FD is derived
by combining (3.1)–(3.4). Alternatively, this force can be calculated by integrating the
pressure coefficient over the drop surface, expressed as

FD = Wea

∫
κ(θ) ẑ · dA = BoaV − π

(
2 sin θc − 2

B0
+ BoaH − Wea

(
κ(0)− κ

(π

2

)))
,

(3.5)
where ẑ and dA denote a unit vector in the z direction and an infinitesimal area vector
normal to the drop surface, respectively.

Once the drop shape is determined from the solution of the Young–Laplace equation,
the relevant forces can be evaluated using the cosine series solution for the drop shape.
For instance, figure 5(b) illustrates how vertical forces vary with drop size for Wea = 0.8.
As the drop size increases, the surface tension force FS changes with the varying contact
angle ψc. Consistent with the equilibrium shapes shown in figure 4, FS initially decreases
as the drop size increases and the contact angle decreases. However, as the drop becomes
heavier, the contact angle increases again, and FS begins to rise. Both the gravitational
force FG − FB and the drag force FD increase with the drop’s volume and cross-sectional
area. Consequently, the pressure force FP decreases to maintain force equilibrium as stated
in (3.1). If the drop size is further increased beyond H = 4, detachment from the needle
becomes likely as the pressure force approaches zero.

3.2. Stability criterion
In the equilibrium state, the pendant drop should theoretically maintain an axisymmetric
shape as predicted by the numerical model described in § 2, given that the vertical forces
are balanced as detailed in § 3.1. However, in practice, the drop may deviate from its
vertical equilibrium position due to inherent instabilities. Such unstable motions have been
documented by Dockery et al. (2024), who observed periodic motions of the pendant drop
under external airflow, resembling the dynamics of a spherical pendulum rotating around
the vertical axis. To evaluate the likelihood of such motions, it is essential to consider the
stability of the equilibrium influenced by the combination of vertical forces.

This section utilises a similar approach to § 3.1, focusing on calculating torques
rather than vertical forces to explain the drop’s tilting and oscillatory side motions.
As a simplified method to determine equilibrium stability, we introduce a first-order
perturbation by tilting the drop by a small angle ε. Under such perturbation, the sum of the
torques acting on the drop may not necessarily balance to zero. If the net torque exacerbates
the tilting motion, then the equilibrium is deemed unstable, leading to further tilting in the
direction of the disturbance. Conversely, if the net torque opposes the disturbance, then it
indicates a return to stable vertical equilibrium.

Figure 6(a) depicts several torques influencing the drop under tilting motion. The drag
force FD, acting upwards, generates a torque that intensifies the tilting motion. Conversely,
the gravitational force FG − FB (the net effect of weight minus buoyancy), acting
downwards, serves as a restoring torque that pulls the drop back towards equilibrium.
Assuming that the aerodynamic pressure distribution κ(θ ) remains constant for a small tilt
angle ε, the torques due to drag TD and gravity TG are described as
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∗

Figure 6. (a) Torques acting on a tilted pendant drop, shown along with the corresponding relative forces.
(b) The value of (d�T/dε)ε=0 at different flow velocities. Stability of the equilibrium is determined by whether
the net torque becomes positive or negative, with the critical heights H∗

1 and H∗
2 serving as stability criteria.

TD = Wea

∫
Zεκ(θ) ẑ · dA, (3.6)

TG = −Boa

∫
ZεdV . (3.7)

Here, area and volume integrals are computed over the entire drop. Notably, TG is
negative, opposing TD, and accounts for both weight and buoyancy as reflected in Boa,
which includes (ρd − ρa).

Additionally, the surface tension force generates torque due to variations in the
contact angle along the tilted drop’s contact line. Considering only the first-order tilting
perturbation, the torque due to surface tension TS is explicitly calculated as

TS =
∫ π

−π

cos ϕ√
1 + (ε cos ϕ + cotψc)

2
dϕ, (3.8)

where φ is the azimuthal angle around the z-axis (refer to Appendix A). Typically, the
integration result is negative for cot ψc > 0, indicating that the surface tension torque acts
alongside gravitational torque as a restoring force. These torque expressions (3.6)–(3.8)
are non-dimensionalised similarly to those in § 3.1. The condition for stable equilibrium is
then formulated as

dΣT

dε

∣∣∣∣
ε=0

= d
dε
(TD + TG + TS)

∣∣∣∣
ε=0

< 0, (3.9)

which, after a few algebraic steps, simplifies to

Wea

∫
Zκ(θ) ẑ · dA − Boa

∫
ZdV − π cosψc sin2 ψc < 0. (3.10)

Due to the complexity of explicitly formulating the integral terms in (3.10) for varying
drop shapes and flow velocities, these terms are evaluated numerically. Figure 6(b) shows
the value of (dΣT/dε)ε=0 as a function of drop height for different Weber numbers. At
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Figure 7. Laboratory set-up of a vertical wind tunnel experiment. (a) Shadowgraph set-up, including a high-
speed camera, an LED light source, and a syringe. (b) Image processing procedures for accurate drop edge
detection and shape analysis.

lower Weber numbers (Wea = 0.2 and 0.4), the net torque initially indicates stability with
a negative �T value for smaller drops. As the drop size increases, the net torque becomes
positive at a critical height H∗

1 , indicating instability predominantly due to the increasing
influence of drag TD over gravitational torque TG. The recovery torque due to surface
tension is limited due to small deformation at lower flow velocities, keeping the contact
angle near π/2. This trend shifts when the flow velocity increases to Wea = 0.6, where the
net torque �T begins to decrease as the drop size exceeds H = 3, suggesting a potential
recovery of stability for larger drops.

Further increasing the flow velocity to Wea = 0.8 reveals a second critical height H∗
2 .

Initially, the equilibrium is unstable for smaller drops due to significant torque TD from
the high-speed flow. However, unlike the lower Wea scenarios, the net torque �T does
not increase significantly as the drop size approaches H = 3. This deviation is primarily
attributed to a substantial reduction in the contact angle ψc, leading to an increase in
surface tension torque TS caused by the higher flow velocity. Further increasing the drop
size results in �T decreasing towards negative values, restoring equilibrium stability.
This transition aligns with the experimental findings of Dockery et al. (2024), where no
asymmetric motion was observed under high flow velocities. The recovery of stability
is mainly due to the domination of TG over TD as shape deformation lowers the drop’s
centre of mass. Meanwhile, the influence of TS diminishes as ψc increases for large drops
approaching H = 4.

4. Wind tunnel experiment

4.1. Experimental set-up
To validate the accuracy of our numerical model in representing the dynamics of pendant
drops, observations were conducted using a high-speed shadowgraph system in a vertical
wind tunnel, as depicted in figure 7(a). The tunnel is powered by a centrifugal blower
with maximum capacity 1280 W, generating flow velocities that significantly influence the
shapes and dynamics of pendant drops. The airflow becomes fairly straight and steady after
traversing a honeycomb structure, mesh arrangement and contraction section. Preliminary
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measurements with a hot-wire anemometer indicate that the flow within the test section
is uniform and steady, exhibiting turbulence intensity <0.5 %. Flow velocity is precisely
regulated by an electric inverter linked to the blower, maintaining a deviation of less than
1 % during the measurement period.

Drops of pure distilled water, released from a needle with radius 1.38 mm at the centre
of the test section, were controlled via a precisely calibrated syringe pump. The maximum
stable drop size was limited to H = 4, as larger drops could not maintain equilibrium
due to their increased weight, consistent with the vertical force balance described in § 3.1.
On the other hand, the flow velocity was capped at Wea = 0.8, as higher speeds induced
excessive vibrations and subsequent detachment of the drops from the needle.

A shadowgraph system was set up to image the drop shapes, utilising an LED light
source positioned behind a diffuse glass plate to illuminate the observation area. Images
were captured using a high-speed camera set at 1000 Hz across from the light source,
enabling the capture of the unstable dynamics of the drops. The image analysis process,
illustrated in figure 7(b), involves reconstructing drop shapes using a partial-area-based
subpixel edge location method (Trujillo-Pino et al. 2013). This algorithm, through multiple
smoothing and iterative processes, achieves an uncertainty of less than 0.2 pixels in
locating boundaries. In our experimental set-up, the image resolution is 27 μm per pixel,
and the diameter of the needle, denoted as 2a, corresponds to approximately 100 pixels.
Consequently, the uncertainty associated with pixel-based edge detection is negligible
when assessing the shape, size and dynamic motion of the drops.

Control over drop size was finely tuned using the syringe pump with minimum flow
rate 0.1 μl min−1. To counteract evaporation and maintain consistent drop sizes, the pump
speed was adjusted between 2 and 5 μl min−1, depending on the drop size and airflow
velocity. For each set drop size, shadowgraph images were captured for several seconds,
spanning a hundred oscillation periods of the drop. Additionally, another experiment was
conducted at a flow rate of up to 100 μl min−1 to observe real-time changes in drop shape
and dynamics with increasing size.

The boundary of the drop, determined from subpixel edge detection, was used to
calculate further metrics such as drop volume V and the centre of mass position, as
well as the tilting angle θCM. To estimate the volume from a two-dimensional image,
the horizontal cross-section of the drop is assumed to be circular. Although this method
introduces potential inaccuracies due to horizontal oscillations and deformation, averaging
the volume over a prolonged period yields a reliable measure of the drop’s volume
(Jones & Saylor 2009). The experiment employed this method to calculate the volume
of the drop in both equilibrium and during unstable motions.

Furthermore, the axis ratio α of the drop was calculated as

α= H

max{W (z)} , (4.1)

where W(z) is the width of the drop at vertical position z (see figure 7b). The axis ratio, a
common measure for assessing the degree of deformation in liquid drops (Beard & Chuang
1987; Rimbert et al. 2020), serves as a crucial parameter for comparing the drop shapes
derived from both the numerical model and experimental observations.

4.2. Pendant drop in quiescent flow
Previous studies, such as those by Gunde et al. (2001), have explored the equilibrium
shape of pendant drops in the absence of an external flow field. Mathematically, this
involves solving (2.6) without incorporating the aerodynamic pressure distribution term
on the right-hand side. Solutions to this version of the equation have been obtained using
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Present model H = 1

1 mm

H = 2

H = 3 H = 4

(a)

(b)

Figure 8. Shadowgraph images of pendant drops under quiescent flow conditions, with corresponding
equilibrium shapes calculated from the numerical model shown as dashed yellow lines.

the Runge–Kutta method, as demonstrated by Beard & Chuang (1987) and Gunde et al.
(2001). However, the current study employs a nonlinear optimisation scheme to determine
the equilibrium shape for a discretised body surface, which is particularly useful when
including the aerodynamic pressure term. Despite its utility, this method can result in
physically incorrect interpretations as global optimisation of the least squares scheme
is not always guaranteed. To evaluate the reliability and consistency of our numerical
approach, we first compare the results of the numerical model under quiescent flow
conditions with experimental outcomes to validate the effectiveness of the optimisation
method in solving the highly nonlinear Young–Laplace equation.

Figure 8 presents a direct comparison between the shadowgraph image of a stationary
pendant drop in quiescent flow and the equilibrium shape calculated from the numerical
model. Qualitatively, the model exhibits an excellent resemblance to the realistic shape,
particularly at varying drop sizes. The experimental observations confirm the increase
in contact angle at larger drop sizes, as discussed in § 2.3. Quantitative comparisons,
depicted in figure 9, show that the increase in axis ratio α with drop size – attributable
to vertical elongation due to gravity – is consistently mirrored by the numerical model.
Furthermore, the model accurately reflects the dimensionless volume of the drop observed
experimentally. Therefore, we conclude that the least squares optimisation method
successfully describes the equilibrium shape of the drop, validating its application in
solving the Young–Laplace equation.
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Figure 9. Comparison between experimental and numerical model results under quiescent flow conditions for
(a) volume, (b) axis ratio of the drop.

4.3. Dynamic motions and stability criterion
Contrary to conditions of quiescent flow, the presence of an external flow induces
additional deformation of the drop, as well as unstable motions. To capture this, the drop
shape is observed over an extended period, and its trajectory across the two-dimensional
image plane is consolidated into a single image that illustrates the general position and
periodic movements of the drop. Figure 10 displays these observations as black and white
images, where each pixel’s value indicates the likelihood of the pixel being within the drop
boundary, thereby visualising both the general drop shape and the directional tendencies
of its motions. The equilibrium shapes calculated by the numerical model, using the
same drop size and flow velocity conditions, are superimposed as yellow dashed lines.
Qualitatively, the model closely predicts the time-averaged drop shape, lying within the
outlined black and white areas. In many cases, the drop appears to oscillate sideways,
exhibiting the projection of three-dimensional conical pendulum motion, referred to as the
(1a, 0) mode by Dockery et al. (2024). This region of equilibrium instability is observed
within certain ranges of drop size and flow velocity, consistent with the concept of critical
heights outlined in § 3.2.

At a low flow velocity Wea = 0.2, smaller drops remain stable at their equilibrium
positions (figures 10a,b). However, as the drop size exceeds the critical height H∗

1 , the drop
begins to exhibit unstable motion around the vertical axis, maintaining an axisymmetric
shape on average (figures 10c,d). A similar phenomenon occurs at a higher flow velocity
of Wea = 0.4, where H∗

1 is relatively lower, and the drop becomes unstable earlier as its
size increases (figure 10f ). With further increased flow velocity to Wea = 0.8, a second
critical height H∗

2 emerges, where the drop regains stability and no longer deviates from
the vertical axis (figure 10p). Under this condition, the drop oscillates vertically due to the
reduced influence of surface tension, yet remains in an axisymmetric shape, and is thus
considered stable, aligning with predictions from the numerical model in § 3.2.

Similar to quiescent flow scenarios presented in § 4.2, the volume and axis ratios of the
drop are quantitatively compared with the numerical model in figures 11(a,b), respectively.
Since the drop is not stationary and exhibits periodic motion, each data point in figure 11 is
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Wea = 0.2

Wea = 0.4

Wea = 0.6

Wea = 0.8

H = 1 H = 2 H = 3 H = 4

(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) ( p)

Present model

Figure 10. Experimental results of pendant drop shapes in air flows of varying velocity: (a–d) Wea = 0.2, (e–h)
Wea = 0.4, (i–l) Wea = 0.6, (m–p) Wea = 0.8. Dashed yellow lines indicate equilibrium shapes calculated from
the numerical model.

based on the mean drop shape, obtained by averaging the instantaneous shape R(θ ) in polar
coordinates over 5000 images spanning at least 50 oscillation periods. The experimental
data align well with the model, showing an increase in volume and a decrease in axis
ratio at the same drop height with increasing flow velocity. However, at Wea = 0.6,
slight deviations are noted, attributed to difficulties in assessing equilibrium shapes from
time-averaged data when the drop exhibits both unstable pendulum motions and vertical
oscillations (see figure 10l).
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Figure 11. Comparison between experimental results and numerical model for pendant drops in air flow:
(a) volume, (b) axis ratio of the drop.

It is worth noting that the excellent agreement between simulation and experiment is not
unexpected, despite the assumption of potential flow in the numerical model. Although
potential flow does not account for possible flow separation around the drop, the results
of Beard & Chuang (1987) and Rimbert et al. (2020) emphasise the critical importance
of modelling the foreface pressure distribution using potential flow in order to reproduce
the characteristic flattened shape of deformed drops. In their studies, drop deformation
was successfully predicted for Reynolds numbers up to O(103) and Weber number up
to O(1). In our study, the maximum Weber number based on drop height is WeH = 3.2,
corresponding to ReH = 2540, which falls within a range similar to that of previous studies.
This suggests that our numerical model is well suited to the current scope of the drop–
airflow system.

More quantitative observations of changes in equilibrium stability and the existence
of the two critical heights H∗

1 and H∗
2 are obtained by deliberately increasing the drop

size over time. Figures 12 and 13 display the tilting angle θCM relative to changing
drop size. Figure 12 plots each data point as the root mean square value of θCM as it
fluctuates over time, while figure 13 presents instantaneous tilting angles against drop
height. Given that the periodic motions result in large fluctuations of the tilting angle,
the equilibrium stability of the drop is clearly evident in these graphs. Both experiments
consistently delineate regions of stable and unstable equilibria. As flow velocity increases,
H∗

1 decreases due to stronger aerodynamic pressure even at smaller drop sizes. At high
velocities, the second critical height H∗

2 appears at later stages when the drop size is
larger, and the equilibrium regains its stability, as observed in cases where Wea = 0.8.
Notably, slight fluctuations of θCM in stable regions for Wea = 0.4 and Wea = 0.8 are
due to vertical oscillations. It is important to note that fluctuations in the tilting angle are
sometimes suppressed even under unstable conditions (see figures 13d,e), suggesting that
the internal flow induced by the high volume flow rate of the syringe pump as the drops
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Figure 12. Root mean square value of tilting angle θCM measured in shadowgraph experiments: (a) Wea = 0
(quiescent flow), (b) Wea = 0.2, (c) Wea = 0.4, (d) Wea = 0.6, (e) Wea = 0.8. Each data point marked with a
circle symbol represents the measured tilting angle for a specific drop size.

continue to grow in size may impact the dynamic behaviour of the drop. However, such
phenomena are not observed in figure 12 when the drop size is maintained constant.

An interesting observation from figure 13 is that the angular amplitude of unstable
motion (defined as the difference between the maximum and minimum values of θCM)
remains relatively consistent across a wide range of flow velocities and drop sizes.
This suggests that despite significant variations in drop deformation and drag force,
the extent of tilting does not change drastically. While our current force balance model
effectively captures the onset of instability, it is limited in explaining the dynamics
of significantly tilted drops, where asymmetry and three-dimensional effects become
important. As previously explored by Dockery et al. (2024), one may attempt to model
the conical pendulum-like motion using a balance of surface tension, gravity, drag and
centrifugal forces. However, estimating the drag force on a tilted drop is challenging, as
the surrounding flow field would differ significantly from that around an axisymmetric
configuration. Additionally, the difficulty of capturing the three-dimensional shape of a
highly tilted drop further complicates the evaluation of surface tension effects. Further
investigation into the tilting angle of the drop will likely involve numerical studies
incorporating realistic simulations of unsteady flow fields and drop motion.

Regarding stability of the equilibrium, all experimental data can be integrated to obtain
figure 14(a), which presents a stability regime map of the pendant drop. This map uses
data points to indicate whether the drop at a specific height and flow velocity exhibits
stable or unstable equilibrium, while the solid black line and dashed red line denote the
predicted critical heights H∗

1 and H∗
2 , respectively. The equilibrium is considered stable
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Figure 13. Variation of tilting angle θCM over time while gradually increasing the drop size using a syringe
pump: (a) Wea = 0 (quiescent flow), (b) Wea = 0.2, (c) Wea = 0.4, (d) Wea = 0.6, (e) Wea = 0.8.

when the root mean square of the tilting angle θCM is less than 0.1 rad. This threshold
value provides a statistically robust separation between data with small and large θCM,RMS,
as shown in figure 14(b). The experiment corroborates the model’s results, as H∗

1 decreases
with increasing flow velocity, and H∗

2 emerges at high velocities. In the case Wea = 0.68,
the drop appears to be in an unstable equilibrium despite exceeding the second critical
height H∗

2 , possibly due to excessive vertical movement, which slightly increases the
tilting angle. Nonetheless, the model effectively explains the stability behaviour observed
in the experiments, thus validating the present numerical model and vertical force balance
analysis in §§ 2 and 3 for predicting whether the drop exhibits unstable periodic motion or
remains stationary with a deformed equilibrium shape.

To complete the discussion of the model’s prediction of instability, it should be noted
that the observed periodic unstable motion is unlikely to result from vortex shedding
caused by flow separation. Beard & Kubesh (1991) proposed the possibility of resonance
between the oscillatory motion of falling water drops and vortex shedding behind the
drop. For small drops approximately 1 mm in diameter, the shedding frequency often
matches the natural frequency of oscillation. However, the drops studied here are relatively
larger, exhibiting oscillation frequencies below 60 Hz, while the expected vortex shedding
frequency in this regime exceeds 100 Hz. Thus we find no compelling evidence of
strong resonance or coupling between drop oscillation and vortex shedding due to flow
separation. Furthermore, the numerical study by Agrawal et al. (2017) reported that for
drops in systems with a high liquid-to-air viscosity ratio, vortex shedding does not break
azimuthal symmetry. Therefore, although unsteady forcing from flow separation exists
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Figure 14. (a) Stability regime map based on experimental data, complemented by predictions from the
numerical model. Symbols indicate whether the equilibrium is stable or unstable at specific drop sizes and
flow velocities. Curves representing the two critical heights H∗

1 and H∗
2 , as calculated from the numerical

model, are shown with a solid black line and a dashed red line, respectively. (b) A histogram of θCM,RMS values
from experimental cases, with a dashed line marking the stability threshold.

in reality, it is more likely that the onset of instability from the vertical, axisymmetric
equilibrium position results from the balance between several relevant forces.

5. Conclusions
The present work examines the impact of external flow on the shapes and dynamics
of pendant drops. The equilibrium shape, influenced by combined hydrostatic and
aerodynamic effects, was modelled using a nonlinear least squares approach. This involved
optimising the Young–Laplace equation across a discrete set of boundary points on both
drop and needle surfaces. While this numerical approach does not yield a mathematically
exact solution, the high truncation order of the approximate cosine series solution
effectively describes the drop shape, capturing complex geometrical features such as
the flattened bottom apex and changes in contact angle. This method proves particularly
beneficial when incorporating terms such as aerodynamic pressure distribution, which lack
explicit expressions.

Regarding the influence of external pressure, the airflow field is modelled as potential
flow, differing from realistic flow scenarios. At low Reynolds numbers, the importance
of viscosity emerges, and the flow is not irrotational, leading to the development of a
boundary layer over the drop surface, and resulting in increased friction drag. Although
this factor induces drop deformation, its effect is minimal due to low flow velocities
and insufficient friction drag to significantly counteract the surface tension of the drop.
Conversely, at high Reynolds numbers, flow separation expected towards the downwind
side of the drop reduces aerodynamic pressure in those regions, likely causing increased
flattening of the drop.

Nevertheless, experimental results indicate that the current numerical model accurately
represents the shape of the pendant drop despite these theoretical assumptions. Moreover,
the conditions under which unstable motions occur, as first demonstrated by Dockery et al.
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(2024), are theoretically explained through a force balance analysis. For the first time,
two critical heights are quantitatively reported, highlighting an unexpected recovery of
equilibrium stability at high flow velocities. Overall, the numerical model proposed in this
study successfully describes the shapes and equilibrium dynamics of pendant drops under
uniform vertical flow.

It is important to note that both the experiment and the numerical calculations are
limited to conditions where the drop remains attached to the needle. As the drop size
and flow velocity increase, the drop eventually detaches due to significant weight and
excessive vibrations. Additionally, increasing the syringe pump speed may influence
drop dynamics, as internal bulk flow becomes non-negligible. To fully comprehend drop
dynamics, theories of capillary break-up, oscillation, and internal circulation of liquid
drops must additionally be considered. These phenomena, expected to reveal complex
interactions with the external flow field, are earmarked for future study.
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Appendix A. Torque due to surface tension
The expression (3.8) for the restoring torque due to the surface tension force can be derived
through direct integration of the infinitesimal torque acting perpendicular to the plane
of drop tilting. Consider a first-order tilting perturbation, where the drop is tilted by a
small angle ε with respect to the vertical axis, as depicted in figure 15. Here, we use the
standard three-dimensional Cartesian coordinates (x0, y0, z0) instead of the axisymmetric
coordinates (x, z) introduced in figure 1. The transformation between these two sets of
coordinates is given by

(x0, y0, z0)= (x cos ϕ, x sin ϕ, z), −π ≤ ϕ ≤ π, (A1)

where ϕ is the azimuthal angle in the x0y0-plane. In this configuration, the y0-axis
points into the paper, and the tilting motion of the drop occurs in the x0z0-plane. In the
undisturbed equilibrium state, the contact angle ψc remains constant along the contact
line (needle outlet perimeter). However, when the drop tilts, the contact angle becomes a
non-trivial function of ϕ, denoted as ψc,tilt in figure 15. The non-uniform distribution of
the contact angle along the contact line generates a net torque in the y0 direction.

In the vicinity of the contact line, the drop surface can be approximated as a conical
surface. The equation describing the equilibrium shape Feq is given by

Feq (x0, y0, z0)= x2
0 + y2

0 − (a − z0 cotψc)
2 = 0. (A2)

Note that the negative sign in front of z0 implies that the drop is positioned in the region
where z0 is negative. When the drop is linearly tilted, the value of x0 on the surface shifts
by −z0ε. Consequently, the equation describing the tilted surface F is

F (x0, y0, z0)= (x0 + z0ε)
2 + y2

0 − (a − z0 cotψc)
2 = 0. (A3)
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a

x0

y0 into the paper

dfs = σadϕ

ψc,tilt

ψc

ε

Feq (x0, y0, z0)

F (x0, y0, z0)

n

z0

Figure 15. A schematic of a pendant drop slightly tilted from the vertical axis. The infinitesimal surface
tension force df S, the surface normal vector n at the contact line, and other relevant geometrical parameters are
included. Dash-dotted lines represent the drop’s centrelines.

To determine the contact angle ψc,tilt as a function of ϕ, we first compute the
surface normal vector n = (nx0, ny0, nz0) at the contact line, where (x0, y0, z0)=
(a cos ϕ, a sin ϕ, 0):

nx0 = ∂F

∂x0

∣∣∣∣
(x0,y0,z0)=(a cos ϕ,a sin ϕ,0)

= 2a cos ϕ, (A4)

ny0 = ∂F

∂y0

∣∣∣∣
(x0,y0,z0)=(a cos ϕ,a sin ϕ,0)

= 2a sin ϕ, (A5)

nz0 = ∂F

∂z0

∣∣∣∣
(x0,y0,z0)=(a cos ϕ,a sin ϕ,0)

= 2a (ε cos ϕ + cotψc). (A6)

Consequently, the contact angle ψc,tilt is given by

sinψc,tilt =
√
n2
x0

+ n2
y0

‖n‖ = 1√
1 + (ε cos ϕ + cotψc)

2
. (A7)

Finally, the net torque in the y0-direction is obtained by integrating the infinitesimal
torque along the contact line:

torque =
∫

contact
line

x0 d fS sinψc,tilt =
∫ π

−π

a cos ϕ · σa dϕ · sinψc,tilt

= σa2
∫ π

−π

cos ϕ√
1 + (ε cos ϕ + cotψc)

2
dϕ, (A8)

where dfS = σadϕ represents the surface tension force acting on an infinitesimal segment
a dϕ of the contact line. Dividing (A8) by σa2 yields (3.8), which represents the non-
dimensionalised torque due to surface tension.
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